МЕЖГОСУДАРСТВЕННЫЙ COBET ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ (МГС) INTERSTATE COUNCIL FOR STANDARDIZATION, METROLOGY AND CERTIFICATION (ISC)

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ ΓΟCT 10978— 2014

СТЕКЛО И ИЗДЕЛИЯ ИЗ НЕГО

Метод определения температурного коэффициента линейного расширения

Издание официальное

Предисловие

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0—92 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2—009 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, применения, обновления и отмены»

Сведения о стандарте

- 1 РАЗРАБОТАН Открытым акционерным обществом «Институт стекла» (ТК 41 «Стекло»)
- 2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии (Росстандарт)
- 3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 14 ноября 2014 г. № 72-П)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004—97	Код страны по МК (ИСО 3166) 004—97	Сохращенное наименование национального органа по стандартизации
Армения	AM	Минэкономики Республики Армения
Беларусь	BY	Госстандарт Республики Беларусь
Киргизия	KG	Кыргызстандарт
Россия	RU	Росстандарт
Таджикистан	TJ	Таджикстандарт
Узбекистан	UZ	Узстандарт
Украина	UA	Минэкономразвития Украины

4 Приказом Федерального агентства по техническому регулированию и метрологии от 6 мая 2015 г. № 329-ст межгосударственный стандарт ГОСТ 10978—2014 введен в действие в качестве национального стандарта Российской Федерации с 1 апреля 2016 г.

5 B3AMEH FOCT 10978-83

Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

[©] Стандартинформ, 2015

В Российской Федерации настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

Содержание

1	Область применения
2	Нормативные ссылки
3	Термины и определения
4	Обозначения
5	Сущность метода
6	Средства испытания
7	Подготовка образцов
8	Подготовка к проведению испытания
9	Проведение испытания
10	Обработка результатов
11	1 Оформление результатов
П	риложение А (справочное) Пример определения значения ТКЛР образца из стекла в интервале температур 20 °C—300 °C

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

СТЕКЛО И ИЗДЕЛИЯ ИЗ НЕГО

Метод определения температурного коэффициента линейного расширения

Glass and glass products. Test method for linear thermal expansion coefficient

Дата введения — 2016-04-01

1 Область применения

Настоящий стандарт устанавливает метод определения температурного коэффициента линейного расширения (далее — ТКЛР) стекла, изделий из него и стеклокристаллических материалов (далее — стекло) ниже интервала трансформации (стеклования) в диапазоне температур от 20 °C до 900 °C.

В настоящем стандарте приведены общие требования к определению ТКЛР. Режимы испытания (температура, режим нагревания) устанавливают в нормативных документах* на стекло конкретного вида.

Метод, установленный настоящим стандартом, применяют при проведении сертификационных, исследовательских, определительных, сравнительных, контрольных испытаний.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие межгосударственные стандарты:

ГОСТ 12.1.004—91 Система стандартов безопасности труда. Пожарная безопасность. Общие требования

ГОСТ 12.1.019—79 Система стандартов безопасности труда. Электробезопасность. Общие требования и номенклатура видов защиты

ГОСТ 166-89 (ИСО 3599-76) Штангенциркули. Технические условия

ГОСТ 16504—81 Система государственных испытаний продукции. Испытания и контроль качества продукции. Основные термины и определения

ГОСТ 32361-2013 Стекло и изделия из него. Пороки. Термины и определения

ГОСТ 32539—2013 Стекло и изделия из него. Термины и определения

ГОСТ 33004—2014 Стекло и изделия из него. Характеристики. Термины и определения

П р и м е ч а н и е — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя за текущий год. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применены термины по ГОСТ 16504, ГОСТ 32361, ГОСТ 32539, ГОСТ 33004, а также следующие термины с соответствующими определениями:

3.1 температурный коэффициент линейного расширения (ТКЛР) α_p K⁻¹: Относительное изменение длины образца при изменении его температуры на один градус.

Здесь и далее по тексту под нормативным документом понимают технический регламент, стандарт, технические условия, спецификацию, договор поставки или другой документ, устанавливающий требования к стеклу.

3.2 температурный коэффициент линейного расширения образца $\alpha_{t_1}^{(c)}$ t_2 , K^{-1} : ТКЛР, измеренный для образца стекла в заданном диапазоне температур.

4 Обозначения

```
\Delta l— удлинение образца (по показаниям прибора) в интервале температур t_1-t_2, мм; \Delta l'— смещение нуля дилатометра в интервале температур t_1-t_2, мм; l_0 — длина образцовой меры при комнатной температуре (20\pm5) °C, мм; \alpha_{\rm KB} — значение ТКЛР кварцевого стекла в интервале температур t_1-t_2, K^{-1}; \alpha_{i:t_1-t_2}^{(\rm M)} — значение ТКЛР образцовой меры в интервале температур t_1-t_2, K^{-1}; \alpha_{a:t_1-t_2}^{(\rm M)} — значение ТКЛР образцовой меры по данным аттестации; \Delta— заданная в паспортных данных погрешность прибора; S_{t_1-t_2}^2 — выборочная дисперсия; \alpha_{t_1-t_2}^{(c)} — вычисленное значение ТКЛР образца в интервале температур t_1-t_2, K^{-1}; \alpha_{y:t_1-t_2}^{(c)} — уточненное значение ТКЛР образца в интервале температур t_1-t_2, K^{-1}; K_{t_1-t_2} — поправка в интервале температур t_1-t_2, K^{-1}.
```

5 Сущность метода

Метод заключается в измерении изменения длины образца, изготовленного из стекла, при изменении его температуры.

6 Средства испытания

- 6.1 Дилатометр, обеспечивающий создание, регулирование и поддержание заданных режимов испытания, с характеристиками:
 - измерение ТКЛР в интервале температур от 20 °C до 900 °C;
 - давление для измерения удлинения на образец не должно превышать 150 кПа;
- погрешность измерения ТКЛР (Δ) не должна превышать 0,2 10^{-6} K $^{-1}$ в интервале температур от 20 °C до 300 °C и α_{20-300} = $6 \cdot 10^{-6}$ K $^{-1}$;
- погрешность измерения ТКЛР (Δ) не должна превышать 0,5 · 10⁻⁶ K⁻¹ для интервала температур 100 °C и α_{20-300} = 6 · 10⁻⁶ K⁻¹;
 - погрешность измерения температуры не должна превышать 3 °C;
- погрешность измерения удлинения не должна превышать $2 \cdot 10^{-5} I_0$ мм при измерении ТКЛР больших $2 \cdot 10^{-8}$ K⁻¹;
- погрешность измерения удлинения не должна превышать $4 \cdot 10^{-6} I_0$ мм при измерении ТКЛР меньших или равных $2 \cdot 10^{-6}$ K⁻¹;
- разность температур в зоне расположения образца в печи по его длине на расстоянии 50 мм не должна превышать 5 °C.

Для испытания образца в стационарном режиме нагревания дилатометр должен быть укомплектован терморегулятором. Погрешность поддержания постоянства заданной температуры не должна превышать 0.5 °C.

Изменение показания устройства для измерения удлинения в кварцевом дилатометре (смещение нуля дилатометра) при нагревании образца из кварцевого стекла в интервале $20 \, ^{\circ}\text{C}$ — $900 \, ^{\circ}\text{C}$ не должно быть более $5 \cdot 10^{-3}$ мм.

При нагревании в интервале от 20 °C до 400 °C смещение нуля не должно быть более 3 · 10-3 мм.

6.2 Штангенциркуль с ценой деления 0,05 мм по ГОСТ 166 или другой измерительный инструмент с ценой деления не более 0,05 мм.

7 Подготовка образцов

- Образцы не должны содержать сколов и трещин. Торцы образцов должны быть плоскими.
- 7.2 Образцы для испытания должны иметь форму цилиндра длиной (50 ± 2) мм и диаметром (4.0 ± 0.4) мм. В зависимости от конструкции дилатометра и значения ТКЛР образца допускаются другие формы, длина и диаметр образца.
- 7.3 Образцы из стекла перед испытанием отжигают в течение 30 мин при температуре на 20 °C-30 °C, превышающей температуру размягчения. Затем охлаждают с постоянной скоростью, не превышающей 3 °C · минг 1, на 100 °C ниже этой температуры; после чего возможно охлаждение образца с большей скоростью с учетом его термостойкости.
- 7.4 После термической обработки торцы образца шлифуют, чтобы они были перпендикулярны оси образца.
 - 7.5 Размеры образцов проверяют при помощи средств измерения по 6.2.

8 Подготовка к проведению испытания

 Перед испытаниями образцов определяют погрешность измерения дилатометра в интервалах температур, в которых требуется определить значение ТКЛР образцов.

Режим нагревания при этом должен соответствовать 9.1, 9.2.

- Проводят измерение смещения нуля дилатометра при нагревании образца из кварцевого стекла в интервале 20 °C-900 °C.
- 8.1.2 Проводят измерение ТКЛР образцовой дилатометрической меры (из монокристаллического корунда или другого материала), аттестованной в установленном порядке.

Число серий измерения (N) образцовой меры в требуемом интервале температур должно быть не менее 3.

8.1.3 Для каждой серии измерений значение ТКЛР образцовой меры $a_{i:t_k}^{(M)}$ в интервале температур $t_1 - t_2$ вычисляют по формуле

$$\alpha_{I;I_1}^{(M)} = \frac{1}{l_2} \frac{\Delta I - \Delta I'}{l_1 - l_2} + \alpha_{KB},$$
(1)

где $\Delta - y$ длинение образца (по показаниям прибора) в интервале температур $t_1 - t_2$, мм;

 $\Delta l'$ — смещение нуля дилатометра в интервале температур $t_1 - t_2$, мм;

 I_0 — длина образцовой меры при комнатной температуре (20 \pm 5) °C, мм;

 $lpha_{
m xB}$ — значение ТКЛР кварцевого стекла в интервале температур $t_1 = t_2$. Значения среднего ТКЛР и относительного удлинения кварцевого стекла приведены в таблице 1.

Таблица 1

Температура <i>I_г</i> °C	Значение ТКЛР α 10 ⁶ в интервале 20—t _i °C, K ⁻¹	Относительное удлинение $\epsilon = \Delta B I_0$ 10 ⁶ в интервале 20— t_i °C	Температура 1 _г °С	Значение ТКЛР α 10 ⁶ в интервале 20—t _j °C, К ⁻¹	Относительное удлинение $L = \Delta t I_0 - 10^6 \text{ в}$ интервале $20 - t_i$ °C
20	.0	0	450	0,568	244,24
50	0,462	13,86	500	0,562	269,76
75	0,477	26,24	550	0,552	292,56
100	0,514	41,12	600	0,543	314,94
150	0,552	71,76	650	0,534	336,42
200	0,567	102,06	700	0,524	356,32
250	0,581	133,63	750	0,512	373,76
300	0,582	162,96	800	0,498	388,44
350	0,582	192,06	900	0,493	433,84
400	0,578	219,64			

FOCT 10978-2014

Для вычисления среднего ТКЛР кварцевого стекла в любом интервале температур t_1-t_2 необходимо разность значений относительного удлинения $\varepsilon_{t_2}-\varepsilon_{t_1}$ разделить на соответствующий интервал температур t_2-t_1

8.1.4 По результатам каждой серии измерений (i = 1...N) заполняют таблицу 2 значениями ТКЛР в требуемых интервалах температур.

Таблица 2

Серия измерений	Значение ТКЛР образцовой меры в требуемых интервалах температур $a_I^{(\mathbf{M})} \cdot 10^6$, K $^{-1}$ Интервалы температур, °C				
<i>i</i> = 1					- 1
1 = N					

8.1.5 В требуемом интервале температур проводят оценку математического ожидания значений ТКЛР вычислением среднего арифметического отдельных результатов измерений по формуле

$$\alpha_{t_1}^{(M)} t_2 = \frac{1}{N} \sum_{i=1}^{N} \alpha_{i;t_1} t_2$$
 (2)

8.1.6 Оценку дисперсии $S_{t_1}^2$ измерений, полученных в требуемом интервале температур, вычисляют по формуле

$$S_{t_1 t_2}^2 = \frac{1}{N-1} \sum_{l_1 = 1}^{N} (\alpha_{j_1 t_1 t_2}^{(M)})^2 - N(\alpha_{t_1 t_2}^{(M)})^2$$
(3)

8.1.7 Исходя из заданной погрешности Δ (паспортные данные прибора), вычисляют величину σ_{χ} среднеквадратического отклонения случайной погрешности по формуле

$$\sigma_{\nu} = 1/3\Delta.$$
 (4)

Числовой коэффициент $^{1}I_{3}$ указывает, что погрешность Δ выбирается на уровень $3\sigma_{\chi}$ (вероятность — 0,99).

Далее оценивают соответствие разброса измерений паспортным данным. Выборочную дисперсию S², рассчитанную по формуле (3), сравнивают с помощью двустороннего неравенства

$$C_1(N) \le \frac{S^2}{\sigma_\chi^2} \le C_2(N),$$
 (5)

где $C_1(N)$ и $C_2(N)$ определяют по таблице 3. Значения этих коэффициентов рассчитаны с помощью таблиц распределения χ^2 при доверительной вероятности 0,95.

Таблица 3

N	C ₁ (N)	C ₂ (N)	N	C ₁ (N)	G ₂ (N)
2	0,000982	5,024	4	0,072	3,116
2	0,0253	3,689	5	0,121	2,786

Если отношение $\frac{S^2}{\sigma_\chi^2}$ меньше $C_1(N)$, то это свидетельствует о неисправности прибора или о чрезмерной заниженности метрологических характеристик дилатометра (паспортных данных).

В случае, если $\frac{S^2}{\sigma_s^2}$ больше $C_2(N)$, то дилатометр не обеспечивает заданной точности.

- В обоих случаях применение прибора недопустимо требуется дополнительная юстировка и поверка дилатометра.
- 8.1.8 Вычисляют величину $K_{t_1 \dots t_2}$, равную разности значения ТКЛР образцовой меры по данным аттестации $\alpha_{a;t_1 \dots t_2}^{(M)}$, и значения ТКЛР образцовой меры $\alpha_{t_1 \dots t_2}^{(M)}$, вычисленного по формулам (1) и (2) для требуемого интервала температур t_1 — t_2 , по формуле

$$K_{t_1 \ t_2} = \alpha_{a;t_1 \ t_2}^{(M)} - \alpha_{t_1 \ t_2}^{(M)}$$
 (6)

Если величина $\left|K_{t_1-t_2}\right|$ превышает $0.2\cdot 10^{-8}\cdot K^{-1}$, то применение дилатометра недопустимо.

8.1.9 Определяют, является ли разность $K_{t_1 \ t_2}$ случайной или систематической. Для этого проводят проверку следующего неравенства

$$K_{t_1 t_2}^2 \le C_3(N) \cdot S_{t_1 t_2}^2$$
, (7)

где $C_3(N)$ — коэффициент, рассчитанный по таблицам доверительных границ T-распределения Стьюдента при доверительной вероятности 0,95 (таблица 4);

 $S_{t_1-t_2}^2$ — выборочная дисперсия, рассчитанная по формуле (3);

N — число измерений.

Таблица 4

N	C ₃ (N)	N	C3(N)
2	80,7	4	2,53
3	6,17	5	1,54

Если неравенство (7) выполняется, то поправка $K_{t_1-t_2}$ является случайной и не учитывается при вычислении ТКЛР образцов. В противном случае она должна быть учтена по формуле (8).

8.1.10 Погрешность дилатометра определяют через каждые 25 циклов измерений, а также после замены деталей держателя образца, термоэлектрического преобразователя, потенциометра для измерения или регистрации температуры, устройства для измерения или регистрации удлинения, автоматического регулятора температуры в печи, нагревательной спирали.

9 Проведение испытания

- 9.1 ТКЛР образца определяют в любом требуемом интервале температур в диапазоне от 20 °C до 900 °C. Минимальная величина интервала 100 °C.
- 9.2 Испытание образца проводят в стационарном или нестационарном режимах нагревания, указанных в нормативных документах на изделие конкретного вида.
- 9.2.1 Продолжительность выдержки образца при постоянной температуре в стационарном режиме испытания:
 - не менее 30 мин в интервале от комнатной температуры до 100 °C;
 - 20 мин в интервале 100 °C—300 °C;
 - 10 мин выше 300 °C.
 - 9.2.2 Скорость нагревания при испытании в нестационарном режиме:

не более 0,5 °C · мин-1 — в интервале 20 °C-80 °C;

плавно увеличивают в течение 1 ч до 4 °C · мин⁻¹ — в интервале 80 °C—200 °C; 4 °C · мин⁻¹ — выше 200 °C.

Каждый образец измеряют на дилатометре один раз.

10 Обработка результатов

- 10.1 По данным удлинения образца строят дилатограмму и экстраполируют, если t_0 отличается от 20 °C.
- 10.2 Вычисляют значение ТКЛР образца $\alpha_{t_1-t_2}^{(c)}$ требуемом интервале температур по формуле (1), по которой вычисляли ТКЛР образцовой меры $\alpha_{i:t_1-t_2}^{(M)}$.
- 10.3 Если неравенство (7) не выполняется, то определяют уточненное значение ТКЛР образца по формуле

$$\alpha_{y;t_1 + t_2}^{(c)} = \alpha_{t_1}^{(c)} + \frac{K_{t_1 - t_2}}{\alpha_{t_1 + t_2}^{(u)}} \alpha_{t_1 + t_2}^{(c)},$$
(8)

где $\alpha_{y;t_4-t_2}^{(c)}$ — уточненное значение ТКЛР образца в интервале температур t_1 — t_2 ;

 $\alpha_{t_1\cdots t_2}^{(c)}$ — значение ТКЛР образца в интервале температур $t_1 - t_2$, вычисленное по формуле (1);

 $K_{t_1 t_2}$ — поправка в интервале температур t_1 — t_2 , вычисленная по формуле (6);

 $\alpha_{t_1 \quad t_2}^{(\mathrm{M})}$ — значение ТКЛР образцовой меры в интервале температур t_1 — t_2 , вычисленное по формуле (2) из N серий измерений.

11 Оформление результатов

Результаты испытания оформляют протоколом, который должен содержать:

- наименование документа («Протокол испытаний») и его идентификацию (например, номер и дату оформления), а также идентификацию каждой страницы, обеспечивающую признание страницы как части данного документа, четкую идентификацию конца документа и общее количество страниц;
 - наименование, адрес и номер аттестата аккредитации испытательной лаборатории;
 - наименование и адрес заказчика испытаний;
- наименование испытанной продукции (характеристика и обозначение материала, форма образца и его размеры);
 - обозначение нормативного документа (при его наличии);
 - количество испытанных образцов;
 - дату проведения испытания;
 - режим нагревания (стационарный или нестационарный);
 - тип дилатометра;
 - обозначение настоящего стандарта;
 - результаты испытания;
- заключение о соответствии/несоответствии продукции требованиям нормативного документа (при проведении контрольных испытаний);
- инициалы, фамилии, должности и подписи руководителя испытательной лаборатории и сотрудников, проводивших испытания.

Протокол испытаний может содержать дополнительную информацию, необходимую для однозначного понимания и правильного применения результатов испытаний.

Если изготовитель или потребитель продукции проводит определение температурного коэффициента линейного расширения для внутренних целей (при производственном и входном контроле, приемо-сдаточных, периодических, типовых, квалификационных и других категориях испытаний), допускается оформлять результаты испытаний в порядке, принятом у изготовителя или потребителя, без оформления протокола.

Приложение А (справочное)

Пример определения значения ТКЛР образца из стекла в интервале температур 20 °C—300 °C (измерения проводят на кварцевом дилатометре)

А.1 Определение фактической погрешности дилатометра

A.1.1 Определяют $\Delta I'$ смещение нуля дилатометра при нагревании. Измерения показывают, что при температуре в печи 300 °C $\Delta I'$ = -0.0015 мм.

Вычисления проводят по формуле (1).

Измерения показывают результаты (для удобства вычисления множитель 10⁻⁷ опускают):

$$\alpha_1^{(M)} = 64.10;$$
 $\alpha_2^{(M)} = 63.20;$
 $\alpha_3^{(M)} = 63.36;$
 $\alpha_4^{(M)} = 64.48;$
 $\alpha_5^{(M)} = 64.73.$

Среднее арифметическое а(м) составляет:

$$\alpha^{(M)} = \frac{1}{5} \sum_{i=1}^{5} \alpha_i^{(M)} = 63,97,$$

Выборочную дисперсию ошибок измерения определяют по формуле

$$S^{2} = \frac{1}{N-1} \left\{ \sum_{i=1}^{N} \alpha_{i}^{(M)^{2}} - N \alpha_{i}^{(M)^{2}} \right\} = 0.455.$$

Дилатометр должен обеспечивать измерения ТКЛР с погрешностью не более $\sigma_{\chi} = 0.7$. Выполнение этого требования проверяют с помощью формулы (5). Так как отношение $\frac{S^2}{\sigma_{\pi}^2} = 0.93$ удовлетворяет неравенствам

$$C_1(5) < \frac{S^2}{\sigma_v^2} < C_2(5),$$

полученные измерения считаются удовлетворительными. Значения коэффициентов $C_1(5)$ = 0.121 и $C_2(5)$ = 2,786 выбирают из таблицы 3.

Далее вычисляют по формуле (6) величину поправки К

$$K = \alpha_n^{(M)} - \widehat{\alpha}^{(M)} = 65,57 - 63,97 = 1,60.$$

Здесь $a_s^{(M)}$ = 65,67 · 10⁻⁷ K⁻¹ — значение ТКЛР образцовой меры в интервале температур 20 °C—300 °C по данным аттестации.

По формуле (7) проводят сравнение величины K^2 с $C_3(N) \cdot S^2$, причем значение коэффициента C_3 (5) выбирают из таблицы 4. Так как

$$K^2 = 2.56 > 1.54 \cdot 0.455 = 0.700$$

измерения содержат систематическую составляющую логрешности, которая должна быть учтена при вычислении значения ТКЛР образца из стекла.

A.2 Определение значения ТКЛР $\alpha^{(c)}$ образца из стекла

Вычисления проводят по формуле (1).

В результате получают значение: $\alpha^{(c)} = 83.21$.

По формуле (8) вычисляют уточненное значение ТКЛР ($a_{\nu}^{(M)}$) стекла с учетом поправки K

$$\alpha_y^{(o)} = 83,21 + \frac{1,60}{63,97} 83,21 = 85,3.$$

Таким образом $\alpha_y^{(c)} = 85,3 \cdot 10^{-7} \text{ K}^{-1}$.

УДК 666.151:006.354

MKC 81.040.01

Ключевые слова: стекло, стеклокристаллические материалы, метод испытания, ТКЛР

Редактор И.В. Кириленко
Технический редактор В.Н. Прусакова
Корректор М.И. Першина
Компьютерная верстка Л.А. Круговой

Сдано в набор 07.08.2015. Подписано в печать 11.09.2015. Формат 60×84 ¼ Гарнитура Ариал. Усл. печ. л. 1,40. Уч.-изд. л. 1,00. Тираж 34 экз. Зак. 2948.