МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ (МГС)

INTERSTATE COUNCIL FOR STANDARDIZATION, METROLOGY AND CERTIFICATION (ISC)

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ ΓΟCT 32984— 2014 (ISO/TS 13605:2012)

ТОПЛИВО ТВЕРДОЕ МИНЕРАЛЬНОЕ

Определение макро- и микроэлементов в золе методом рентгенофлуоресцентной спектрометрии

(ISO/TS 13605:2012, MOD)

Издание официальное

Предисловие

Цели, основные принципы и общие правила проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены»

Сведения о стандарте

- 1 ПОДГОТОВЛЕН Федеральным государственным унитарным предприятием «Всероссийский научно-исследовательский центр стандартизации, информации и сертификации сырья, материалов и веществ» (ФГУП «ВНИЦСМВ») на основе собственного перевода на русский язык англоязычной версии стандарта, указанного в пункте 5
 - 2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии
- 3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 20 октября 2014 г. № 71-П)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004—97	Код страны по МК (ИСО 3166) 004—97	Сокращенное наименование национального органа по стандартизации		
Беларусь	BY	Госстандарт Республики Беларусь		
Киргизия	KG	Кыргызстандарт		
Poccия RU		Росстандарт		
Таджикистан	TJ	Таджикстандарт		

- 4 Приказом Федерального агентства по техническому регулированию и метрологии от 21 апреля 2015 г. № 275-ст межгосударственный стандарт ГОСТ 32984—2014 (ISO/TS 13605:2012) введен в действие в качестве национального стандарта Российской Федерации с 1 апреля 2016 г.
- 5 Настоящий стандарт модифицирован по отношению к международному документу ISO/TS 13605:2012 «Твердые минеральные топлива. Макро- и микроэлементы в золе каменного угля и кокса. Определение рентгенофлуоресцентным методом с помощью волнодисперсионного спектрометра» («Solid mineral fuels Major and minor elements in hard coal ash and coke ash Wavelenght dispersive X-ray fluorescence spectrometric method», MOD). При этом дополнительные положения, включенные в текст стандарта для учета потребностей экономики и/или особенностей межгосударственной стандартизации, выделены курсивом.

Международный стандарт разработан Техническим комитетом ISO/TC 27 «Твердые минеральные топлива»

6 ВВЕДЕН ВПЕРВЫЕ

7 ПЕРЕИЗДАНИЕ. Август 2019 г.

Информация о введении в действие (прекращении действия) настоящего стандарта и изменений к нему на территории указанных выше государств публикуется в указателях национальных стандартов, издаваемых в этих государствах, а также в сети Интернет на сайтах соответствующих национальных органов по стандартизации.

В случае пересмотра, изменения или отмены настоящего стандарта соответствующая информация будет опубликована на официальном интернет-сайте Межгосударственного совета по стандартизации, метрологии и сертификации в каталоге «Межгосударственные стандарты»

© ISO, 2012 — Все права сохраняются © Стандартинформ, оформление, 2015, 2019

В Российской Федерации настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

Содержание

1 Область применения
2 Нормативные ссылки
3 Термины и определения
4 Сущность метода
5 Реактивы
6 Аппаратура
7 Подготовка пробы
8 Приготовление золы
9 Подготовка к испытаниям
10 Проведение измерений на РФ-спектрометре
11 Обработка результатов
12 Представление результатов
13 Прецизионность
14 Протокол испытаний
Приложение А (справочное) Проверка результатов определения макро- и микроэлементов в золе
методом рентгенофлуоресцентной спектрометрии
Приложение Б (справочное) Реактивы, используемые для приготовления градуировочных проб 12
Приложение В (обязательное) Оценка прецизионности процесса приготовления препаратов —
плавленых дисков

Введение

Настоящий стандарт гармонизирован с международным документом ISO/TS 13605:2012 (Технические требования), который в настоящее время не является международным стандартом. Решение вопроса о разработке на его основе международного стандарта будет принято после апробации регламентированного Техническими требованиями метода в углехимических лабораториях и обсуждения полученных результатов научно-технической общественностью. Затем последует голосование членов ISO/TC 27 за придание документу статуса международного стандарта.

Для того чтобы углехимики стран — членов СНГ могли принять участие в этой работе, на основе ISO/TS 13605:2012 разработан региональный межгосударственный стандарт на определение химического состава золы твердых топлив методом рентгенофлуоресцентной спектрометрии (РФ-спектрометрии).

В документе ISO/TS 13605:2012 отсутствуют данные о пределах повторяемости и воспроизводимости результатов, так как не завершена разработка компьютерной программы для их статистической обработки (раздел 13).

Определение химического состава зол твердых топлив настоящим методом в лабораториях разных стран позволит накопить массив экспериментальных данных и статистически их обработать. На основании этих данных авторы документа сумеют закончить работу над программой проведения расчета пределов повторяемости и воспроизводимости метода. Требования к прецизионности метода определения макро- и микроэлементов в золе твердого топлива будут внесены в документ при переходе от ISO/TS к международному стандарту ISO взамен информационного приложения A.

Настоящий стандарт имеет следующие отличия от примененного в нем международного документа ISO/TS 13605:2012:

- в область распространения включены все виды твердого минерального топлива;
- приведен перечень ссылочных стандартов, в том числе межгосударственные стандарты на реактивы и посуду;
 - приведен арбитражный метод определения химического состава золы ГОСТ 10538.

Поправка к ГОСТ 32984—2014 (ISO/TS 13605:2012) Топливо твердое минеральное. Определение макро- и микроэлементов в золе методом рентгенофлуоресцентной спектрометрии

В каком месте	Напечатано	Напечатано Должно быть		
Предисловие. Таблица согла- сования	_	Туркмения	ТМ	Главгосслужба «Туркменстандартлары»

(ИУС № 2 2023 г.)

ТОПЛИВО ТВЕРДОЕ МИНЕРАЛЬНОЕ

Определение макро- и микроэлементов в золе методом рентгенофлуоресцентной спектрометрии

Solid mineral fuel. Determination of major and minor elements in ash by X-ray fluorescence spectrometric method

Дата введения — 2016—04—01

1 Область применения

Настоящий стандарт распространяется на каменные и *бурые* угли, *лигниты, антрациты, горючие сланцы*, кокс, *торф, топливные брикеты, твердые продукты обогащения, переработки и сжигания твердого топлива, включая золу уноса, шламы и золу котельных установок (далее — твердое топливо) и устанавливает рентгенофлуоресцентный метод определения макро- и микроэлементов в золе твердого топлива с помощью волнодисперсионного спектрометра.*

К макроэлементам золы твердого топлива относятся 11 основных элементов: кремний, алюминий, трехвалентное железо, кальций, магний, натрий, калий, титан, марганец, фосфор и сера, массовые доли которых в пересчете на оксиды находятся в пределах, указанных в таблице 1. Перечисленные оксиды входят в понятие «химический состав золы твердого топлива».

В настоящем стандарте в составе золы дополнительно определяют три микроэлемента: барий, стронций и цинк.

Таблица 1 — Пределы применимости рентгенофлуоресцентного метода определения химического состава золы твердого топлива

Оксид элемента	Массовая доля оксида элемента в золе твердого топлива (диапазон), %		
$\begin{array}{c} {\rm SiO_2} \\ {\rm Al_2O_3} \\ {\rm Fe_2O_3} \\ {\rm CaO} \\ {\rm MgO} \\ {\rm Na_2O} \\ {\rm K_2O} \\ {\rm TiO_2} \\ {\rm Mn_3O_4} \\ {\rm P_2O_5} \\ {\rm SO_3} \\ {\rm BaO} \\ {\rm SrO} \\ {\rm ZnO} \\ \end{array}$	5—100 5—80 0,1—25 0,05—60 0,05—25 0,05—5 0,05—5 0,05—5 0,005—5 0,01—5 0,05—25 0,01—1 0,01—1		

При определении химического состава золы арбитражными являются методы химического анализа, регламентированные ГОСТ 10538.

Примечание — В настоящем стандарте не приведены требования безопасности, связанные с применением рентгенофлуоресцентного спектрометра. Правила безопасной эксплуатации рентгенофлуоресцентного спектрометра содержатся в документации к прибору.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ ISO 687 Топливо твердое минеральное. Кокс. Определение содержания влаги в аналитической пробе для общего анализа¹⁾

ГОСТ ISO 1171 Топливо твердое минеральное. Определение зольности²⁾

ГОСТ ISO 5068-2 Угли бурые и лигниты. Определение содержания влаги. Часть 2. Косвенный гравиметрический метод определения влаги в аналитической пробе³⁾

ГОСТ 6563 Изделия технические из благородных металлов и сплавов. Технические условия⁴⁾

ГОСТ 6613 Сетки проволочные тканые с квадратными ячейками. Технические условия

ГОСТ 6709 Вода дистиллированная. Технические условия⁵⁾

ГОСТ 9147 Посуда и оборудование лабораторные фарфоровые. Технические условия

ГОСТ 10538 Топливо твердое. Методы определения химического состава золы

ГОСТ 10742 Угли бурые, каменные, антрацит, горючие сланцы и угольные брикеты. Методы отбора и подготовки проб для лабораторных испытаний

ГОСТ 11303 Торф и продукты его переработки. Метод приготовления аналитических проб

ГОСТ 11305 Торф и продукты его переработки. Методы определения влаги

ГОСТ 11306 Торф и продукты его переработки. Методы определения зольности

ГОСТ ISO 11722 Топливо твердое минеральное. Уголь каменный. Определение влаги в аналитической пробе для общего анализа высушиванием в токе азота³⁾

ГОСТ 13867 Продукты химические. Обозначение чистоты

ГОСТ 17070 Угли. Термины и определения

ГОСТ 19908 Тигли, чаши, стаканы, колбы, воронки, пробирки и наконечники из прозрачного кварцевого стекла. Общие технические условия

ГОСТ 23083 Кокс каменноугольный, пековый и термоантрацит. Методы отбора и подготовки проб для испытаний

ГОСТ 27313 (ИСО 1170—77) Топливо твердое минеральное. Обозначение показателей качества и формулы пересчета результатов анализа для различных состояний топлива⁶⁾

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов и классификаторов на официальном интернет-сайте Межгосударственного совета по стандартизации, метрологии и сертификации (www.easc.by) или по указателям национальных стандартов, издаваемым в государствах, указанных в предисловии, или на официальных сайтах соответствующих национальных органов по стандартизации. Если на документ дана недатированная ссылка, то следует использовать документ, действующий на текущий момент, с учетом всех внесенных в него изменений. Если заменен ссылочный документ, на который дана датированная ссылка, то следует использовать указанную версию этого документа. Если после принятия настоящего стандарта в ссылочный документ, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение применяется без учета данного изменения. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применены термины по ГОСТ 17070.

Обозначения показателей качества и индексы к ним — по ГОСТ 27313.

¹⁾ В Российской Федерации действует ГОСТ 27589—91 (ИСО 687—74) «Кокс. Метод определения влаги в аналитической пробе».

²⁾ В Российской Федерации действует ГОСТ Р 55661—2013 (ИСО 1171:2010) «Топливо твердое минеральное. Определение зольности».

³⁾ В Российской Федерации действует ГОСТ 33503—2015 «Топливо твердое минеральное. Методы определения влаги в аналитической пробе».

⁴⁾ Заменен на ГОСТ 6563—2016.

 $^{^{5)}}$ В Российской Федерации действует ГОСТ Р 52501—2005 (ИСО 3696:1987) «Вода для лабораторного анализа. Технические условия».

⁶⁾ Заменен на ГОСТ 27313—2015.

4 Сущность метода

Метод рентгенофлуоресцентной спектрометрии основан на зависимости интенсивности характеристической рентгеновской флуоресценции элемента от его массовой доли в пробе. В рентгенофлуоресцентном спектрометре атомы анализируемой пробы возбуждаются первичным излучением рентгеновской трубки, вследствие чего генерируется их собственное характеристическое рентгеновское излучение. Поток излучения пробы разделяется в спектр по длинам волн с целью измерения детектором спектрометра интенсивности характеристической флуоресценции отдельно для каждого анализируемого элемента.

Анализируемую пробу твердого топлива озоляют в стандартных условиях при температуре (815 \pm 10) °C. Золы, полученные в других или неизвестных условиях (например, уносы, шламы), про-каливают до постоянной массы в стандартных условиях.

Золу сплавляют с флюсами на основе боратов лития до полной гомогенизации расплава. Из расплава формируют препарат для анализа в виде литого стекловидного диска путем помещения расплавленной массы в подложку соответствующей формы или быстрого охлаждения под нагрузкой плунжера. При использовании такого препарата устраняется влияние гетерогенности пробы на результат анализа и минимизируются погрешности, связанные с матричными эффектами.

Градуировку спектрометра проводят с помощью чистых химических реактивов или стандартных образцов. При необходимости вводится коррекция матричных эффектов.

Препарат помещают в рентгенофлуоресцентный спектрометр. Измеренные спектрометром интенсивности характеристической флуоресценции определяемых элементов обрабатывают с использованием программного обеспечения по предварительно выполненным градуировкам. Таким образом устанавливают массовую долю оксидов макро- и микроэлементов в золе.

5 Реактивы

При проведении испытаний следует использовать химические реактивы квалификации не ниже ч. д. а. по ГОСТ 13867.

- 5.1 Вода дистиллированная по ГОСТ 6709¹).
- 5.2 Реактивы для плавления золы бораты лития или их смеси: тетраборат лития безводный $(Li_2B_4O_7)$, метаборат лития $(LiBO_2)$.

Плавни могут быть приобретены в готовом виде или приготовлены в лаборатории путем смешения реактивов или сплавления смеси реактивов.

Примечание — Следует проверять уровень загрязнения плавня, поскольку для различных упаковок плавня он может быть разным. При проведении испытаний стандартных образцов и проб необходимо использовать плавень из одной и той же упаковки. При использовании новой упаковки плавня приготавливают с ним новые диски из стандартного образца и анализируют их, чтобы оценить необходимость переградуировки прибора.

- 5.3 Государственные стандартные образцы (ГСО) химического состава зол твердых топлив, силикатных горных пород с аттестованным содержанием определяемых элементов. Содержания определяемых элементов в стандартных образцах должны быть близкими к их содержанию в анализируемых пробах.
- 5.4 Антисмачивающие добавки, например бромид лития (LiBr), йодид калия (KI), йодид лития (LiI). Добавки вносят в тигель (6.3) до плавления для предотвращения прилипания расплава к стенкам тигля. Эти добавки часто содержатся в готовых плавнях.

6 Аппаратура

Вся аппаратура должна быть изготовлена из материалов термически стойких и химически инертных в условиях испытания.

 $6.1\,\mathrm{My}$ фельная печь для озоления проб с электронагревом, терморегулятором и достаточной вентиляцией в соответствии с требованиями ГОСТ ISO 1171. Печь должна обеспечивать подъем температуры до $(815 \pm 10)\,\mathrm{^{\circ}C}$ с установленной скоростью и поддержание этой температуры при прокаливании зольного остатка до постоянной массы.

¹⁾ Рекомендуется использовать воду 2-й степени чистоты по ГОСТ Р 52501. Дистиллированную воду дважды перегоняют в аппаратуре из кварцевого стекла или подвергают деионизации. В соответствии с требованиями ГОСТ Р 52501 воду 2-й степени чистоты хранят в герметически закрытой таре из полиэтилена высокого давления или полипропилена.

- 6.2 Муфельная печь или другое нагревательное устройство, предназначенные для плавления проб с рабочей температурой не менее 1200 °C.
 - 6.3 Тигли для плавления зол:
 - из графита или стеклоуглерода высокой степени чистоты;
 - из золото-платинового сплава марки Пл3л-5 по ГОСТ 6563.

Для того чтобы расплав не прилипал к стенкам тигля, применяют тигли из несмачиваемых сплавов (золото-платина, золото-платина-родий) или во флюс вносят антисмачивающие добавки (5.4).

Размер тигля должен быть таким, чтобы в него помещались необходимые количества плавня и пробы. Для приготовления дисков диаметром 32 мм используют тигли вместимостью 15 см³, а для дисков диаметром 40 мм — тигли вместимостью 25 см³.

Необходимо соблюдать меры предосторожности при работе с раскаленными тиглями из платиновых сплавов: использовать щипцы с платиновыми наконечниками и подставку из огнеупорного материала для охлаждения тиглей.

Для достижения требуемой прецизионности результатов после каждого плавления тигли очищают. Для очистки тиглей альтернативно применяют:

- раствор лимонной кислоты с массовой долей 20 %;
- раствор соляной кислоты с объемной долей 10—50 %;
- очистку в ультразвуковой ванне;
- расплавление в тигле некоторого количества плавня и очищение внутренней поверхности тигля расплавленной массой с помощью вращательных движений тигля, после чего расплав удаляют.
 - 6.4 Подложка для изготовления дисков, сделанная из несмачивающегося материала.

Диски изготавливают одним из двух способов: путем отливки или быстрого охлаждения под нагрузкой плунжера. В первом случае подложку изготавливают из платинового сплава, во втором — из алюминия или графита.

В первом случае рабочей стороной диска является сторона, не контактировавшая с дном подложки. Дно должно быть ровным и достаточно толстым, чтобы его трудно было деформировать. Для легкого извлечения диска дно подложки регулярно полируют.

Во втором случае глубина подложки должна плавно увеличиваться к центру. Рабочей поверхностью диска в этом случае является поверхность, которая контактировала с плунжером.

- 6.5 Тигельные щипцы, имеющие наконечники из платины или изготовленные из нержавеющей стали или титана.
- 6.6 Эксикатор со свежим или регенерированным силикагелем. Степень пригодности силикагеля определяют по внешнему виду.
- 6.7 Держатель пробы. В держатель помещают изготовленный диск и визуально проверяют качество его изготовления.
- 6.8 Рентгенофлуоресцентный спектрометр (РФ-спектрометр) для измерения интенсивности характеристической флуоресценции определяемых элементов.

Для проведения испытания может быть использован любой доступный волнодисперсионный $P\Phi$ -спектрометр, снабженный вакуумной камерой или системой продувки измерительной камеры гелием. Прибор позволяет регистрировать излучения последовательно или одновременно (либо обоими способами) и обеспечивает требуемую прецизионность результатов измерения, равную 0,1 %, что соответствует подсчету 10^6 квантов.

Управление РФ-спектрометром и вычисление концентрации компонентов золы осуществляются с помощью компьютера и программного обеспечения, обычно входящих в комплект спектрометров.

Тип прибора должен быть сертифицирован и зарегистрирован в Государственном реестре средств измерений Российской Федерации и стран СНГ и допущен к применению в этих государствах.

7 Подготовка пробы

7.1 Твердое топливо

Проба твердого топлива представляет собой аналитическую пробу, измельченную до прохождения через сито с размером отверстий 212 мкм, приготовленную по ГОСТ 10742, ГОСТ 11303 или ГОСТ 23083. Проба должна находиться в воздушно-сухом состоянии, для чего ее раскладывают тонким слоем и выдерживают на воздухе при комнатной температуре в течение минимального времени, необходимого для достижения равновесия между влажностью топлива и атмосферой лаборатории.

Пробу тщательно перемешивают и отбирают порции для озоления по 8.1.

Одновременно отбирают навески для определения содержания аналитической влаги по ГОСТ ISO 687, ГОСТ ISO 5068-2, ГОСТ ISO 11722 или ГОСТ 11305 и зольности по ГОСТ ISO 1171 или ГОСТ 11306, чтобы можно было пересчитать результаты анализа на другие состояния топлива по ГОСТ 27313.

Все взвешивания проводят на весах с пределом допускаемой погрешности ± 0,1 мг.

7.2 Твердые остатки промышленного сжигания топлива

Представительную порцию твердого остатка от сжигания топлива измельчают до прохождения через сито с размером отверстий 63 (71) мкм по ГОСТ 6613 и высушивают при 105 °С до постоянной массы. Хранят в эксикаторе над силикагелем (6.6). Потерю массы при высушивании используют для пересчета результатов анализа на исходное состояние пробы.

8 Приготовление золы

8.1 Озоление аналитической пробы твердого топлива

Золу получают из представительной порции тщательно перемешанной аналитической пробы твердого топлива, приготовленной по 7.1.

Порции топлива помещают в предварительно прокаленные лотки из фарфора (по ГОСТ 9147), кварца (по ГОСТ 19908) или платины (по ГОСТ 6563). Толщина слоя топлива не должна превышать 6 мм. Озоление проводят методом, установленным ГОСТ ISO 1171.

После прокаливания золы до постоянной массы ее охлаждают и тщательно растирают в агатовой ступке до прохождения через сито с размером отверстий 63 (71) мкм. После растирания золу прокаливают при температуре (815 \pm 10) °C в течение 1 ч, охлаждают и хранят в эксикаторе над силикагелем (6.6).

Если в лабораторию поступает зола топлива со стороны, то непосредственно перед отбором навески для испытания золу прокаливают при температуре (815 \pm 10) °C в течение 15 мин и охлаждают в эксикаторе (6.6).

8.2 Озоление твердых остатков промышленного сжигания топлива

Необходимое количество пробы, приготовленной по 7.2, помещают в предварительно прокаленные лотки. Толщина слоя пробы должна быть не более 2 мм. Пробу озоляют при температуре (815 ± 10) °C по ГОСТ ISO 1171. После прокаливания зольного остатка до постоянной массы его охлаждают и хранят в эксикаторе (6.6).

9 Подготовка к испытаниям

9.1 Приготовление препаратов для анализа

9.1.1 Изготовление плавленых стекловидных дисков

Препарат для рентгенофлуоресцентного анализа (излучатель) представляет собой литой (плавленый) диск, изготовленный путем сплавления анализируемой золы с флюсами (плавнями) при температуре 1000—1200 °C.

Для изготовления дисков используют свежеприготовленную золу. Если золу хранили в течение некоторого времени, то перед взятием навески для сплавления золу вновь прокаливают при температуре (815 ± 10) °C в течение 15 мин.

Масса навески золы определяется размером диска и соотношением проба/плавень. Обычно это соотношение составляет от 1:5 до 1:10, а диаметр диска — 32 мм или 40 мм. Суммарная масса пробы и плавня для диска диаметром 32 мм составляет 4 г, а для диска диаметром 40 мм — 7,5 г.

Плавни (5.2) гигроскопичны, поэтому их обычно высушивают перед использованием (400 °C, 2 ч) или определяют в них потерю массы при плавлении, проводя плавление без навески золы. Полученный результат используют для пересчета навески плавня на сухое состояние.

Навеску золы, полученной по 8.1 или 8.2, и реактивы для плавления (5.2), а также антисмачивающую добавку (5.4) в количестве нескольких миллиграмм, если она предусмотрена методикой плавления, помещают в стеклянный стакан объемом не более 50 мл, где тщательно перемешивают стеклянной

палочной, избегая сильного нажима на дно и стенки стакана. После этого полученную смесь пересыпают в тигель для плавления (6.3).

Тигель со смесью золы и плавня помещают в муфельную печь или в другое нагревательное устройство, предназначенное для плавления проб (6.2), где выдерживают при температуре 1000 °С — 1200 °С в течение времени, достаточного для получения однородного расплава. Расплав боратного плавня (5.2) растворяет золу. Вращательным движением тигля расплав осторожно перемешивают с помощью щипцов с платиновыми наконечниками (6.5) до полного растворения золы и удаления пузырьков воздуха. Жидкий расплав быстро переливают в подложку для изготовления дисков (6.4).

Примечания

- 1 При сплавлении препаратов при температурах выше 1050 °C может происходить потеря массы за счет улетучивания серы.
- 2 При сплавлении проб твердых остатков промышленного сжигания топлива, приготовленных по 7.2, но не озоленных в лаборатории в соответствии с 8.2, может происходить потеря массы. Чтобы ее учесть, расплавленную смесь пробы и плавня охлаждают в тигле и взвешивают. Разность масс до и после плавления составляет потерю массы. Затем тигель снова нагревают и продолжают процедуру изготовления плавленого диска.

Диски изготавливают методом отливки или быстрым охлаждением под нагрузкой плунжера (см. 6.4). В настоящее время коммерчески доступны приборы для сплавления зол силикатных пород и изготовления боратных стеклянных дисков.

Изготовленные диски проверяют визуально, обращая особое внимание на рабочую поверхность. Диски не должны содержать вкраплений несплавленного материала или пузырьков воздуха, они не должны иметь признаков кристаллизации или нарушения целостности. Бракованные диски повторно расплавляют или выбрасывают, изготавливая вместо них новые диски.

9.1.2 Хранение плавленых дисков

Плавленые диски сразу после изготовления помещают в эксикатор (6.6), чтобы минимизировать возможность загрязнения рабочей поверхности и поглощения влаги.

Работа с дисками требует определенного навыка. Запрещается касаться руками рабочей поверхности диска, но разрешается касаться торцевых (нерабочих) поверхностей. При обращении с дисками следует соблюдать осторожность во избежание порезов. Желательно использование тканевых перчаток.

9.1.3 Качество плавленых дисков

Качество подготовки препаратов для рентгенофлуоресцентного анализа не менее важно, чем качество измерений на спектрометре.

Независимо от способа приготовления литого диска (препарата), называемого также излучателем, он должен удовлетворять следующим требованиям:

- быть однородным;
- иметь толщину, большую чем глубина выхода характеристического излучения определяемых элементов;
 - иметь плоскую, однородную, гладкую и чистую рабочую поверхность.
 - С ухудшением перечисленных свойств препарата прецизионность измерений снижается.

Качество изготовленных дисков должно соответствовать требованиям приложения В.

Качество изготовления дисков проверяют согласно приложению В при обучении начинающего оператора, а также ежегодно при рутинной работе независимо от стажа работы оператора.

9.2 Подготовка РФ-спектрометра к работе

9.2.1 Общие положения

РФ-спектрометр должен быть поверен и иметь соответствующий документ.

Подготовку спектрометра к выполнению измерений проводят в соответствии с инструкцией по обслуживанию и эксплуатации.

РФ-спектрометр предварительно проверяют на прецизионность получаемых результатов в соответствии с инструкцией по эксплуатации от изготовителя прибора и/или методикой поверки.

При выполнении анализов необходимо соблюдать меры безопасности, предусмотренные в Инструкции по технике безопасности при лабораторных работах и в руководстве по эксплуатации прибора.

9.2.2 Градуировка РФ-спектрометра

Градуировку РФ-спектрометра выполняют с помощью препаратов, изготовленных по 9.1 из стандартных образцов состава зол твердых топлив (5.3). Дополнительно могут быть использованы стандартные образцы состава силикатных горных пород. Допускается приготовление градуировочных проб путем смешения в подходящих пропорциях химических реактивов со степенью чистоты не менее 99,99 %. Реактивы, пригодные для приготовления градуировочных проб, а также требования к их предварительной подготовке приведены в приложении Б.

Стандартные образцы и градуировочные пробы должны быть близкими по составу к анализируемым пробам. При этом диапазон содержаний определяемых элементов в используемом комплекте стандартных образцов должен перекрывать область содержаний этих элементов в анализируемых пробах.

Способы приготовления препаратов из стандартных образцов и анализируемых проб должны быть абсолютно одинаковыми. Даже при небольших изменениях процедуры необходимо заново изготавливать препараты всех стандартных образцов для градуировки с учетом этих изменений.

В современных РФ-спектрометрах градуировочные характеристики (уравнения, графики, таблицы) устанавливаются с помощью программного обеспечения.

10 Проведение измерений на РФ-спектрометре

10.1 Условия работы прибора

Рекомендуемые для измерения спектральные линии элементов и условия измерения, а также некоторые кристаллы-анализаторы, которые могут быть использованы при измерениях, приведены в таблице 2. Развитие аналитического рентгеновского приборостроения привело к коммерческой доступности спектрометров с аналитическими характеристиками, значительно превосходящими, указанные в таблице 2. Перед градуировкой спектрометра следует убедиться, что выбранные кристаллы-анализаторы и коллиматоры позволяют избежать спектральных интерференций на линии определяемых элементов.

Таблица 2 — Аналитические линии элементов, кристаллы-анализаторы и рекомендуемые количества накопленных квантов

Рекомендуемая спектральная линия	Пример кристалла- анализатора	Минимальное количество квантов, установленное с помощью градуировочного диска с содержанием элемента в середине диапазона определяемых содержаний
Si Kα	PE	2 × 10 ⁵
ΑΙ Κα	PE	2 × 10 ⁵
Fe Кα	LiF (200)	4 × 10 ⁵
Са Ка	LiF (200)	10 ⁵
Mg Kα	LSM ^a (TIAP)	10 ⁵
Να Κα	LSM ^a (TIAP)	2 × 10 ⁴
Κ Κα	LiF (200)	4 × 10 ⁴
Τί Κα	LiF (200)	4 × 10 ⁴
Μη Κα	LiF (200)	4 × 10 ⁴
Р Кα	Ge (111)	4 × 10 ⁴
S Kα	Ge (111)	4 × 10 ⁴
^a Layer synthetic n	ı nultilayer (искусственнь	и многослойный).

Источником первичного облучения служит рентгеновская трубка. Измерения проводят в вакууме, используя настройку спектрометра, согласно рекомендациям и инструкциям от производителя прибора. Если возможно, следует использовать устройство для вращения препарата во время измерений.

Рекомендуется использовать детектор с высоким спектральным разрешением для регистрации линий элементов, которые присутствуют в золах в небольших количествах. В характеристических спектрах флуоресценции измеряют линии $K\alpha$, за исключением тех случаев, когда на эти линии оказывает влияние эффект интерференции.

Время накопления сигнала детектора устанавливают по времени накопления минимального числа квантов при измерении градуировочного препарата с содержанием определяемого элемента, которое соответствует середине диапазона, указанного в таблице 1. Используя установленное время накопления сигнала, регистрируют интенсивность характеристического излучения элементов.

Рекомендуется использовать коллиматоры среднего и высокого качества. Коллиматоры высокого качества необходимы при определении марганца и титана (Mn $K\alpha$, Ti $K\alpha$), чтобы свести к минимуму влияние эффекта интерференции. Если кристалл-анализатор не позволяет избавиться от фоновых помех, используют коллиматор высокого качества, например при определении магния и натрия с помощью кристалла TIAP.

10.2 Методика измерения

После градуировки прибора по 9.2.2 проводят анализ препарата, изготовленного из стандартного образца как образца неизвестного состава. К анализу проб приступают только в том случае, если расхождение между паспортными значениями массовой доли элемента в стандартном образце и массовой долей, полученной экспериментально, удовлетворяет требованиям настоящего стандарта.

Из каждой пробы изготавливают по крайней мере два препарата для анализа. Измерение интенсивности излучения каждого препарата проводят дважды, причем для повторного измерения препарат помещают в прибор заново.

В начале и в конце каждой серии определений, проведенных не более чем на 25 дисках, проводят измерение диска, изготовленного из стандартного образца.

10.3 Контроль за измерениями

Все измерения на РФ-спектрометре, связанные с идентификацией и определением интенсивности спектральных линий характеристической флуоресценции атомов элементов, содержащихся в анализируемых образцах, следует проводить в условиях, одинаковых с условиями измерения контрольного образца.

Для определения различных элементов можно использовать разные контрольные образцы, но удобнее пользоваться одним образцом, содержащим все элементы, определяемые в пробе. Контрольный образец должен иметь стабильный химический состав хотя бы в течение времени, необходимого для проведения измерений серии проб, а интенсивность спектральных линий различных элементов контрольного образца должна быть сопоставимой и, желательно, немного превышать спектральную интенсивность элементов в анализируемых препаратах.

Контрольный образец изготавливают сплавлением смеси химических реактивов с плавнем.

Частота проведения контрольных измерений зависит от стабильности работы РФ-спектрометра, при условии использования контрольных образцов удовлетворительного качества.

11 Обработка результатов

11.1 Общие положения

Массовые доли определяемых элементов (таблица 1) в золе твердого топлива рассчитывают с учетом инструментальной поправки и поправки на «мертвое время», а также корректируют с учетом матричного влияния.

11.2 Инструментальная поправка

Число зарегистрированных квантов характеристического излучения элемента с учетом инструментальной поправки N вычисляют по формуле

$$N = \frac{N_0 M^*}{M},\tag{1}$$

где N_0 — число зарегистрированных квантов характеристического излучения до внесения инструментальной поправки (измеренное);

 M^* — число зарегистрированных квантов характеристического излучения от контрольного диска, полученное в начале серии измерений;

M — число зарегистрированных квантов характеристического излучения от контрольного диска, полученное в конце серии измерений.

11.3 Поправка на «мертвое время»

После внесения инструментальной поправки в результат измерения вносят поправку на снижение интенсивности излучения вследствие «мертвого времени» детектора. Число зарегистрированных квантов характеристического излучения элемента с учетом поправки на «мертвое время, $N_{\rm c}$, вычисляют по формуле

$$N_C = \frac{N}{T - Nt},\tag{2}$$

- где N число зарегистрированных квантов характеристического излучения элемента (после внесения инструментальной поправки), накопленное за T секунд;
 - Т время накопления сигнала детектора, с;
 - t «мертвое время» детектора, с.

Примечание — При корректном установлении «мертвого времени» детектора поправку на «мертвое время» в результат измерения допускается вводить автоматически.

11.4 Матричные поправки

Величины интенсивностей характеристических рентгеновских излучений анализируемого препарата с помощью градуировочных характеристик прибора преобразуют в массовые доли элементов. В последние необходимо внести поправки, чтобы учесть взаимное влияние элементов, входящих в состав измеряемого образца (влияние матрицы, наложение спектральных линий). Такую коррекцию предпочтительно осуществлять с помощью коэффициентов, рассчитанных в соответствии с теоретическими основами метода.

Допускается определять матричные поправки другим способом при условии достижения при этом приемлемой прецизионности и точности результатов анализа (см. приложение A).

Примечание — В настоящее время разработаны компьютерные программы для внесения матричных поправок.

12 Представление результатов

Результаты определения, представляющие собой массовые доли оксидов отдельных элементов, округляют до соответствующих знаков после запятой, как показано в таблице 3.

Сумма массовых долей оксидов всех элементов не всегда составляет 100,0 %, что может быть вызвано следующими причинами:

- а) допускаемые отклонения результатов определения отдельных элементов при сложении дают суммарное допускаемое отклонение;
- б) в анализируемом образце присутствуют следовые количества других элементов, например бора, бария, стронция, цинка.

Примечание — Определение рентгенофлуоресцентным методом других элементов, не представленных в таблице 1, возможно, если правильность их определения подтверждается анализом соответствующих стандартных образцов;

в) в золе присутствуют другие минеральные формы определяемых элементов, отличные от оксидов. Обычно сумма массовых долей оксидов всех элементов в золах находится в пределах от 98,5 % до 101,5 %.

Таблица 3 — Округление результатов определения оксидов макроэлементов в золе твердого топлива методом рентгенофлуоресцентной спектрометрии

Оксид элемента	Область определяемых массовых долей, %	Округление результата (массовой доли оксида элемента), %		
SiO ₂	5—100	0,1		
Al ₂ O ₃	5—80	0,1		
Fe ₂ O ₃	0,1—5 5—25	0,02 0,1		

Окончание таблицы 3

Оксид элемента	Область определяемых массовых долей, %	Округление результата (массовой доли оксида элемента), % 0,01 0,1		
CaO	0,05—5 5—25			
MgO	0,05—5 5—25	0,01 0,1		
Na ₂ O	0,05—5	0,01		
K ₂ O	0,05—5	0,01		
TiO ₂	0,05—5	0,01		
Mn ₃ O ₄	0,005—0,05 0,05—1,0 1,0—5,0	0,001 0,01 0,1		
P ₂ O ₅	0,01—1 1—5	0,01 0,1		
SO ₃	0,05—5 5—10	0,01 0,1		
Сумма	98,5—101,5	0,1		

13 Прецизионность

Для оценки прецизионности рентгенофлуоресцентного метода определения химического состава золы твердых топлив используют статистическую обработку результатов испытания стандартных образцов.

Данные о повторяемости и воспроизводимости результатов отсутствуют, так как не завершена разработка компьютерной программы для обработки результатов.

14 Протокол испытаний

Протокол испытаний должен содержать следующую информацию:

- а) идентификация пробы;
- б) ссылка на настоящий стандарт;
- в) результаты испытания, включая суммарный результат, выраженные на сухое состояние пробы и представленные в виде массовых долей оксидов элементов, округленных в соответствии с таблицей 3, а также следующая формулировка:
 - «Суммарный результат определения химического состава золы может не быть равным 100 %»;
 - г) наименование лаборатории, проводившей испытания;
 - д) дата испытания;
 - е) тип и параметры РФ-спектрометра;
- ж) любые особенности, замеченные во время испытания, которые могли повлиять на его результат.

Приложение А (справочное)

Проверка результатов определения макро- и микроэлементов в золе методом рентгенофлуоресцентной спектрометрии

Расхождение между результатом испытания стандартного образца и паспортным значением определяемого параметра этого образца должно быть статистически незначимым. При значительном расхождении этих величин анализ повторяют. Если расхождение снова оказывается значительным, то анализируют другой стандартный образец. Если расхождение снова оказывается значительным, следует внимательно изучить инструкции и устранить методические ошибки. К возможным ошибкам относятся низкое качество плавленых дисков, неполное сплавление, загрязнение пробы, а также неправильная эксплуатация РФ-спектрометра.

Начинать испытание проб можно после того, как расхождение между паспортным содержанием элемента в стандартном образце и содержанием, полученным экспериментально, станет статистически незначимым.

Для оценки значимости расхождений результатов стандартный образец испытывали не менее чем в 10 лабораториях разными методами, правильность и прецизионность которых сравнима с правильностью и прецизионностью настоящего метода. Допускаемое расхождение результатов определения рассчитывали по следующему уравнению:

$$|A_c - A| \le \sqrt{\frac{S_{Lc}^2 + \frac{S_{Wc}^2}{n_{Wc}}}{N_c} + \sigma_L^2 + \frac{\sigma_r^2}{n}},$$
 (A.1)

где A_c — паспортное значение содержания определяемого элемента в стандартном образце; A — результат или среднеарифметическое результатов определения элемента, полученные экспериментально для стандартного образца;

 S_{Lc} — лабораторное стандартное отклонение результатов, полученных в сертифицированных лабораториях; S_{Wc} — внутрилабораторное стандартное отклонение, полученное в сертифицированных лабораториях; n_{Wc} — среднее количество параллельных определений в сертифицированных лабораториях; N_{c} — количество сертифицированных лабораторий;

 \ddot{n} — количество параллельных определений (в большинстве случаев n = 2);

 σ_r — внутрилабораторное стандартное отклонение результатов;

 σ_L — межлабораторное стандартное отклонение результатов.

Если результат определения отвечает приведенному выше условию, т. е. левая часть выражения меньше или равна его правой части, то расхождение данного результата с истинной величиной статистически незначимо. В противном случае это расхождение статистически значимо.

Если отсутствует полная информация об используемом стандартном образце, то поступают следующим об-

а) при отсутствии данных, позволяющих сравнить результаты с результатами других лабораторий, величи-

ну
$$\frac{S_{Wc}^2}{n_{Wc}}$$
 исключают, а вместо S_{Lc}^2 используют стандартное отклонение результатов, полученных в лаборатории;

б) если сертификация образца проведена только в одной лаборатории или результаты других лабораторий неизвестны, то такой образец не рекомендуется использовать как стандартный для данного метода анализа. Если это невозможно, то для проверки полученных результатов используют выражение

$$\left|A_{c} - A\right| \le 2\sqrt{2\sigma_{L}^{2} + \frac{\sigma_{r}^{2}}{n}}.$$
(A.2)

Приложение Б (справочное)

Реактивы, используемые для приготовления градуировочных проб

Реактив	Предварительная обработка			
SiO ₂ Al ₂ O ₃ Fe ₂ O ₃	Прокаливают в платиновом тигле при 1000 °C в течение 1 ч, охлаждают в эксикаторе. Прокаливают в платиновом тигле при 1250 °C в течение 2 ч, охлаждают в эксикаторе. Прокаливают в платиновом тигле при 1000 °C в течение 1 ч, охлаждают в эксикаторе.			
CaCO ₃ MgO Na ₂ SO ₄	Высушивают при 100 °C в течение 1 ч, охлаждают в эксикаторе. Прокаливают в платиновом тигле при 1000 °C в течение 1 ч, охлаждают в эксикаторе. Высушивают при 100 °C в течение 1 ч, охлаждают в эксикаторе.			
KH ₂ PO ₄ TiO ₂ Mn ₃ O ₄	Высушивают при 105 °C в течение 1 ч, охлаждают в эксикаторе. Прокаливают в платиновом тигле при 1000 °C в течение 1 ч, охлаждают в эксикаторе. Диоксид марганца (MnO ₂) прокаливают при 1000 °C в течение 24 ч, дают остыть. Полученный комковатый Mn ₃ O ₄ измельчают до тонкого порошка. Выдерживают в течение 1 ч при 550 °C, охлаждают в эксикаторе.			

Приложение В (обязательное)

Оценка прецизионности процесса приготовления препаратов — плавленых дисков

В.1 Область применения

Настоящее приложение устанавливает процедуру определения прецизионности приготовления плавленых дисков.

В.2 Процедура

Приступая впервые к работе с плавлеными дисками, оператор должен произвести следующие действия по определению стандартного отклонения процесса приготовления дисков:

- а) выбирают две различные пробы золы угля и из каждой пробы готовят по пять дисков в соответствии с процедурой, установленной в 9.1;
- б) измеряют интенсивность линии Si $K\alpha$ для каждого диска. Минимальное количество накопленных квантов при этих измерениях должно составлять 4 × 10^6 . Измерение интенсивности излучения каждого диска повторяют пять раз, при этом для каждого измерения диск помещают в прибор заново;
 - в) результаты измерений записывают, как показано в таблице В.1;

Таблица В.1 — Пример записи результатов для оценки прецизионности приготовления плавленых дисков

Номер диска	Результаты измерений ^а						
	1	2	3	4	5	Средний	Разброс
1	41 502	41 485	41 511	41 498	41 492	41 498	26
2	41 505	41 501	41 497	41 513	41 537	41 510	40
3	41 470	41 455	41 459	41 409	41 453	41 449	61
4	41 526	41 545	41 558	41 517	41 565	41 542	48
5	41 500	41 532	41 517	41 494	41 508	41 510	38

^а Единицей измерений могут быть число квантов, число квантов в секунду или время, необходимое для регистрации определенного числа квантов.

- г) по результатам измерений рассчитывают:
 - 1) средний результат (\bar{X}) из пяти средних результатов измерений,
 - 2) средний разброс (\overline{R}) из пяти разбросов и
 - 3) разброс (R) пяти средних результатов измерений.

Подставляют величины, полученные для \overline{X} , \overline{R} и R, в формулы (В.1) и (В.2), чтобы вычислить стандартное отклонение приготовления образца (S_p) и коэффициент вариации (S_r) .

$$S_p = \sqrt{\left(\frac{R}{2,33}\right)^2 - \frac{1}{5} \left(\frac{\bar{R}}{2,33}\right)^2};$$
 (B.1)

$$S_r = \frac{S_p}{\overline{X}} \cdot 100. \tag{B.2}$$

Если S_r больше 0,2 %, то измерения дисков данной пробы повторяют. Если S_r опять больше 0,2 %, исследуют и устраняют причины расхождения. Основные причины повышенного коэффициента вариации — это низкое качество рабочей поверхности диска (например, неровности), внешние загрязнения, неполное сплавление и т. д. После устранения этих ошибок измерения и расчеты по б) и г) повторяют, добиваясь устойчивой величины S_r менее 0,2 %.

Пример — При обработке результатов, приведенных в таблице В.1, получены следующие величины:

$$\bar{X} = 41502$$
 $R = 93$
 $\bar{R} = 43$
 $S_p = 39,05$
 $S_r = 0,094$

Поскольку S_r менее 0,2 %, то прецизионность приготовления дисков удовлетворительная, и можно начинать анализ проб.

УДК 622.6:543.812:006.354

MKC 73.040 75.160.10

Ключевые слова: топливо твердое минеральное, уголь, кокс, зола, химический состав золы, анализ, рентгенофлуоресцентная спектрометрия, макроэлементы, микроэлементы

Редактор Д.А. Кожемяк
Технические редакторы В.Н. Прусакова, И.Е. Черепкова
Корректор Е.М. Поляченко
Компьютерная верстка Д.В. Кардановской

Сдано в набор 22.08.2019. Подписано в печать 17.09.2019. Формат $60 \times 84^{1/}_{8}$. Гарнитура Ариал. Усл. печ. л. 2,33. Уч.-изд. л. 1,65.

Подготовлено на основе электронной версии, предоставленной разработчиком стандарта

ИД «Юриспруденция», 115419, Москва, ул. Орджоникидзе, 11. www.jurisizdat.ru y-book@mail.ru

Создано в единичном исполнении во ФГУП «СТАНДАРТИНФОРМ» для комплектования Федерального информационного фонда стандартов, 117418 Москва, Нахимовский пр-т, д. 31, к. 2. www.gostinfo.ru info@gostinfo.ru

Поправка к ГОСТ 32984—2014 (ISO/TS 13605:2012) Топливо твердое минеральное. Определение макро- и микроэлементов в золе методом рентгенофлуоресцентной спектрометрии

В каком месте	Напечатано До			лжно быть	
Предисловие. Таблица согла- сования	_	Туркмения	ТМ	Главгосслужба «Туркменстандартлары»	

(ИУС № 2 2023 г.)