ФЕДЕРАЛЬНОЕ АГЕНТСТВО

ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ ΓΟCT P 56140— 2014

СРЕДСТВА ЛЕКАРСТВЕННЫЕ БИОЛОГИЧЕСКИЕ ДЛЯ ВЕТЕРИНАРНОГО ПРИМЕНЕНИЯ

Выявление ДНК микроорганизмов рода *Mycoplasma* методом полимеразной цепной реакции (ПЦР)

Издание официальное

Предисловие

- 1 РАЗРАБОТАН Федеральным государственным бюджетным учреждением «Всероссийский государственный Центр качества и стандартизации лекарственных средств для животных и кормов» (ФГБУ «ВГНКИ»)
- 2 ВНЕСЕН Техническим комитетом по стандартизации ТК 454 «Охрана жизни и здоровья животных и ветеринарно-санитарная безопасность продуктов животного происхождения и кормов»
- 3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 23 сентября 2014 г. № 1175-ст
 - 4 ВВЕДЕН ВПЕРВЫЕ

Правила применения настоящего стандарта установлены в ГОСТ Р 1.0—2012 (раздел 8). Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе «Национальные стандарты», а официальный текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске информационного указателя «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (gost.ru)

© Стандартинформ, 2015

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

В каком месте	Напечатано	Должно быть
Пункт 6.5. Вто-	вместимостью не более 400 см ³	вместимостью не более 600 см ³
восьмой абзац	 раствор натрия хлорида 0,9 %-ный изотонический; 	_
двенадцатый аб-	вместимостью 1 дм ³	вместимостью 0,5 дм3
384		
тринадцатый аб-	- ТБЕ-буфер для электрофореза (кон-	 ТБЕ-буфер для электрофореза (кон-
зац	центрированный буферный раствор, со- держащий трис-основание молярной кон- центрации 0,089 моль/дм³, борную кислоту молярной концентрации 0,089 моль/дм³, ЭДТА молярной концен-	центрированный буферный раствор, со- держащий трис-основание молярной кон- центрации 0,89 моль/дм³, борную кислоту молярной концентрации 0,89 моль/дм³, ЭДТА молярной концент-
Danier 10 1 1	трации 0,002 моль/дм ³ , pH = 8,3);	рации 0,02 моль/дм ³ , pH = 8,3 ед. pH);
Пункт 10.1.1 Пункт 10.2.2	вливают 25 см ³ ТБЕ-буфера Электрофорез проводят при напряже- нии от 100 до 150 В в течение 20—30 мин,	вливают 50 см ³ ТБЕ-буфера Электрофорез проводят при напряжении от 180 до 250 В в течение 20—30 мин,
	при этом краситель ксиленцианол, вхо- дящий в ПЦР-смесь-2, должен продви- нуться не менее чем на 1 см от старта.	при этом краситель ксиленцианол, входя- щий в ПЦР-смесь-2, должен продвинуть- ся не менее чем на 1,5 см от старта.

(ИУС № 8 2016 г.)

В каком месте	Напечатано	Должно быть	
Пункт 6.3, перед пунктом 6.4	Auto.	раствор натрия хлорида 0,9 %-ный изотонический;	
Пункт 6.4, третье перечисление	ПЦР-смесь-1, содержащую прайме- ры F1 и R1 молярной концентрации 0,0004 моль/мм ³ и дНТФ молярной концентрации 0,2 моль/мм ³ со следу- ющей нуклеотидной последователь- ностью праймеров:	ПЦР-смесь-1, содержащую дНТФ мо- лярной концентрации 0,088 моль/мм ³ , праймеры F1 и R1 молярной концен- трации 2 пмоль/мм ³ со следующей ну- клеотидной последовательностью:	
Пункт 9.2	10 мм3	10 мм ³	
Пункт 9.6, второй абзац	При использовании ПЦР-смеси-1 с нуклеотидной последовательностью праймеров F1 и R1 по 6.4	그림 그 그래 하는 것은 아이들은 마음이라면 하고 있는데 얼마를 하게 하는 사람들이 얼마나 말하다.	

(ИУС № 6 2021 г.)

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

СРЕДСТВА ЛЕКАРСТВЕННЫЕ БИОЛОГИЧЕСКИЕ ДЛЯ ВЕТЕРИНАРНОГО ПРИМЕНЕНИЯ

Выявление ДНК микроорганизмов рода Mycoplasma методом полимеразной цепной реакции (ПЦР)

Medicine biological remedies for veterinary use. Polymerase chain reaction for the Mycoplasma DNA detection

Дата введения — 2016-01-01

1 Область применения

Настоящий стандарт распространяется на биологические лекарственные средства для ветеринарного применения – живые вакцины, сыворотки крови, гипериммунные сыворотки – и устанавливает метод выявления ДНК микроорганизмов рода *Mycoplasma* методом полимеразной цепной реакции (ПЦР).

Настоящий метод также может быть применен для культуры клеток.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ OIML R 76-1-2011 Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания

ГОСТ 1770-74 (ИСО 1042-83, ИСО 4788-80) Посуда мерная лабораторная стеклянная. Цилиндры, мензурки, колбы, пробирки. Общие технические условия

ГОСТ 3164-78 Масло вазелиновое медицинское. Технические условия

ГОСТ 5962-2013 Спирт этиловый ректификованный из пищевого сырья. Технические условия

ГОСТ 6709-72 Вода дистиллированная. Технические условия

ГОСТ ИСО/МЭК 17025-2006 Общие требования к компетентности испытательных и калибровочных лабораторий

ГОСТ 21400-75 Стекло химико-лабораторное. Технические требования. Методы испытаний

ГОСТ 24760-81 Халаты медицинские женские. Технические условия

ГОСТ 25194-82 Халаты медицинские мужские. Технические условия

ГОСТ 26678-85 Холодильники и морозильники бытовые электрические компрессионные параметрического ряда. Общие технические условия

ГОСТ 27025-86 Реактивы. Общие указания по проведению испытаний

ГОСТ 28311-89 Дозаторы медицинские лабораторные. Общие технические требования и методы испытаний

ГОСТ 31719-2012 Продукты пищевые и корма. Экспресс-метод определения сырьевого состава (молекулярный)

ГОСТ 31929-2013 Средства лекарственные для ветеринарного применения. Правила приемки, методы отбора проб

ГОСТ IEC 60335-2-25-2012 Безопасность бытовых и аналогичных электрических приборов. Часть 2.25. Частные требования для микроволновых печей, включая комбинированные микроволновые печи

ГОСТ Р 52173-2003 Сырье и продукты пищевые. Метод идентификации генетически модифицированных источников (ГМИ) растительного происхождения

ГОСТ Р 52239-2004 (ИСО 11193-1) Перчатки медицинские диагностические одноразовые. Часть 1. Спецификация на перчатки из каучукового латекса или раствора

ГОСТ Р 52833-2007 Микробиология пищевой продукции и кормов для животных. Метод полимеразной цепной реакции (ПЦР) для определения патогенных микроорганизмов. Общие требования и определения

ГОСТ Р 55576-2013 Корма и кормовые добавки. Метод качественного определения регуляторных последовательностей в геноме сои и кукурузы

FOCT P 56140-2014

П р и м е ч а н и е — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя «Национальные стандарты» за текущий год Если заменен ссылочный стандарт, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого стандарта с учетом всех внесенных в данную версию изменений. Если заменен ссылочный стандарт, на который дана датированная ссылка, то рекомендуется использовать версию этого стандарта с указанным выше годом утверждения (принятия). Если после утверждения настоящего стандарта в ссылочный стандарт, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение рекомендуется применять без учета данного изменения. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту ссылку.

3 Термины, определения и сокращения

- 3.1 В настоящем стандарте применены термины по ГОСТ Р 52833, ГОСТ 31719 и ГОСТ 31929, а также следующие термины с соответствующими определениями.
- 3.1.1 Таq-полимераза: Фермент, участвующий в процессе построения цепей нуклеиновых кислот из нуклеотидов.
- 3.1.2 элюция: Процесс вымывания ДНК из твердого носителя (сорбента) с использованием растворителя.
 - 3.2 В настоящем стандарте применены следующие сокращения:
 - а) дНТФ раствор, содержащий нуклеотиды:
 - 2'-дезоксиаденозин-5'-трифосфорной кислоты тетранатриевую соль;
 - 2) 2'-дезоксицитидин-5'-трифосфорной кислоты тетранатриевую соль;
 - 3) 2'-дезоксигуанин- 5'-трифосфорной кислоты тетранатриевую соль;
 - 4) 2'-дезокситимидин-5'-трифосфорной кислоты тетранатриевую соль;
 - б) ОКО контрольный образец этапа экстракции;
- в) ПКО положительный контрольный образец, содержащий ДНК микроорганизмов рода Mycoplasma;
 - г) ПЦР полимеразная цепная реакция;
 - д) ПЦР-буфер реакционный буфер для проведения ПЦР:
 - е) ТБЕ-буфер трис-боратный буфер:
 - ж) п. н. пара нуклеотидов;
 - и) ЭДТА этиледиаминтетраацетат.

4 Сущность метода

Сущность метода ПЦР заключается в амплификации специфического участка ДНК микроорганизмов рода Mycoplasma за счет многократного повторения циклов денатурации ДНК в исследуемой пробе, отжига специфических олигонуклеотидных праймеров и синтеза комплементарных цепей ДНК с помощью фермента Taq-полимеразы. Наличие ДНК микроорганизмов рода Mycoplasma в исследуемой пробе определяют по появлению специфичной полосы амплифицированной ДНК длиной 509 п. н., просматриваемой на электрофореграмме.

5 Условия выполнения исследований и требования безопасности

При выполнении исследований следует соблюдать условия и требования безопасности, установленные в ГОСТ Р 52833 и ГОСТ Р 55576-2013 (раздел 4, приложение A).

П р и м е ч а н и е – Работу с микроорганизмами I – IV групп патогенности проводят в соответствии с требованиями [1], [2] и [3].

6 Средства измерений, оборудование, материалы, реактивы и посуда

- 6.1 Общие требования по ГОСТ ИСО/МЭК 17025.
- 6.2 Для проведения исследований применяют:
- микроцентрифугу-встряхиватель со скоростью вращения до 2000 об/мин;
- холодильник бытовой электрический компрессионный по ГОСТ 26678 с диапазоном температур от 2 °C до 8 °C и с морозильной камерой с температурой не более минус 16 °C;
- микропробирки одноразовые полипропиленовые вместимостью 0,5 или 0,2 см³ и завинчивающиеся или плотно закрывающиеся вместимостью 1,5 см³;
- набор дозаторов электронных или механических лабораторных медицинских по ГОСТ 28311 или переменного объема по ГОСТ Р 52173 (пункт 4.14);

- наконечники одноразовые для лабораторных медицинских дозаторов переменного объема с аэрозольным барьером вместимостью до 200 мм³ и до 1000 мм³;
- наконечники одноразовые для лабораторных медицинских дозаторов переменного объема до 200 мм³:
 - штативы для микропробирок и наконечников;
 - халаты медицинские по ГОСТ 24760 и 25194;
 - перчатки медицинские диагностические одноразовые из латекса по ГОСТ Р 52239;
 - контейнеры для сброса использованных наконечников и пробирок.

6.3 Для выделения (экстракции) ДНК применяют:

- бокс ламинарный, класс биологической безопасности ІІ тип А;
- термостат твердотельный для микропробирок, рассчитанный на температуру от 25 °C до 100
 °C:
- отсасыватель медицинский вакуумный с колбой-ловушкой для удаления надосадочной жидкости;
 - микроцентрифугу для микропробирок со скоростью вращения до 16000 об/мин;
 - растворы дезинфицирующие, вызывающие деградацию ДНК;
 - спирт этиловый ректификованный по ГОСТ 5962;
 - комплект реагентов для выделения ДНК:

раствор лизирующий (48 %-ный гуанидин тиоционат, Трис-HCI молярной концентрации 0,01 моль/дм³, ЭДТА молярной концентрации 0,0125 моль/дм³, 0,5 %-ный Тритон X-100, деионизованная вода);

раствор для отмывки 1 (хлорид натрия молярной концентрации 1 моль/дм³, Трис-HCI молярной концентрации 0,2 моль/дм³, ЭДТА молярной концентрации 0,02 моль/дм³, 0,1 %-ный азид натрия, дейонизованная вода);

раствор для отмывки 2 (хлорид натрия молярной концентрации 0,25 моль/дм³, Трис-НСІ молярной концентрации 0,05 моль/дм³, ЭДТА молярной концентрации 0,005 моль/дм³, 0,025 %-ный азид натрия, 48 %-ный этиловый спирт, деионизованная вода);

сорбент универсальный (25 %-ная взвесь частиц SiO₂ размером от 20 до 50 мкм в растворе Трис-HCl молярной концентрации 0,005 моль/дм³);

ТЕ-буфер для элюции ДНК (Трис-НСІ молярной концентрации 0,01 моль/дм³, ЭДТА молярной концентрации 0,001 моль/дм³).

6.4 Для проведения амплификации ДНК применяют:

- ПЦР-бокс или бокс ламинарный;
- амплификатор для микропробирок вместимостью 0,5 см³ и для микропробирок вместимостью 0,2 см³;
- ПЦР-смесь-1, содержащую праймеры F1 и R1 молярной концентрации 0,0004 моль/мм³ и дНТФ молярной концентрации 0,2 моль/мм³ со следующей нуклеотидной последовательностью праймеров:

F1 5'-GGTAATACATAGGTTGCAAGCGTTATCCG-3'

R1 5'-CCATGCACCATCTGTCACTCTGTTA(A/G)CCTC-3':

- масло вазелиновое медицинское по ГОСТ 3164;
- ΠΚΟ:
- ПЦР-смесь-2, содержащую ПЦР-буфер, ксиленцианол (краситель голубого цвета), MgCl₂ молярной концентрации 0,0075 моль/дм³, фермент Таq-полимеразу концентрации 0,1 ед./ мм³;
 - ТЕ-буфер;
 - воск для ПЦР.
- 6.5 Для детекции продуктов ПЦР-амплификации методом электрофореза в агарозном геле применяют:
- камеру для горизонтального электрофореза вместимостью не более 400 см³, укомплектованную рамкой для геля, гребенками и столиком для заливки геля;
 - источник питания для горизонтального электрофореза с напряжением от 150 до 460 В;
 - трансиллюминатор ультрафиолетовый с кабинетом для просмотра гелей;
- видеосистему с цифровой видеокамерой для регистрации результатов и передачи изображения:
- весы 2 класса точности по ГОСТ OIML R 76-1 со следующими характеристиками: действительная цена деления d ≤ 0,01 г при взвешивании в диапазоне от 0,02 г до 50 г; предел допускаемой погрешности при первичной поверке ± 4 мг, предел допускаемой погрешности при эксплуатации ± 5мг;
 - воду дистиллированную по ГОСТ 6709;
 - раствор натрия хлорида 0,9 %-ный изотонический;

FOCT P 56140-2014

- печь микроволновую, соответствующую требованиям ГОСТ IEC 60335-2-25 для плавления агарозы;
 - колбу коническую вместимостью 250 см³ из термостойкого стекла по ГОСТ 21400;
- емкость пластиковую вместимостью 5 дм³ для дезактивации буфера и гелей, содержащих бромид этидия;
 - цилиндр мерный вместимостью 1 дм³ по ГОСТ 1770;
- ТБЕ-буфер для электрофореза (концентрированный буферный раствор, содержащий трисоснование молярной концентрации 0,089 моль/дм³, борную кислоту молярной концентрации 0,089 моль/дм³, ЭДТА молярной концентрации 0,002 моль/дм³, pH = 8,3);
 - агарозу для электрофореза;
 - раствор бромистого этидия 10 мг/см³, х. ч.;
 - маркер молекулярных масс ДНК, содержащий фрагменты ДНК размером от 100 до 1000 п. н.
 - 6.6 При приготовлении реагентов должны быть соблюдены требования ГОСТ 27025.
- 6.7 Допускается использование других средств измерений, оборудования, материалов, посуды и реагентов с метрологическими и техническими характеристиками не ниже указанных выше.

7 Отбор, транспортирование и подготовка проб

- 7.1 При отборе проб, а также при их подготовке для исследования соблюдают меры, предупреждающие обсеменение объектов внешней среды.
 - 7.2 Отбор проб проводят по ГОСТ 31929.
 - 7.3 Отобранная лабораторная проба должна быть репрезентативной.
- 7.4 Транспортирование проб осуществляют при температуре, рекомендованной для хранения производителем.
- 7.5 Сыворотки и жидкие вакцины используют для выделения ДНК без предварительной подготовки, а пробы сухих вакцин готовят следующим образом: в ампулы (флаконы) с сухой вакциной вносят 0,9 %-ный изотонический раствор хлорида натрия или дистиллированную воду по ГОСТ 6709 в объеме, соответствующем объему вакцины до высушивания. После этого ампулы (флаконы) осторожно взбалтывают и отбирают 1 см³ пробы в одноразовую микропробирку вместимостью 1,5 см³.

8 Экстракция ДНК

- 8.1 Лизирующий раствор и раствор для отмывки 1, содержащие кристаллы, прогревают до их полного растворения.
- 8.2 Готовят необходимое количество одноразовых пробирок (по числу исследуемых проб) и добавляют еще одну пробирку для отрицательного контроля экстракции и одну пробирку для положительного контроля экстракции. Вносят в каждую пробирку по 300 мм³ лизирующего раствора. Пробирки маркируют.
- 8.3 В пробирки с лизирующим раствором вносят по 100 мм³ исследуемой пробы, используя наконечники с аэрозольным барьером.
- 8.4 В пробирку отрицательного контроля экстракции ОК вносят 100 мм³ ОКО. В пробирку положительного контроля экстракции ПК вносят 90 мм³ ОКО и 10 мм³ ПКО. Если пробы готовили с использованием 0,9 %-ного раствора натрия хлорида, то готовят еще один отрицательный контроль: в пробирку с лизирующим раствором вносят 50 мм³ 0,9 %-ного раствора натрия хлорида и 50 мм³ ОКО.
- 8.5 Содержимое пробирок тщательно перемешивают на встряхивателе и прогревают в течение 5 мин при температуре 65 °C. После этого пробирки центрифугируют в течение 5 с при 5000 об/мин на микроцентрифуге.
- 8.6 В каждую пробирку отдельным наконечником добавляют по 25 мм³ ресуспензированного на встряхивателе универсального сорбента. Содержимое пробирок тщательно перемешивают на встряхивателе, ставят в штатив на 2 мин. еще раз перемешивают и оставляют в штативе на 5 мин.
- 8.7 Осаждают универсальный сорбент в пробирках центрифугированием при 5000 об/мин в течение 30 с. Удаляют надсадочную жидкость, используя вакуумный отсасыватель с колбой ловушкой и отдельный наконечник для каждой пробы.
- 8.8 Добавляют в пробирки по 300 мм³ раствора для отмывки 1. Перемешивают на встряхивателе до полного ресуспензирования универсального сорбента. Сорбент осаждают центрифугированием при 5000 об/мин на микроцентрифуге в течение 30 с. Удаляют надосадочную жидкость в соответствии с 8.7.
- 8.9 Добавляют в пробирки по 500 мм³ раствора для отмывки 2, перемешивают до полного ресуспензирования сорбента, центрифугируют в течение 30 с при 10000 об/мин на микроцентрифуге. Удаляют надосадочную жидкость по 8.7.
 - 8.10 Повторяют процедуру отмывки раствором для отмывки 2 по 8.9.

- 8.11 Для подсушивания универсального сорбента пробирки после отмывки по 8.10 помещают в термостат при температуре 65 °C на 5 10 мин. При этом крышки пробирок оставляют открытыми.
- 8.12 В пробирки добавляют по 50 мм³ ТЕ-буфера для элюции ДНК. Перемешивают на встряхивателе. Помещают в термостат при температуре 65 °C на 5 мин, периодически встряхивая.
- 8.13 Центрифугируют пробирки на максимальных оборотах микроцентрифуги в течение 1 мин. Надосадочная жидкость содержит очищенную ДНК.
- 8.14 При использовании других готовых наборов реагентов выделение ДНК проводят согласно инструкции по их применению.

9 Постановка ПЦР

9.1 В микропробирки вместимостью 0,5 см³ для ПЦР вносят по 5 мм³ ПЦР-смеси-1, наслаивают сверху по 10 мм³ расплавленного воска для ПЦР так, чтобы он полностью накрыл жидкость, закрывают крышки. Если воск для ПЦР покрыл жидкость неровно или образовались пузыри, прогревают пробирки в амплификаторе в течение 2 мин при температуре 95 °C и охлаждают.

Срок хранения готовой ПЦР-смеси-1 под воском при температуре минус 20 °C – не более 6 мес.

- 9.2 На поверхность воска вносят по 10 мм3 ПЦР-смеси-2, при этом она не должна проваливаться под воск и смешиваться с ПЦР-смесью-1.
 - 9.3 Сверху добавляют по капле вазелинового масла (примерно 25 мм³).

При использовании амплификатора с термостатируемой крышкой вазелиновое масло не добавляют.

9.4 Под масло или непосредственно на него вносят по 10 мм³ надосадочной жидкости по 8.13, используя наконечники с аэрозольными барьерами.

Ставят контрольные реакции амплификации:

- отрицательный контроль (К-). В пробирку вместо надосадочной жидкости по 8.13 вносят 10 мм³ ТЕ-буфера;
- положительный контроль (К+). В пробирку вместо надосадочной жидкости по 8.13 вносят 10 мм³ ПКО.
- 9.5 Перед постановкой пробирок в амплификатор осаждают капли с их стенок кратким центрифутированием в течение 1 — 3 с.
- 9.6 Пробирки с надосадочной жидкостью, отрицательным и положительным контролями после центрифугирования ставят в амплификатор и запускают соответствующую программу.

При использовании ПЦР-смеси-1 с нуклеотидной последовательностью праймеров F1 и R1 по 6.4 запускают на амплификаторе программу, представленную в таблице 1.

Таблица

Цикл	Температура	Время	Циклы
0	95 °C	Па	уза
1	95 °C	2 мин	1
	95 °C	10 c	
	61 °C	10 c	
2	72 °C	10 c	41
3	72 °C	1 мин	1
4	4 °C	Хранение в аг	иплификаторе
		Хранение в аг	иплификаторе

- 9.7 После окончания программы собирают пробирки в штатив и отправляют для детекции продуктов ПЦР.
- 9.8 Срок хранения проб после амплификации при комнатной температуре не более 16 ч, при температуре от 2 °C до 8 °C не более одной недели, при температуре не более минус 16 °C не ограничен.

10 Детекция продуктов ПЦР-амплификации методом электрофореза в агарозном геле

10.1 Приготовление рабочих растворов и агарозного геля

- 10.1.1 Готовят рабочий электрофорезный буфер: в мерный цилиндр вливают 25 см³ ТБЕбуфера, доводят дистиллированной водой до 500 см³ и перемешивают.
- 10.1.2 1,7 г агарозы для электрофореза ДНК помещают в стеклянную колбу из термостойкого стекла вместимостью 250 см³. Наливают 100 см³ рабочего электрофорезного буфера по 10.1.1, пере-

FOCT P 56140-2014

мешивают вращением колбы и плавят в микроволновой печи до полного растворения агарозы. Время плавления агарозы в микроволновой печи мощностью 800 Вт при ее загруженности одной колбой – 1.5 мин.

- 10.1.3 Вынимают колбу с расплавленной агарозой из микроволновой печи, аккуратно перемешивают, вращая колбу.
- 10.1.4 После этого вновь помещают колбу с агарозой в микроволновую печь на 1,5 мин (при мощности 800 Вт), доводят агарозу до кипения.
- 10.1.5 Вынимают колбу из микроволновой печи и остужают агарозу до температуры 65 °C 70 °C, вращая колбу.
- 10.1.6 К раствору агарозы, полученному по 10.1.5, добавляют 0,005 см³ раствора бромистого этидия концентрацией 10 мг/см³, тщательно перемешивают раствор. Полученный агарозный гель используют для заливки в рамку камеры.
- 10.1.7 Выравнивают столик для заливки гелей, заливают агарозный гель, полученный по 10.1.6, в рамку камеры.
- 10.1.8 Устанавливают гребенки, не касаясь дна рамки камеры, на расстоянии не менее 3 см друг от друга. Толщина агарозного геля должна быть около 0,6 см.
- 10.1.9 После полного застывания агарозного геля (30 мин при комнатной температуре), осторожно вынимают из него гребенки, не повредив лунки. Помещают рамку с готовым агарозным гелем в камеру так, чтобы лунки располагались ближе к отрицательному электроду. Заливают в камеру рабочий электрофорезный буфер по 10.1.1 так, чтобы он покрыл агарозный гель на 5 мм сверху.

10.2 Проведение электрофореза

- 10.2.1 Из пробирок с продуктами амплификации по 9.7 отбирают по 10 15 мм³ исследуемых проб и вносят в лунки агарозного геля (если для нанесения разных проб используют один и тот же наконечник, то его промывают буфером по 10.1.1 после нанесения каждой пробы). В каждом ряду лунок агарозного геля должен быть обязательно представлен К+.
- 10.2.2 Подключают камеру к источнику тока, соблюдая полярность (ДНК должна двигаться в направлении положительного электрода). Электрофорез проводят при напряжении от 100 до 150 В в течение 20 30 мин, при этом краситель ксиленцианол, входящий в ПЦР-смесь-2, должен продвинуться не менее чем на 1 см от старта. Оптимальная напряженность электрического поля при этом составляет 10 В/см.
- 10.2.3 По завершении времени электрофореза выключают источник тока, переносят рамку с гелем на трансиллюминатор, расположив полосы горизонтально лунками вверх. Получают изображение агарозного геля (электрофореграмму) на компьютере с помощью видеосистемы.

11 Учет результатов ПЦР

11.1 Учет результатов ПЦР проводят по наличию или отсутствию на электрофореграмме специфической полосы амплифицированной ДНК.

Длина амплифицированного специфического фрагмента ДНК для праймеров, указанных в 6.4, составляет 509 п. н.

11.2 Учет результатов ПЦР-анализа начинают с анализа результатов амплификации положительных и отрицательных контрольных образцов. Режим анализа приведен в таблице 2.

Таблица 2

- ее отсутствие.

Контроль	Этап ПЦР-анализа	Наличие специфической полосы 509 п. н. на электрофореграмме
«ΠΚ»	Экстракция ДНК	+
«OK»	Экстракция ДНК	-
«K-»	ПЦР	
«K+»	ПЦР	+

^{11.3} В дорожках агарозного геля, соответствующих лункам, содержащим положительные контроли (ПК и К+), должны быть яркие специфические светящиеся полосы на уровне 509 п. н.

^{11.4} В дорожках агарозного геля, соответствующих лункам, содержащим отрицательные контроли (ОК и К-), не должно быть никаких полос, за исключением возможных праймер-димеров, находящихся ниже уровня 100 п. н.

- 11.5 Положительными считают пробы, которые содержат специфическую светящуюся полосу на уровне 509 п. н. большей или меньшей интенсивности.
 - 11.6 Отрицательными считают пробы, которые не содержат полосу на уровне 509 п. н.
 - 11.7 Результаты анализа не подлежат учету, если на электрофореграмме:
- в дорожках агарозного геля, соответствующих лункам, содержащим положительные контроли (ПК и К+), отсутствует специфическая полоса на уровне 509 п. н., что может указывать на ошибку в подготовке реактивов, постановке ПЦР или сбой программы амплификатора;
- в дорожках агарозного геля, соответствующих лункам, содержащим отрицательные контроли (ОК и К-), появляется специфическая полоса на уровне 509 п. н., что может указывать на контаминацию реактивов или проб. В этом случае анализ проб повторяют с первого этапа (экстракции ДНК), а также принимают меры по выявлению источника контаминации;
- в дорожках агарозного геля появляются неспецифические полосы на разных уровнях, что может указывать на неверный температурный режим в ячейках амплификатора.

Библиография

- [1] МУ 1.3.2569—2009 Организация работы лабораторий, использующих методы амплификации нуклеиновых кислот при работе с материалом, содержащим микроорганизмы I IV групп патогенности
- [2] СП 1.3.2322—2008 Безопасность работы с микроорганизмами III-IV групп патогенности (опасности) и возбудителями паразитарных болезней
 - [3] СП 1.3.3118-2013 Безопасность работы с микроорганизмами І-ІІ групп патогенности (опасности)

УДК 619:579.88-078:006.354

OKC 11.220

Ключевые слова: биологические лекарственные средства для ветеринарного применения, живые вакцины, сыворотки крови, гипериммунные сыворотки, микроорганизмы рода Mycoplasma, метод полимеразной цепной реакции с выделением ДНК, амплификация, электрофорез в агарозном геле

> Подписано в печать 01.04.2015. Формат 60х841/в. Усл. печ. л. 1,40. Тираж 31 экз. Зак. 1159.

Подготовлено на основе электронной версии, предоставленной разработчиком стандарта

ФГУП «СТАНДАРТИНФОРМ»

123995 Москва, Гранатный пер., 4. www.gostinfo.ru info@gostinfo.ru

В каком месте	Напечатано	Должно быть
Пункт 6.5. Вто-	вместимостью не более 400 см ³	вместимостью не более 600 см ³
восьмой абзац	 раствор натрия хлорида 0,9 %-ный изотонический; 	_
двенадцатый аб-	вместимостью 1 дм ³	вместимостью 0,5 дм ³
384	TEE E des	TEC 6. 4 / /
тринадцатый аб- зац	 ТБЕ-буфер для электрофореза (кон- центрированный буферный раствор, со- держащий трис-основание молярной кон- центрации 0,089 моль/дм³, борную кислоту молярной концентрации 0,089 моль/дм³, ЭДТА молярной концен- трации 0,002 моль/дм³, рН = 8,3); 	 ТБЕ-буфер для электрофореза (кон- центрированный буферный раствор, со- держащий трис-основание молярной кон- центрации 0,89 моль/дм³, борную кислоту молярной концентрации 0,89 моль/дм³, ЭДТА молярной концент- рации 0,02 моль/дм³, рН = 8,3 ед. рН);
Пункт 10.1.1 Пункт 10.2.2	вливают 25 см ³ ТБЕ-буфера Электрофорез проводят при напряжении от 100 до 150 В в течение 20—30 мин, при этом краситель ксиленцианол, входящий в ПЦР-смесь-2, должен продвинуться не менее чем на 1 см от старта.	вливают 50 см ³ ТБЕ-буфера Электрофорез проводят при напряжении от 180 до 250 В в течение 20—30 мин, при этом краситель ксиленцианол, входящий в ПЦР-смесь-2, должен продвинуться не менее чем на 1,5 см от старта.

(ИУС № 8 2016 г.)

В каком месте	Напечатано	Должно быть	
Пункт 6.3, перед пунктом 6.4	Name.	раствор натрия хлорида 0,9 %-ный изотонический;	
Пункт 6.4, третье перечисление	ПЦР-смесь-1, содержащую прайме- ры F1 и R1 молярной концентрации 0,0004 моль/мм ³ и дНТФ молярной концентрации 0,2 моль/мм ³ со следу- ющей нуклеотидной последователь- ностью праймеров:	лярной концентрации 0,088 моль/мм ³ праймеры F1 и R1 молярной концен трации 2 пмоль/мм ³ со следующей ну	
Пункт 9.2	10 mm3	10 мм ³	
Пункт 9.6, второй абзац	9.6, второй При использовании ПЦР-смеси-1 с нуклеотидной последовательностью праймерами F1 и R1 с последовательностью последовательностью последовательностью последовательностью последовательностью последовательностью		

(ИУС № 6 2021 г.)