ФЕДЕРАЛЬНОЕ АГЕНТСТВО

ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОСТ Р ИСО/ТС 10303-1633— 2014

Системы автоматизации производства и их интеграция

ПРЕДСТАВЛЕНИЕ ДАННЫХ ОБ ИЗДЕЛИИ И ОБМЕН ЭТИМИ ДАННЫМИ

Часть 1633 Прикладной модуль. Трехмерная модель электронного узла

ISO/TS 10303-1633: 2010
Industrial automation systems and integration —
Product data representation and exchange —
Part 1633: Application module: Assembly 3D shape

(IDT)

Издание официальное

Предисловие

- 1 ПОДГОТОВЛЕН Федеральным бюджетным учреждением «Консультационно-внедренческая фирма в области международной стандартизации и сертификации «Фирма «ИНТЕРСТАНДАРТ» на основе собственного аутентичного перевода на русский язык международного документа, указанного в пункте 4
- 2 ВНЕСЕН Техническим комитетом по стандартизации ТК 459 «Информационная поддержка жизненного цикла изделий»
- 3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 17 ноября 2014 г. № 1602-ст
- 4 Настоящий стандарт идентичен международному документу ИСО/ТС 10303-1633:2010 «Системы автоматизации производства и их интеграция. Представление данных об изделии и обмен этими данными. Часть 1633. Прикладной модуль. Трехмерная модель электронного узла» (ISO/TS 10303-1633:2010 «Industrial automation systems and integration Product data representation and exchange Part 1633: Application module: Assembly 3D shape»)

При применении настоящего стандарта рекомендуется использовать вместо ссылочных международных стандартов и документов соответствующие им национальные стандрты Российской Федерации, сведения о которых приведены в дополнительном приложении ДА

5 ВВЕДЕН ВПЕРВЫЕ

Правила применения настоящего стандарта установлены в ГОСТ Р 1.0—2012 (раздел 8). Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе «Национальные стандарты», а официальный текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске информационного указателя «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (gost.ru)

© Стандартинформ, 2015

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

Содержание

1 Область применения	,1
2 Нормативные ссылки	2
3 Термины, определения и сокращения	
3.1 Термины, определенные в ИСО 10303-1	2
3.2 Термин, определенный в ИСО 10303-202	3
3.3 Термины, определенные в ИСО/ТС 10303-1001	3
3.4 Термин, определенный в ИСО/ТС 10303-1017	3
3.5 Сокращения	3
4 Информационные требования	3
4.1 Прикладные эталонные модели, необходимые для прикладного модуля	3
4.2 Определение объектов ПЭМ	4
5 Интерпретированная модель модуля	5
5.1 Спецификация отображения	5
5.2 Сокращенный листинг ИММ на языке EXPRESS	8
Приложение А (обязательное) Сокращенные наименования объектов ИММ	10
Приложение В (обязательное) Регистрация информационного объекта	10
Приложение С (справочное) EXPRESS-G диаграммы ПЭМ	11
Приложение D (справочное) EXPRESS-G диаграммы ИММ	12
Приложение Е (справочное) Машинно-интерпретируемые листинги	13
Приложение ДА (справочное) Сведения о соответствии ссылочных международных стандартов и	
документов национальным стандартам Российской Федерации	14
Библиография	15

Введение

Стандарты комплекса ИСО 10303 распространяются на компьютерное представление информации об изделиях и обмен данными об изделиях. Их целью является обеспечение нейтрального механизма, способного описывать изделия на всем протяжении их жизненного цикла. Этот механизм применим не только для обмена файлами в нейтральном формате, но является также основой для реализации и совместного доступа к базам данных об изделиях и организации архивирования.

В настоящем стандарте специфицирован прикладной модуль, для представления информации, необходимой для описания явных геометрических моделей и преобразований, используемых в процессе конструирования электронного узла. При применении настоящего модуля допускаются различающиеся типы геометрического представления компонента в библиотеке и при вхождении компонента в состав сборочной единицы.

В настоящем модуле предоставлены средства для представления информации, необходимой для описания различных точек зрения на то, как соединяются вместе компоненты при создании электронного узла. В настоящем модуле дается определение информации, необходимой для описания материалов, используемых при создании физических соединительных элементов и типовых форм этих элементов. В настоящем модуле предоставлен механизм для того, чтобы конструкторские организации могли выражать явные утверждения о подробностях соединений, создаваемых в физической конструкции. Представление осуществляется в трехмерном контексте. Предоставлены предопределенные классы форм линейного вытягивания и манхеттенских форм. Может также использоваться внешняя классификация форм. Предоставлены средства для представления предопределенных и внешне определенных целей, связанных с моделью электронного узла.

Во второе издание настоящего стандарта включены нижеперечисленные изменения первого издания.

Была изменена структура отображения:

- Bond assembly position.assembly model.

Были изменены описания следующих EXPRESS-деклараций ПЭМ:

- Bond assembly position bond definition placement.

В разделе 1 настоящего стандарта определены область применения данного прикладного модуля, его функциональность и используемые данные.

В разделе 3 приведены термины, примененные в настоящем стандарте, а также в других стандартах комплекса ИСО 10303.

В разделе 4 определены информационные требования прикладной предметной области на основе принятой в ней терминологии. В приложении С дано графическое представление информационных требований, именуемое прикладной эталонной моделью (ПЭМ). Структуры ресурсов интерпретированы, чтобы соответствовать информационным требованиям. Результатом данной интерпретации является интерпретированная модель модуля (ИММ). Данная интерпретация, представленная в 5.1, устанавливает соответствие между информационными требованиями и ИММ. Сокращенный листинг ИММ, представленный в 5.2, специфицирует интерфейс к ресурсам. Графическое представление сокращенного листинга ИММ приведено в приложении D.

Имя типа данных в языке EXPRESS может использоваться либо для ссылки на сам тип данных, либо на экземпляр данных этого типа. Различие в использовании обычно понятно из контекста. Если существует вероятность неоднозначного толкования, то в текст включается фраза «объектный тип данных» либо «экземпляр(ы) данных типа».

Двойные кавычки ("....") означают цитируемый текст, одинарные кавычки ("...") — значения конкретных текстовых строк.

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Системы автоматизации производства и их интеграция

ПРЕДСТАВЛЕНИЕ ДАННЫХ ОБ ИЗДЕЛИИ И ОБМЕН ЭТИМИ ДАННЫМИ

Часть 1633
Прикладной модуль.
Трехмерная модель электронного узла

Industrial automation systems and integration. Product data representation and exchange.

Part 1633. Application module. Assembly 3D shape

Дата введения — 2015—10—01

1 Область применения

Настоящий стандарт определяет прикладной модуль «Трехмерная модель электронного узла». В область применения настоящего стандарта входят:

- трехмерная модель электронного узла;
- соединения компонентов электронного узла;
- определения формы соединительных элементов;
- соединительные элементы на основе пайки или склеивания;
- соединительные элементы на основе дискретных крепежных элементов;
- задание условий соединения компонентов;
- исходные данные общего анализа;
- результаты общего анализа;
- исходные данные анализа ударного воздействия;
- результаты анализа ударного воздействия
- конструкция;
- исходные данные анализа вибрационного воздействия;
- результаты анализа вибрационного воздействия;
- исходные данные анализа электромагнитной совместимости;
- результаты анализа электромагнитной совместимости;
- исходные данные теплового анализа;
- результаты теплового анализа;
- класс форм выдавливания;
- класс манхеттенских форм;
- класс форм общего вида;
- трехмерное представление формы электронного узла;
- трехмерные ограничения формы применяемых компонентов;
- положения, входящие в область применения прикладного модуля ИСО/ТС 10303-1649
 Assembly technology;
- положения, входящие в область применения прикладного модуля ИСО/ТС 10303-1727 Physical unit 3d shape.

В область применения настоящего стандарта не входят:

двумерные характеристики формы электронного узла.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие международные стандарты (для датированных ссылок следует использовать указанное издание, для недатированных ссылок — последнее издание указанного документа, включая все поправки):

ИСО/МЭК 8824-1:1998¹⁾ Информационные технологии. Абстрактная синтаксическая нотация версии один (ACH.1). Часть 1. Спецификация основной нотации (ISO/IEC 8824-1:2002, Information technology — Abstract Syntax Notation One (ASN.1): — Part 1: Specification of basic notation)

ИСО 10303-1 Системы автоматизации производства и их интеграция. Представление данных об изделии и обмен этими данными. Часть 1. Общие представления и основополагающие принципы (ISO 10303-1, Industrial automation systems and integration — Product data representation and exchange — Part 1: Overview and fundamental principles)

ИСО 10303-11 Системы автоматизации производства и их интеграция. Представление данных об изделии и обмен этими данными. Часть 11. Методы описания. Справочное руководство по языку EXPRESS (ISO 10303-11, Industrial automation systems and integration — Product data representation and exchange — Part 11: Description methods: The EXPRESS language reference manual)

ИСО 10303-21:2002 Системы автоматизации производства и их интеграция. Представление данных об изделии и обмен этими данными. Часть 21. Методы реализации. Кодирование открытым текстом структуры обмена (ISO 10303-21:2002, Industrial automation systems and integration — Product data representation and exchange — Part 21: Implementation methods: Clear text encoding of the exchange structure)

ИСО 10303-202:1996 Системы автоматизации производства и их интеграция. Представление данных об изделии и обмен этими данными. Часть 202. Прикладной протокол. Ассоциативные чертежи (ISO 10303-202:1996, Industrial automation systems and integration — Product data representation and exchange — Part 202: Application protocol: Associative draughting)

ИСО/ТС 10303-1001:2004²⁾ Системы автоматизации производства и их интеграция. Представление данных об изделии и обмен этими данными. Часть 1001. Прикладной модуль. Присваивание внешнего вида (ISO/TS 10303-1001:2004, Industrial automation systems and integration — Product data representation and exchange — Part 1001: Application module: Appearance assignment)

ИСО/ТС 10303-1017 Системы автоматизации производства и их интеграция. Представление данных об изделии и обмен этими данными. Часть 1017. Прикладной модуль. Обозначение изделия (ISO/TS 10303-1017, «Industrial automation systems and integration — Product data representation and exchange — Part 1017: Application module: Product identification»)

ИСО/ТС 10303-1649 Системы автоматизации производства и их интеграция. Представление данных об изделии и обмен этими данными. Часть 1649. Прикладной модуль. Технологические свойства сборочной единицы (ISO/TS 10303-1649, Industrial automation systems and integration — Product data representation and exchange — Part 1649: Application module: Assembly technology.)

ИСО/ТС 10303-1727 Системы автоматизации производства и их интеграция. Представление данных об изделии и обмен этими данными. Часть 1727. Прикладной модуль. 3-мерная модель физического узла (ISO/TS 10303-1727, Industrial automation systems and integration — Product data representation and exchange — Part 1727: Application module: Physical unit 3D shape)

3 Термины, определения и сокращения

3.1 Термины, определенные в ИСО 10303-1

В настоящем стандарте применены следующие термины:

- приложение (application);
- прикладной объект (application object);
- прикладной протокол; ПП (application protocol; AP);
- прикладная эталонная модель; ПЭМ (application reference model; ARM);
- данные (data);
- информация (information);

^{1&}lt;sup>1</sup> Отменен. Действует ИСО/МЭК 8824-1:2008.

²⁾ Отменен. Действует ИСО/ТС 10303-1001:2010.

- интегрированный ресурс (integrated resource);
- изделие (product);
- данные об изделии (product data).

3.2 Термин, определенный в ИСО 10303-202

В настоящем стандарте применен следующий термин:

прикладная интерпретированная конструкция; ПИК (application interpreted construct; AIC).

3.3 Термины, определенные в ИСО/ТС 10303-1001

В настоящем стандарте применены следующие термины:

- прикладной модуль; ПМ (application module; AM);
- интерпретированная модель модуля; ИММ (module interpreted model; MIM).

3.4 Термин, определенный в ИСО/ТС 10303-1017

В настоящем стандарте применен следующий термин:

- общие ресурсы (common resources).

3.5 Сокращения

В настоящем стандарте применены следующие сокращения:

ПМ — прикладной модуль;

ПЭМ — прикладная эталонная модель;

ИММ — интерпретированная модель модуля;

URL — унифицированный указатель информационного ресурса.

4 Информационные требования

В настоящем разделе определены информационные требования к прикладному модулю «Трехерная модель электронного узла», представленные в форме ПЭМ.

Примечания

- 1 Графическое представление информационных требований приведено в приложении С.
- 2 Спецификация отображения определена в 5.1. Она показывает, как удовлетворяются информационные требования при использовании общих ресурсов и конструкций, определенных в схеме ИММ или импортированных в схему ИММ прикладного модуля, описанного в настоящем стандарте.

Ниже представлен фрагмент EXPRESS-спецификации, с которого начинается описание схемы Assembly_3d_shape_arm. В нем определены необходимые внешние ссылки.

EXPRESS-спецификация:

```
*)
SCHEMA Assembly_3d_shape_arm;
(*
```

4.1 Прикладные эталонные модели, необходимые для прикладного модуля

Ниже представлены интерфейсные операторы языка EXPRESS, посредством которых задаются элементы, импортированные из прикладных эталонных моделей других прикладных модулей.

EXPRESS-спецификация:

```
USE FROM Assembly_technology_arm; -- ISO/TS 10303-1649
USE FROM Physical_unit_3d_shape_arm; -- ISO/TS 10303-1727
```

Примечания

1 Схемы, ссылки на которые даны выше, можно найти в следующих документах комплекса ИСО 10303:

```
Assembly_technology_arm — MCO/TC 10303-1649;

Physical_unit_3d_design_view_arm — MCO/TC 10303-1727.
```

2 Графическое представление данных схем приведено на рисунках С.1 и С.2, приложение С.

4.2 Определение объектов ПЭМ

В настоящем подразделе определены объекты ПЭМ рассматриваемого прикладного модуля. Каждый объект ПЭМ является простейшим неделимым элементом, который моделирует уникальное понятие прикладной области, и содержит атрибуты для представления объекта. Далее приведены объекты ПЭМ и их определения.

4.2.1 Объект Bond_assembly_position

Посредством объекта Bond_assembly_position задается положение представленного объектом Assembled_with_bondingcoeдинения в представленной объектом Physical_unit_3d_shape_model трехмерной модели электронного узла. Поскольку в настоящем объекте применяется заданная по умолчанию форма соединительного элемента, представленная объектом, играющим роль атрибута bond, настоящий объект представляет приближенное положение. Расхождение между формой, заданной по умолчанию и действительной формой поставленного на сборку изделия может быть значительным.

EXPRESS-спецификация:

```
ENTITY Bond_assembly_position;
bond : Assembled_with_bonding;
assembly_model : Physical_unit_3d_shape_model;
bond_model : Default_assembly_bond_shape_model;
bond_definition_placement : Axis_placement_3d;
UNIQUE
UR1: bond;
END_ENTITY;
(*
```

Определения атрибутов

- bond задает объект Assembled_with_bonding, играющий роль атрибута bond объекта Bond_assembly_position;
- assembly_model задает объект Physical_unit_3d_shape_model играющий роль атрибута assembly_model объекта Bond_assembly_position;
- bond_model задает объект Default_assembly_bond_shape_model, представляющий заданную по умолчанию форму соединения, размещение которого задается объектом, играющим роль атрибута bond настоящего объекта;
- bond_definition_placement задает объект Axis_placement_3d, играющий роль атрибута bond_definition_placement объекта Bond_assembly_2d_position. Положение, задаваемое посредством настоящего атрибута, определяется как пространственное преобразование, требуемое для размещения соединения в модели электронного узла.

Формальное положение

UR1. Значение атрибута bond каждого из экземпляров объекта Bond_assembly_position должно быть уникальным.

```
*)
END_SCHEMA; -- Assembly_3d_shape_arm
(*
```

5 Интерпретированная модель модуля

5.1 Спецификация отображения

В настоящем стандарте под термином «прикладной элемент» понимается любой объектный тип данных, определенный в разделе 4, любой из его явных атрибутов и любое ограничение на подтипы. Термин «элемент ИММ» означает любой объектный тип данных, определенный в 5.2 или импортированный с помощью оператора USE FROM из другой EXPRESS-схемы, а также любой из их атрибутов и любое ограничение на подтипы, определенное в 5.2 либо импортированное с помощью оператора USE FROM.

В данном подразделе представлена спецификация отображения, которая определяет, как каждый прикладной элемент, описанный в разделе 4 настоящего стандарта, отображается на один или более элементов ИММ (см. 5.2).

Спецификация отображения для каждого объекта ПЭМ определена ниже в отдельном пункте. Спецификация отображения атрибута объекта ПЭМ описывается в подпункте пункта, содержащего спецификацию отображения этого объекта. Каждая спецификация содержит не более пяти секций.

Секция «Заголовок» содержит:

- наименование рассматриваемого объекта ПЭМ или ограничение на подтипы либо
- наименование атрибута рассматриваемого объекта ПЭМ, если данный атрибут ссылается на тип, не являющийся объектным типом данных или типом SELECT, который содержит или может содержать объектные типы данных, либо
- составное выражение вида: «связь объекта <наименование объекта ПЭМ> с объектом <тип данных, на который дана ссылка> (представляющим атрибут <наименование атрибута>)», если данный атрибут ссылается на тип данных, являющийся объектным типом данных или типом SELECT, который содержит или может содержать объектные типы данных.

Секция «Элемент ИММ» содержит в зависимости от рассматриваемого прикладного элемента следующие составляющие:

- наименование одного или более объектных типов данных ИММ;
- наименование атрибута объекта ИММ, представленное в виде синтаксической конструкции
 наименование объекта>.
 наименование объекта>.
 наименование атрибута>, если рассматри-ваемый атрибут ссылается на тип, не являющийся объектным типом данных или типом SELECT, который содержит или может содержать объектные типы данных;
- ключевое слово РАТН, если рассматриваемый атрибут объекта ПЭМ ссылается на объектный тип данных или на тип SELECT, который содержит или может содержать объектные типы данных;
- ключевое слово IDENTICAL MAPPING, если оба прикладных объекта, присут-ствующих в прикладном утверждении, отображаются на тот же самый экземпляр объектного типа данных ИММ;
- синтаксическую конструкцию /SUPERTYPE(<наименование супертипа>)/, если рассматриваемый объект ПЭМ отображается как его супертип;
- одну или более конструкций /SUBTYPE(<наименование подтипа>)/, если отображение рассматриваемого объекта ПЭМ является объединением отображений его подтипов.

Если отображение прикладного элемента содержит более одного элемента ИММ, то каждый из этих элементов ИММ представляется в отдельной строке спецификации отображения, заключенной в круглые или квадратные скобки.

Секция «Источник» содержит:

- обозначение стандарта ИСО, в котором определен данный элемент ИММ, для тех элементов ИММ, которые определены в общих ресурсах;
- обозначение настоящего стандарта для тех элементов ИММ, которые определены в схеме ИММ настоящего стандарта.

Данная секция опускается, если в секции «Элемент ИММ» используются ключевые слова PATH или IDENTICAL MAPPING.

Секция «Правила» содержит наименования одного или более глобальных правил, которые применяются к совокупности объектных типов данных ИММ, перечисленных в секции «Элемент ИММ» или «Ссылочный путь». Если правила не применяются, то данную секцию опускают.

За ссылкой на глобальное правило может следовать ссылка на подлункт, в котором определено данное правило.

Секция «Ограничение» содержит наименование одного или более ограничений на подтипы, которые применяются к совокупности объектных типов данных ИММ, перечисленных в секции «Элемент ИММ» или «Ссылочный путь». Если ограничения на подтипы отсутствуют, то данную секцию опускают.

За ссылкой на ограничение подтипа может следовать ссылка на подпункт, в котором определено данное ограничение на подтипы.

Секция «Ссылочный путь» содержит:

- ссылочный путь к супертипам в общих ресурсах для каждого элемента ИММ, определенного в настоящем стандарте;
- спецификацию взаимосвязей между элементами ИММ, если отображение прикладного элемента требует связать экземпляры нескольких объектных типов данных ИММ. В этом случае в каждой строке ссылочного пути указывают роль элемента ИММ по отношению к ссылающемуся на него элементу ИММ или к следующему по ссылочному пути элементу ИММ.

В выражениях, определяющих ссылочные пути и ограничения между элементами ИММ, применяют следующие условные обозначения:

- в квадратные скобки заключают несколько элементов ИММ или частей ссылочного пути, которые требуются для обеспечения соответствия информационному требованию;
- в круглые скобки заключают несколько элементов ИММ или частей ссылочного пути, которые являются альтернативными в рамках отображения для обеспечения соответствия информационному требованию;
- заключенный в фигурные скобки фрагмент ограничивает ссылочный путь для обеспечения соответствия информационному требованию;
- в угловые скобки заключают один или более необходимых ссылочных путей;
- между вертикальными линиями помещают объект супертипа;
- -> атрибут, наименование которого предшествует символу ->, ссылается на объектный или выбираемый тип данных, наименование которого следует после этого символа;
- атрибут объекта, наименование которого следует после символа <-, ссылается на объектный или выбираемый тип данных, наименование которого предшествует этому символу;
- атрибут, наименование которого предшествует символу [i], является агрегированной структурой; ссылка дается на любой элемент данной структуры;
- [n] атрибут, наименование которого предшествует символу [n], является упорядоченной агрегированной структурой; ссылка дается на n-й элемент данной структуры;
- объект, наименование которого предшествует символу =>, является супертипом объекта, наименование которого следует после этого символа;
- объект, наименование которого предшествует символу <=, является подтипом объекта, наименование которого следует после этого символа;</p>
- строковый (STRING), выбираемый (SELECT) или перечисляемый (ENUMERATION) тип данных ограничен списком выбора или значением;
- выражение для ссылочного пути продолжается на следующей строке;
- один или более экземпляров взаимосвязанных объектных типов данных могут быть объектины в древовидную структуру. Путь между объектом взаимосвязи и связанными с ним объектами заключают в фигурные скобки:
- последующий текст является комментарием или ссылкой на раздел;
- *> выбираемый (SELECT) или перечисляемый (ENUMERATION) тип данных, наименование которого предшествует символу *>, расширяется до выбираемого или перечисляемого типа данных, наименование которого следует за этим символом;
- выбираемый (SELECT) или перечисляемый (ENUMERATION) тип данных, наименование которого предшествует символу <*, является расширением выбираемого или перечисляемого типа данных, наименование которого следует за этим символом;</p>
- секция, заключенная в фигурные скобки, обозначает отрицательное ограничение, налагаемое на отображение.

Определение и использование шаблонов отображения не поддерживаются в настоящей версии прикладных модулей, однако поддерживается использование предопределенных шаблонов /SUBTYPE/ n /SUPERTYPE/.

5.1.1 Прикладной объект Bond_assembly_position

Элемент ИММ: mapped item

Источник: ИСО 10303-43

Ссылочный путь: {mapped_item <=

representation_item

representation_item.name = 'assembly position'}

5.1.1.1 Связь объекта Bond_assembly_position с объектом Assembled_with_bonding, представляющим атрибут bond

Элемент ИММ: PATH

Ссылочный путь: mapped item <=

> representation_item <representation.items[i] {representation

representation.name = 'bond assembly position'}

representation <-

property_definition_representation.used_representation

property_definition_representation

property_definition_representation.definition ->

property_definition

property_definition.definition -> characterized_definition

characterized_definition = shape_definition

shape definition

shape_definition = shape_aspect_relationship

shape aspect relationship

shape_aspect_relationship.name = 'assembled with bonding'}

shape_aspect_relationship => component_feature_joint =>

assembly joint

5.1.1.2 Связь объекта Bond_assembly_position с объектом Axis_placement_3d, представляющим атрибут bond definition placement

PATH Элемент ИММ:

Ссылочный путь: mapped item

mapped_item.mapping_target ->

representation_item =>

geometric_representation_item =>

placement => axis2 placement 3d

5.1.1.3 Связь объекта Bond assembly position объектом Default assembly bond shape model, представляющим атрибут bond model

Элемент ИММ: PATH

Ссылочный путь: mapped item

mapped item.mapping source ->

representation_map

```
representation map.mapped representation ->
representation <-
property_definition_representation.used_representation
property definition representation
property definition representation.definition ->
(property_definition
[property_definition.description = 'default assembly bond shape model']
[property_definition.definition ->
characterized definition
characterized_definition = characterized_product_definition
characterized product definition
characterized_product_definition = product_definition_relationship
product_definition_relationship =>
product_definition_usage =>
assembly_component_usage]}
property_definition =>
product_definition_shape
```

5.1.1.4 Связь объекта Bond_assembly_position с объектом Physical_unit_3d_ shape_model, представляющим атрибут assembly model

Элемент ИММ: РАТН

Ссылочный путь: mapped_item <=

representation_item <representation.items[i] {representation

[representation.name = '3d bound volume shape']

[representation.description = 'pu3dsm']

frepresentation <-

property_definition_representation.used_representation

property_definition_representation {property_definition_representation => shape_definition_representation}

property_definition_representation.definition ->

property_definition => product_definition_shape => physical_unit]}

representation => shape_representation

5.2 Сокращенный листинг ИММ на языке EXPRESS

В данном подразделе определена EXPRESS-схема, полученная из таблицы отображений. В ней использованы элементы общих ресурсов или других прикладных модулей и определены конструкции на языке EXPRESS, относящиеся к настоящему стандарту.

В данном подразделе определена интерпретированная модель прикладного модуля «Трехмерная модель электронного узла», а также определены модификации, которые применяются к конструкциям, импортированным из общих ресурсов.

При использовании в данной схеме конструкций, определенных в общих ресурсах или в прикладных модулях, необходимо применять следующие ограничения:

- использование объекта супертипа не дает права применять любой из его подтипов, пока этот подтип не будет также импортирован в схему ИММ;
- использование выбираемого типа SELECT не дает права применять любой из перечисленных в нем типов, пока этот тип не будет также импортирован в схему ИММ.

EXPRESS-спецификация:

```
SCHEMA Assembly_3d_shape_mim;

USE FROM Assembly_technology_mim; -= ISO/TS 10303-1649

USE FROM Physical_unit_3d_design_view_mim; -= ISO/TS 10303-1727

(*

Примечания
1 Схемы, ссылки на которые даны выше, можно найти в следующих стандартах или документах комплекса ИСО 10303:

Assembly_technology_mim — ИСО/ТС 10303-1649;

Physical_unit_3d_design_view_mim — ИСО/ТС 10303-1727.

2 Графическое представление данной схемы приведено на рисунке D.1 приложения D.

*)

END_SCHEMA; -- Assembly_3d_shape_mim

(*
```

Приложение А (обязательное)

Сокращенные наименования объектов ИММ

Наименования объектов определены в 5.2 настоящего стандарта и в других стандартах и документах, перечисленных в разделе 2.

Требования к использованию сокращенных наименований содержатся в стандартах тематической группы «Методы реализации» комплекса ИСО 10303.

> Приложение В (обязательное)

Регистрация информационного объекта

В.1 Обозначение документа

Для однозначного обозначения информационного объекта в открытой системе настоящему стандарту присвоен следующий идентификатор объекта:

{ iso standard 10303 part(1633) version(2)}

Смысл данного обозначения установлен в ИСО/МЭК 8824-1 и описан в ИСО 10303-1.

В.2 Обозначение схем

В.2.1 Обозначение схемы Assembly 3d_shape_arm

Для однозначного обозначения в открытой информационной системе cxeme Assembly_3d_shape_arm, установленной в настоящем стандарте, присвоен следующий идентификатор объекта:

(iso standard 10303 part(1633) version(2) schema(1) assembly-3d-shape-arm(1) }

Смысл данного обозначения установлен в ИСО/МЭК 8824-1 и описан в ИСО 10303-1.

В.2.2 Обозначение схемы Assembly 3d shape mim

Для однозначного обозначения в открытой информационной системе cxeme Assembly_3d_shape_mim, установленной в настоящем стандарте, присвоен следующий идентификатор объекта:

{ iso standard 10303 part(1633) version(2) schema(1) assembly-3d-shape-mim(2) }

Смысл данного обозначения установлен в ИСО/МЭК 8824-1 и описан в ИСО 10303-1.

Приложение С (справочное)

EXPRESS-G диаграммы ПЭМ

Диаграммы на рисунках С.1 и С.2 получены из сокращенного листинга ПЭМ на языке EXPRESS, приведенного в разделе 4. В диаграммах использована графическая нотация EXPRESS-G языка EXPRESS.

В настоящем приложении приведены два различных представления ПЭМ для рассматриваемого прикладного модуля:

- представление на уровне схем отображает импорт конструкций, определенных в схемах ПЭМ других прикладных модулей, в схему ПЭМ рассматриваемого прикладного модуля с помощью операторов USE FROM;
- представление на уровне объектов отображает конструкции на языке EXPRESS, определенные в схеме
 ПЭМ данного прикладного модуля, и ссылки на импортированные конструкции, которые конкретизированы или на которые имеются ссылки в конструкциях схемы ПЭМ рассматриваемого прикладного модуля.

П р и м е ч а н и е — Оба эти представления являются неполными. Представление на уровне схем не отображает в схемы ПЭМ модули, которые импортированы косвенным образом. Представление на уровне объектов не отображает импортированные конструкции, которые не конкретизированы или на которые отсутствуют ссылки в конструкциях схемы ПЭМ рассматриваемого прикладного модуля.

Описание EXPRESS-G установлено в ИСО 10303-11, приложение D.

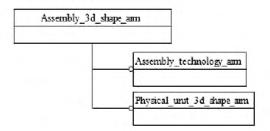


Рисунок С.1 — Представление ПЭМ на уровне схем в формате EXPRESS-G

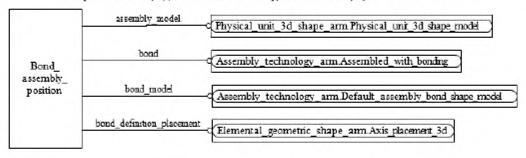


Рисунок C.2 — Представление ПЭМ на уровне объектов в формате EXPRESS-G

Приложение D (справочное)

EXPRESS-G диаграммы ИММ

Диаграмма на рисунке D.1 получена из сокращенного листинга ИММ на языке EXPRESS, приведенного в 5.2. В диаграммах использована графическая нотация EXPRESS-G языка EXPRESS.

В настоящем приложении приведены два различных представления ИММ для рассматриваемого прикладного модуля:

- представление на уровне схем отображает импорт конструкций, определенных в схемах ИММ других прикладных модулей или в схемах общих ресурсов, в схему ИММ рассматриваемого прикладного модуля с помощью операторов USE FROM;
- представление на уровне объектов отображает конструкции на языке EXPRESS, определенные в схеме ИММ рассматриваемого прикладного модуля, и ссылки на импортированные конструкции, которые конкретизированы или на которые имеются ссылки в конструкциях схемы ИММ рассматриваемого прикладного модуля.

П р и м е ч а н и е — Оба эти представления являются неполными. Представление на уровне схемы не отображает в схемы ИММ модули, которые импортированы косвенным образом. Представление на уровне объектов не отображает импортированные конструкции, которые не конкретизированы или на которые отсутствуют ссылки в конструкциях схемы ИММ рассматриваемого прикладного модуля.

Описание EXPRESS-G установлено в ИСО 10303-11, приложение D.

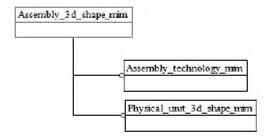


Рисунок D.1 — Представление ИММ на уровне схем в формате EXPRESS-G

Приложение Е (справочное)

Машинно-интерпретируемые листинги

В данном приложении приведены ссылки на сайты, на которых представлены листинги наименований объектов на языке EXPRESS и соответствующих сокращенных наименований, установленных или на которые даются ссылки в настоящем стандарте. На этих же сайтах представлены листинги всех EXPRESS-схем, установленных в настоящем стандарте, без комментариев и другого поясняющего текста. Эти листинги доступны в машинно-интерпретируемой форме (см. таблицу E.1) и могут быть получены по следующим адресам URL:

- сокращенные наименования: http://www.tc184-sc4.org/Short_Names/;
- EXPRESS: http://www.tc184-sc4.org/EXPRESS/.

Таблица E.1 — Листинги ПЭМ и ИММ на языке EXPRESS

Описание	Идентификатор ISO TC184/SC4/WG12 N6285	
Сокращенный листинг ПЭМ на языке EXPRESS		
Сокращенный листинг ИММ на языке EXPRESS	ISO TC184/SC4/WG12 N6286	

Если доступ к этим свйтам невозможен, необходимо обратиться в центральный секретариат ИСО или непосредственно в секретариат ИСО ТК184/ПК4 по адресу электронной лочты: sc4sec@tc184-sc4.org.

П р и м е ч а н и е — Информация, представленная в машинно-интерпретированном виде по указанным выше адресам URL, является справочной. Обязательным является текст настоящего стандарта.

Приложение ДА (справочное)

Сведения о соответствии ссылочных международных стандартов и документов национальным стандартам Российской Федерации

Таблица ДА.1

Обозначение ссылочного международного стандарта, документа	Степень соответствия	Обозначение и наименование соответствующего национального стандарта
ИСО/ МЭК 8824-1:1998	IDT	ГОСТ Р ИСО/МЭК 8824-1–2001 «Информационная технология. Абстрактная синтаксическая нотация версии один (АСН.1). Часть 1. Спецификация основной нотации»
ИСО 10303-1:1994	IDT	ГОСТ Р ИСО 10303-1-99 «Системы автоматиза-ции производства и их интеграция. Представление данных об изделии и обмен этими данными. Часть 1. Общие представления и основополагающие принципы»
ИСО 10303-11:2004	IDT	ГОСТ Р ИСО 10303-11–2009 «Системы автомати-зации производства и их интеграция. Предста-вление данных об изделии и обмен этими данными. Часть 11. Методы описания. Справочное руководство по языку EXPRESS»
ИСО 10303-21:2002	IDT	ГОСТ Р ИСО 10303-21–2002 «Системы автоматиза-ции производства и их интеграция. Представление данных об изделии и обмен этими данными. Часть 21. Методы реализации. Кодирование открытым текстом структуры обмена»
ИСО 10303-202:1996	-	•
ИСО/ТС 10303-1001:2004	IDT	ГОСТ Р ИСО/ТС 10303-1001-2010 «Системы автома-тизации производства и их интеграция. Представление данных об изделии и обмен этими данными. Часть 1001. Прикладной модуль. Присваивание внешнего вида»
ИСО/ТС 10303-1017:2004	IDT	ГОСТ Р ИСО/ТС 10303-1017-2010 «Системы автома-тизации производства и их интеграция. Представление данных об изделии и обмен этими данными. Часть 1017. Прикладной модуль. Идентификация изделия»
ИСО/ТС 10303-1649	-	*
ИСО/TC 10303-1727		

^{*} Соответствующий национальный стандарт отсутствует. До его утверждения рекомендуется использовать перевод на русский язык данного международного стандарта (документа). Перевод данного международного стандарта (документа) находится в Федеральном информационном фонде технических регламентов и стандартов.

П р и м е ч а н и е — В настоящей таблице использовано следующее условное обозначение степени соответствия стандартов:

IDT — идентичные стандарты.

Библиография

[1] Guidelines for the content of application modules, ISO TC 184/SC 4 N1685, 2004-02-27.

УДК 656.072:681.3:006.354

OKC 25.040.40

П 87

OKCTY 4002

Ключевые слова: прикладные автоматизированные системы, промышленные изделия, представление данных, обмен данными, электронный узел, трехмерная геометрическая модель

Подписано в печать 03.03.2015. Формат 60х841/к. Усл. печ. л. 2,33. Тираж 31 экз. Зак. 1092

Подготовлено на основе электронной версии, предоставленной разработчиком стандарта

ФГУП «СТАНДАРТИНФОРМ», 123995 Москва, Гранатный пер., 4. www.gostinfo.ru info@gostinfo.ru