МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ (МГС)

INTERSTATE COUNCIL FOR STANDARDIZATION, METROLOGY AND CERTIFICATION (ISC)

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ ГОСТ 32629— 2014

МЕТОДЫ ИСПЫТАНИЙ ХИМИЧЕСКОЙ ПРОДУКЦИИ, ПРЕДСТАВЛЯЮЩЕЙ ОПАСНОСТЬ ДЛЯ ОКРУЖАЮЩЕЙ СРЕДЫ

Липофильность твердых и жидких веществ. Метод смешивания в колбе

Издание официальное

Предисловие

Цели, основные принципы и общие правила проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены»

Сведения о стандарте

- 1 ПОДГОТОВЛЕН Федеральным государственным унитарным предприятием «Всероссийский научно-исследовательский центр стандартизации, информации и сертификации сырья, материалов и веществ» (ФГУП «ВНИЦСМВ»), Техническим комитетом по стандартизации ТК 339 «Безопасность сырья, материалов и веществ» Федерального агентства по техническому регулированию и метрологии на основе собственного перевода на русский язык англоязычной версии документа, указанного в пункте 5
 - 2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии
- 3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 30 мая 2014 г. № 67-П)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004—97	Код страны по МК (ИСО 3166) 004—97	Сокращенное наименование национального органа по стандартизации				
Азербайджан	AZ	Азстандарт				
Армения	AM	Минэкономики Республики Армения				
Беларусь	BY	Госстандарт Республики Беларусь				
Казахстан	KZ	Госстандарт Республики Казахстан				
Киргизия	KG	Кыргызстандарт				
Молдова	MD	Молдова-Стандарт				
Россия	RU	Росстандарт				
Таджикистан	TJ	Таджистандарт				
Туркмения	TM	Главгосслужба «Туркменстандартлары»				
Узбекистан	UZ	Узстандарт				
Украина	UA	Минэкономразвития Украины				

- 4 Приказом Федерального агентства по техническому регулированию и метрологии от 3 октября 2014 г. № 1266-ст межгосударственный стандарт ГОСТ 32629—2014 введен в действие в качестве национального стандарта Российской Федерации с 1 июня 2015 г.
- 5 Настоящий стандарт идентичен международному документу OECD Test No 116:1981 «Руководство ОЭСР по испытаниям химических веществ. Липофильность твердых и жидких веществ. Метод смешивания в колбе» («OECD guideline for the testing of chemicals, Fat Solubility of Solid and Liquid Substances. Flask Method», IDT).

Международный документ разработан Организацией экономического сотрудничества и развития. Наименование настоящего стандарта изменено относительно наименования указанного международного документа для приведения в соответствие с ГОСТ 1.5 (подраздел 3.6)

6 ВВЕДЕН ВПЕРВЫЕ

7 ПЕРЕИЗДАНИЕ. Сентябрь 2019 г.

Информация о введении в действие (прекращении действия) настоящего стандарта и изменений к нему на территории указанных выше государств публикуется в указателях национальных стандартов, издаваемых в этих государствах, а также в сети Интернет на сайтах соответствующих национальных органов по стандартизации.

В случае пересмотра, изменения или отмены настоящего стандарта соответствующая информация будет опубликована на официальном интернет-сайте Межгосударственного совета по стандартизации, метрологии и сертификации в каталоге «Межгосударственные стандарты»

FOCT 32629-2014

Содержание

1 Область применения	1
2 Термины и определения	1
3 Общие требования и рекомендации к проведению испытаний	1
4 Принцип метода испытания	2
5 Описание процедуры испытания	3
6 Критерии качества	
7 Данные и отчетность	
В Отчет об испытании	
Приложение А (справочное) Стандартные образцы жиров	
Библиография	6

Введение

Липофильность веществ является одним из показателей, используемых для оценки распределения липофильных (жирорастворимых) соединений в биологической ткани. Определение липофильности веществ необходимо в тех случаях, когда их растворимость в воде слишком мала, чтобы можно было измерить коэффициент распределения. Определение липофильности веществ также имеет отношение к рассмотрению миграции химических веществ из компонентов упаковочных материалов в продукты питания.

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

МЕТОДЫ ИСПЫТАНИЙ ХИМИЧЕСКОЙ ПРОДУКЦИИ, ПРЕДСТАВЛЯЮЩЕЙ ОПАСНОСТЬ ДЛЯ ОКРУЖАЮЩЕЙ СРЕДЫ

Липофильность твердых и жидких веществ. Метод смешивания в колбе

Testing of chemicals that are hazardous to the environment. Fat solubility of solid and liquid substances. Flask method

Дата введения — 2015-06-01

1 Область применения

Настоящий стандарт устанавливает требования к проведению испытаний по определению липофильности твердых и жидких веществ методом смешивания компонентов в колбе.

Данный метод позволяет исследовать зависимость между липофильностью и коэффициентом распределения, а также биоаккумуляцией испытуемых веществ.

Данный метод может быть применен только для чистых веществ, а также только для тех веществ, которые являются стабильными при 50 °C в течение не менее 24 ч и, кроме того, при тех же условиях обладают слабой летучестью. Природные жиры и масла не следует использовать для определения липофильности (жирорастворимости), потому что их точный состав неизвестен.

Метод не подходит для испытания веществ, взаимодействующих с триглицеридами.

2 Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями:

- 2.1 липофильность (fat solubility): Характеристика способности массовой доли вещества взаимодействовать с жирами (маслами) без вступления с ними в химическую реакцию, образуя при этом однородную фазу. Максимально возможная массовая доля вещества называется массовой долей насыщения (насышенной массовой долей) и является функцией температуры.
- 2.2 стандартные образцы жиров (standard fat): Смеси триглицеридов, выпускаемые промышленностью в качестве стандартных образцов, подобные по составу и поведению жирам, имеющим природное происхождение.

Общие требования и рекомендации к проведению испытаний

3.1 Методы анализа

При проведении испытаний необходимо использовать подходящие аналитические методы.

3.2 Необходимая информация

Перед проведением испытаний должна быть известна следующая информация:

- значение коэффициента распределения;
- растворимость в воде;
- структурная формула;
- кривая давления паров;
- стабильность при температуре 50 °C.

3.3 Стандартные образцы

3.3.1 Стандартные образцы жиров

Известно, что состав жиров отличается в зависимости от их принадлежности к различным организмам и даже в пределах одного организма. Применение стандартных образцов жиров в экспериментальной работе обусловлено необходимостью сравнения результатов испытаний, проведенных в разных лабораториях (межлабораторные испытания).

3.3.2 Стандартные образцы смесей триглицеридов

Стандартные образцы смесей триглицеридов, удовлетворяющие вышеуказанным требованиям, описаны в приложении к настоящему стандарту. В то же время допускается использование других смесей триглицеридов, которые дают сопоставимые результаты исследований.

3.3.3 Применение стандартных образцов

Применение стандартных образцов веществ не является необходимым во всех случаях исследования новых веществ. Прежде всего стандартные образцы применяют для регулярной калибровки при выполнении конкретного метода испытаний, а также при сравнении результатов, полученных с использованием других методов.

3.3.4 Значения липофильности

В таблице 3.1 в качестве примера представлены значения липофильности, которые были получены при использовании более ранней версии рассматриваемого метода испытания ОЭСР. Коэффициент вариации средних значений, определенный участниками программы межлабораторных исследований ОЭСР, зависел от испытуемых химических веществ и колебался от 0,035 до 0,244.

Таблица 3.1 — Значения липофильности веществ

Название вещества	Липофильность веществ* (г/1000 г жиров)			
Гексахлорбензол	11,4 (11,1—12,1) (OЭCP)			
Хлорид ртути (II)	20.1 (14,7—24.3) (O9CP)			
Карбамид (мочевина)	0,17 (0,050,28) (E3C)			

Величины среднего значения и диапазона средних значений (в скобках указано участие лабораторий ОЭСР или ЕЭС в сравнительных межлабораторных испытаниях).

3.3.6 Ниже представлена зависимость между значением растворимости, выражаемой в г на 1000 г раствора (S'), и значением растворимости, выражаемой в г на 1000 г растворителя (S):

$$S = \frac{1000 \cdot S'}{1000 - S'}.$$
 (1)

4 Принцип метода испытания

Описанный в настоящем стандарте метод определения растворимости твердых и жидких веществ в жирах (характеристики липофильности веществ) базируется на методе, описанном в ASTM D 2780 [1].

4.1 Ход проведения испытания

Испытуемое вещество растворяют в жидком стандартном образце жиров при перемешивании. Насыщение массовой доли вещества достигается путем продолжающегося добавления вещества до тех пор, пока лостоянное значение массовой доли не будет достигнуто, что должно быть подтверждено путем проведения анализа испытуемой пробы соответствующими физико-химическими методами.

^{3.3.5} Насыщенная массовая доля вещества должна выражаться в г/кг стандартного образца жиров при стандартной температуре (37 ± 0,5) °C.

5 Описание процедуры испытания

5.1 Подготовка к проведению испытания

5.1.1 Оборудование

При проведении испытаний используется следующее оборудование:

- обычная лабораторная стеклянная посуда;
- Beckl
- центрифуга, снабженная термостатом;
- мешалка, которая может быть использована в комбинации с системой температурного контроля;
- Термостат.

5.1.2 Предварительное испытание

Для определения приблизительного количества вещества, необходимого для установления насыщения массовой доли (насыщенной массовой доли) испытуемого вещества, следует провести упрощенные предварительные испытания при температуре 37 °C.

Примечание — Скорость установления равновесия насыщения может в значительной степени зависеть от размера частиц в том случае, если проводится испытание твердых веществ. По этой причине такие вещества должны быть измельчены.

5.1.3 Подготовка веществ

Взвесить восемь проб испытуемого вещества в колбах вместимостью 50 мл. Масса каждой пробы должна быть вдвое больше количества, необходимого для насыщения, как это было определено на стадии предварительных испытаний.

После добавления приблизительно 25 г взвешенного сжиженного стандартного образца смеси жиров колбы, снабженные мешалками, плотно закрывают притертой пробкой. Пробы в одной половине колб (группа I) перемешивают при 30 °C, а в другой половине колб (группа II) — примерно при 50 °C в течение не менее одного часа.

5.1.4 Условия проведения испытаний

Определение липофильности вещества проводят при температуре (37 ± 0,5) °C.

5.1.5 Выполнение испытания

Перемешивать содержимое колб обеих групп следует при температуре (37 ± 0,5) °C. Необходимо учитывать, что не представляется возможным предсказать время перемешивания, требуемое для установления равновесия. При испытании жидких веществ насыщение может быть достигнуто в течение нескольких минут, в то время как при испытании твердых веществ процесс насыщения может занять несколько часов. Для испытуемых жидкостей должно быть достаточно трех часов перемешивания проб, после чего перемешивание должно быть остановлено для двух колб в обеих группах, и эти две колбы выдерживают по крайней мере в течение одного часа при 37 °C, чтобы произошло разделение пробы на две фракции: фракцию, содержащую нерастворенное вещество, и фракцию, содержащую однородную фазу. В случае образования эмульсии или суспензии (эффект Тиндаля) они должны быть удалены подходящим способом, таким как термостатированное центрифугирование.

Пробы в третьей и четвертой колбах в обеих группах должны подвергаться перемешиванию в течение не менее 24 ч перед выдержкой в течение одного часа при (37 ± 0.5) °C.

Примечание — Если не образовались отложения на дне колбы (для твердых веществ) или не произошло разделения фаз в течение данного периода времени (для жидких веществ), испытание необходимо повторить с использованием большего количества вещества.

5.1.6 Проведение анализа проб

Из каждой насыщенной жировой фазы отбирают по одной пробе для анализа. Эта проба взвешивается, а массовая доля определяется соответствующим для конкретного вещества аналитическим методом.

Для анализа могут быть использованы такие методы, как, например:

- фотометрические методы;
- газовая (газожидкостная) хроматография;
- экстракция водой и последующее определение либо непосредственно в этой среде или после реэкстракции органическими растворителями.

6 Критерии качества

6.1 Повторяемость (сходимость)

Повторяемость (сходимость) результатов измерений для испытаний в рамках данного метода в настоящее время неизвестна. Этот критерий связан с применением одной и той же аналитической процедуры, которая, в свою очередь, зависит от физико-химической характеристики испытуемого вещества. В качестве мер повторяемости используются стандартные отклонения [2] относительно среднего значения результатов измерений (испытаний).

6.2 Чувствительность

Чувствительность метода определяется в зависимости от чувствительности аналитической процедуры.

6.3 Специфичность

Поскольку специфичность метода — это возможность точно и селективно определять испытуемое вещество в присутствии другого, результаты должны быть основаны на применении стандартных образцов жиров и соответствующих относительно чистых веществ. Следует учитывать, что даже при 37 °C стандартные образцы жиров могут образовывать эмульсии или суспензии с испытуемыми твердыми веществами. Данного эффекта следует избегать, поскольку это будет мешать последующему определению массовой доли вещества.

7 Данные и отчетность

7.1 Обработка результатов испытания

Если существуют значительные различия в результатах, полученных для определения степени насыщения в течение коротких или длительных периодов времени, испытание следует повторить с более длительным временем перемешивания.

8 Отчет об испытании

- 8.1 Результаты испытания должны быть оценены в соответствии с описанным выше принципом и являются частью отчета об проведенных испытаниях.
- 8.2 Если не существует значительных различий между наблюдаемыми значениями, выражаемыми в граммах на килограмм (г/кг), в отчет должны быть включены отдельные значения, среднее значение и стандартная девиация (среднее квадратичное отклонение от ожидаемой величины).
- 8.3 Если существуют значительные различия даже после повторного испытания, в отчет должны быть включены лишь отдельные результаты.
- 8.4 Кроме того, в отчет о растворимости веществ в жирах должны быть также включены следующие пункты:
 - вещество (любые подробности о подготовке, идентичности вещества и др.);
 - жиры (описание, характеристики, происхождение и др.);
 - метод анализа, отклонения и особенности проведения анализа.

Приложение А (справочное)

Стандартные образцы жиров

Стандартные образцы жиров являются имитаторами, а именно представляют собой синтетическую смесь насыщенных триглицеридов жирных кислот, при этом распределение триглицеридов похоже на таковое в кокосовом жире.

Таблица А.1 — Стандартные образцы жиров

		Pac	пределени	е жирных	кислот				
Число атомов углерода в жирной кислоте	6	8	10	12	14	16	18	Другое 1	
ГЖХ (%)	0,5	7,5	10,3	50,4	13,9	7,8	8,6		
		Pa	спределе	ние глице	ридов				
Общее число атомов углерода в жирной кис- лоте	22	24	26	28	30	32	34	36	38
ГЖX (%)	0,1	0,3	1,0	2,3	4,9	10,9	13,9	21,1	16,1
Общее число атомов углерода в жирной кис- лоте	40	42	44	46	48	50			
ГЖХ (%)	11,7	9,8	4,4	2,2	1,1	0,2			

Примечание — Данные приведены для стандартного образца, выпускаемого компанией NATEC, Германия, НВ 307.

Таблица А.2 — Чистота веществ, входящих в стандартный образец жиров

Содержание моноглицеридов (энзиматическое)	≤ 0,1 %			
Содержание диглицеридов (энзиматическое)	≤ 0,4 %			
Содержание неомыляемых веществ	≤ 0,1 %			
Йодное число (число Wijs)	≤ 0,5 %			
Кислотное число	0,02 %			
Содержание воды (титрование по К. Фишеру)	≤ 0.1 %			
Точка плавления	28,5 °C			

Примечание — Данные приведены для стандартного образца, выпускаемого компанией NATEC, Германия, НВ 307.

Таблица А.3 — Типичный спектр поглощения образцов жиров

Длина волны, нм	290	310	330	350	370	390	430	470	510
Пропускание (%)	2	15	37	64	80	88	95	97	98

Примечания

- 1 Спектр поглощения регистрировали при следующих условиях: толщина слоя 1 см, кювета сравнения вода, 35 °C.
 - 2 Светопропускание при длине волны 303 нм составляет по крайней мере 10 %.
 - 3 Данные приведены для стандартного образца, выпускаемого компанией NATEC, Германия, НВ 307.

Библиография

- [1] ASTM D 2780 Test for solubility of fixed gases in liquids (Испытание растворимости основных газов в жидкости)
- [2] ГОСТ Р ИСО Точность (правильность и прецизионность) методов и результатов измерений. Часть 2. Основ-5725-2—2002 ной метод определения повторяемости и воспроизводимости стандартного метода измерений

УДК 541.8/543.616.2/543.616.3/544.351.3/006.05

MKC 13.020.01

Ключевые слова: липофильность, растворимость в жирах, биоаккумуляция, триглицериды

Редактор Н.Е. Рагузина
Технические редакторы В.Н. Прусакова, И.Е. Черепкова
Корректор Е.Р. Ароян
Компьютерная верстка А.В. Софейчук

Сдано в набор 23.09.2019. Подписано в печать 03.10.2019. Формат 60 × 84¹/₈. Гарнитура Ариал. Усл. печ. л. 1,40. Уч.-изд. л. 1,00.

Подготовлено на основе электронной версии, предоставленной разработчиком стандарта

ИД «Юриспруденция», 115419, Москва, ул. Орджоникидзе, 11. www.jurisizdat.ru y-book@mail.ru

Создано в единичном исполнении во ФГУП «СТАНДАРТИНФОРМ» для комплектования Федерального информационного фонда стандартов, 117418 Москва, Нахимовский пр-т, д. 31, к. 2. www.gostinfo.ru info@gostinfo.ru