ФЕДЕРАЛЬНОЕ АГЕНТСТВО

ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ ΓΟCT P 56229— 2014/ ISO/IEC PAS 16898:2012

Транспорт дорожный на электрической тяге АККУМУЛЯТОРЫ ЛИТИЙ-ИОННЫЕ

Обозначение и размеры

ISO/IEC PAS 16898:2012
Electrically propelled road vehicles –
Dimensions and designation of secondary lithium-ion cells
(IDT)

Издание официальное

Москва Стандартинформ 2015

Предисловие

- 1 ПОДГОТОВЛЕН Некоммерческой организацией «Национальная ассоциация производителей источников тока «РУСБАТ» (Ассоциация «РУСБАТ») на основе собственного аутентичного перевода на русский язык международного документа, указанного в пункте 4
 - 2 ВНЕСЕН Техническим комитетом по стандартизации ТК 044 «Аккумуляторы и батареи»
- 3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 11 ноября 2014 г. № 1565-ст
- 4 Настоящий стандарт идентичен международному документу ISO/IEC PAS 16898:2012 «Транспорт дорожный на электрической тяге. Размеры и обозначение литий-ионных аккумуляторов» (ISO/IEC PAS 16898:2012 «Electrically propelled road vehicles – Dimensions and designation of secondary lithium-ion cells»).

При применении настоящего стандарта рекомендуется использовать вместо ссылочных международных стандартов соответствующие им национальные стандарты Российской Федерации и межгосударственные стандарты, сведения о которых приведены в дополнительном приложении ДА

5 ВВЕДЕН ВПЕРВЫЕ

6 Некоторые положения международного документа, указанного в пункте 4, могут являться объектами патентных прав. Международная организация по стандартизации (ИСО) и международная электротехническая комиссия (МЭК) не несут ответственности за идентификацию подобных патентных прав

Правила применения настоящего стандарта установлены в ГОСТ Р 1.0—2012 (раздел 8). Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе «Национальные стандарты», а официальный текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске информационного указателя «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (gost.ru)

© Стандартинформ, 2015

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

Введение

В связи с тем, что система тяговых аккумуляторных батарей является большой и очень дорогостоящей составляющей транспортных средств на электрической тяге, она оказывает огромное влияние на конструкцию самого транспортного средства. Конфигурация аккумуляторных батарей и систем должна определяться посредством нисходящего проектирования в зависимости от размеров автомобиля и ограничений по компоновке. Габаритные требования к литий-ионным аккумуляторам, предназначенным для автомобиля, задаются батарейной системой, на которую влияет конструкция транспортного средства. Поэтому ISO/IEC PAS 16898:2012 был разработан совместной рабочей группой ИСО и МЭК, состоящей из экспертов автомобильной промышленности, поставщиков автомобилей и изготовителей аккумуляторов и батарейных систем.

На сегодняшний день на рынке существует огромное разнообразие аккумуляторов различных типов и размеров. Если при проектировании системы тяговых батарей остановиться только на одном конкретном аккумуляторе, то переход на другой аккумулятор или другого поставщика осуществить довольно трудно, а подчас и невозможно. Необходимо уменьшить это разнообразие для того, чтобы:

- снизить стоимость аккумуляторов через механизмы конкуренции и обеспечение доступа на мировой рынок поставщикам аккумуляторов и батарей,
- обеспечить возможность замены аккумуляторов разных поставщиков во время и после разработки батарейной системы,
- поддержать разработку батарейных систем установлением базовых наружных размеров известных типов литий-ионных аккумуляторов, используемых в системах тяговых батарей транспортных средств.

Устанавливая только определенное число размеров аккумуляторов для приведения в движение транспортного средства, ISO/IEC PAS 16898:2012 направлен на уменьшение числа различных размеров. Кроме того, он должен гарантировать, что аккумуляторы установленных размеров будут использоваться в долгосрочной перспективе изготовителями автомобилей в их текущих и будущих моделях. Эти аккумуляторы должны быть доступны во время изготовления автомобиля, в течение его срока службы и законодательно установленного срока выпуска запасных частей.

ISO/IEC PAS 16898:2012 распространяется только на те аккумуляторы из всего существующего многообразия, которые будут использоваться в текущих и планируемых к выпуску моделях транспортных средств и которые доступны в настоящее время. Он не исключает использование других размеров аккумуляторов в моделях автомобилей.

ISO/IEC PAS 16898:2012 не направлен на ограничение развития технологии аккумуляторов. Поэтому он не содержит требований, касающихся электрохимической системы, используемых материалов или каких бы то ни было электрических характеристик.

ISO/IEC PAS 16898:2012 был подготовлен » подкомитетом ПК 21 «Электрический дорожный транспорт» технического комитета ИСО/ТК 22 «Дорожный транспорт».

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Транспорт дорожный на электрической тяге АККУМУЛЯТОРЫ ЛИТИЙ-ИОННЫЕ

Обозначение и размеры

Electrically propelled road vehicles.

Dimensions and designation of secondary lithium-ion cells

Дата введения — 2016-01-01

1 Область применения

Настоящий стандарт определяет систему обозначения, а также форму и размеры литий-ионных аккумуляторов, устанавливаемых в батарейных модулях и системах, используемых в дорожных транспортных средствах на электрической тяге, включая положение клемм и любых устройств предохранения от избыточного давления. Стандарт распространяется на цилиндрические, призматические и пакетные аккумуляторы.

Обозначение аккумуляторов, предназначенных для применения в дорожных транспортных средствах на электрической тяге, должно проводиться в соответствии с данным стандартом. Настоящий стандарт не распространяется на аккумуляторы, применяемые в мопедах, мотоциклах и транспортных средствах, не относящихся к дорожным, например, в напольном транспорте и вилочных погрузчиках.

Размеры аккумуляторов, перечисленные в настоящем стандарте, рекомендуются для использования (хотя не исключаются и другие размеры) в легковых автомобилях массой до 3,5 т.

Внутреннее устройство, электрохимическая система, электрические характеристики и другие свойства аккумуляторов не определены в настоящем стандарте.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующий международный стандарт (для датированных ссылок следует использовать только указанное издание, для недатированных ссылок следует использовать последнее издание указанного документа, включая все поправки):

МЭК 62660-1-2014 Аккумуляторы литий-ионные для электрических дорожных транспортных средств. Часть 1. Определение рабочих характеристик (IEC 62660-1, Secondary lithium-ion cells for the propulsion of electric road vehicles — Part 1: Performance testing)

3 Термины и определения

- В настоящем стандарте применены следующие термины с соответствующими им определениями:
- 3.1 цилиндрический аккумулятор (cylindrical cell): Литий-ионный аккумулятор с цилиндрической жесткой оболочкой корпуса, клеммами и устройством предохранения от избыточного давления.
- 3.2 устройство предохранения от избыточного давления, УПИД (over-pressure safety device, OPSD): Предохранительное устройство для ограничения давления газа внутри аккумулятора.

Пример – Разрыеная мембрана, клапан давления или предопределенная точка разлома.

- 3.3 пакетный аккумулятор (роисh cell): Литий-ионный аккумулятор с ламинированным корпусом, состоящим из многослойной фольги и клемм.
- 3.4 призматический аккумулятор (prismatic cell): Литий-ионный аккумулятор с призматической жесткой оболочкой корпуса, клеммами и устройством предохранения от избыточного давления.
- 3.5 литий-ионный аккумулятор (secondary lithium-ion cell): Одиночный акумулятор, в котором электрическая энергия вырабатывается в результате выхода ионов лития из катода, переноса их к аноду и входа их в анод.

П р и м е ч а н и е 1 — Аккумулятор — это базовое устройство, представляющее собой источник электрической энергии, получаемой прямым преобразованием химической энергии. Аккумулятор состоит из электродов, сепараторов, электролита, корпуса и клемм и спроектирован таким образом, что способен заряжаться с помощью электрического тока.

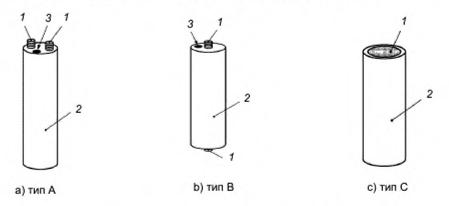
Издание официальное

П р и м е ч а н и е 2 — В настоящем стандарте термин «аккумулятор» означает литий-ионный аккумулятор, предназначенный для приведения в движение транспортное средство.

- клемма (terminal): Точка подключения аккумулятора к другим элементам электрической цепи.
- 3.7 аккумулятор типа A (Туре A cell): Аккумулятор, у которого клеммы расположены на одной стороне.
- 3.8 аккумулятор типа В (Туре В сеll): Аккумулятор, у которого клеммы расположены на противоположных сторонах.
 - 3.9 аккумулятор типа С (Туре С cell): Аккумулятор, не относящийся ни к типу А, ни к типу В.

4 Конструктивная форма и составные части литий-ионного аккумулятора

4.1 Конструктивная форма


4.1.1 Общие положения

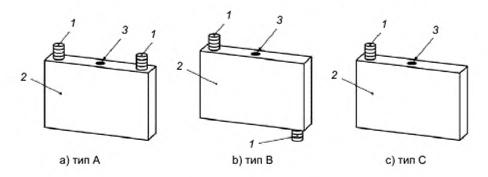
Конструкция аккумулятора может быть представлена, по крайней мере, в следующих трех формах:

- цилиндрической;
- призматической;
- пакетной.

4.1.2 Цилиндрический аккумулятор

Цилиндрический аккумулятор состоит из корпуса и одной или двух клемм. На рисунке 1 показаны типы цилиндрических аккумуляторов с различным расположением клемм.

1 – клемма; 2 – корпус аккумулятора; 3 – УПИД

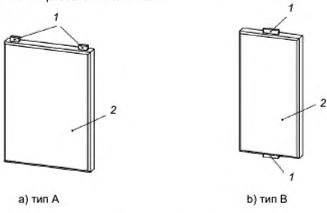

П р и м е ч а н и е 1 – Корпус аккумулятора типа С может быть использован в качестве клеммы.

П р и м е ч а н и е 2 – УПИД аккумулятора типа C обычно комбинируется с клеммой, но также может быть расположен в любом другом месте.

Рисунок 1 – Цилиндрический аккумулятор

4.1.3 Призматический аккумулятор

Призматический аккумулятор состоит из корпуса и одной или двух клемм. На рисунке 2 показаны типы призматических аккумуляторов с различным расположением клемм.


1 – клемма; 2 – корпус аккумулятора; 3 – УПИД

Примечание - Корпус аккумулятора типа С может быть использован в качестве клеммы.

Рисунок 2 - Призматический аккумулятор

4.1.4 Пакетный аккумулятор

Пакетный аккумулятор состоит из корпуса и двух клемм. На рисунке 3 показаны типы пакетных аккумуляторов с различным расположением клемм.

1 - клемма; 2 - корпус аккумулятора

Рисунок 3 - Пакетный аккумулятор

4.2 Расположение устройства предохранения от избыточного давления

УПИД, при наличии, должен быть включен во внешнюю геометрию аккумулятора. Для определения расположения УПИД используют следующие коды:

- а) Цилиндрические аккумуляторы:
- RA УПИД расположен между клеммами аккумулятора типа А;
- RO УПИД расположен на противоположной от клемм стороне аккумулятора типа А;
- RT УПИД расположен на той же стороне аккумулятора типов В и С, что и клеммы;
- RM УПИД расположен на цилиндрической части корпуса.
- b) Призматические аккумуляторы:
- РА УПИД расположен между клеммами аккумулятора типа А;
- РО УПИД расположен на противоположной от клемм стороне аккумулятора типа А;
- РF УПИД расположен на узкой боковой стороне аккумулятора;
- РW УПИД расположен на широкой боковой стороне аккумулятора.

5 Обозначение аккумулятора

Аккумуляторы должны быть обозначены следующим образом:

где А, обозначает область применения, в т. ч.:

V – батареи для дорожного транспорта на электрической тяге:

А, обозначает электрохимическую систему батареи, в т. ч.:

I – литий-ионная электрохимическая система;

А, обозначает конструктивную форму аккумулятора (см. 4.1), в т. ч.:

R - цилиндрическая;

Р – призматическая;

F - пакетная;

А, обозначает тип аккумулятора в зависимости от расположения клемм, в т. ч.:

A - тип A;

В - тип В;

С – тип С;

 N_1 обозначает диаметр (если присутствует R) или толщину (если присутствует P или F) в миллиметрах, округленные до ближайшего большего целого числа;

 N_2 обозначает ширину (если присутствует P или F) в миллиметрах, округленную до ближайшего большего целого числа (если присутствует R, то N_1 не отображается);

 $N_{\rm 3}$ обозначает высоту в миллиметрах, округленную до ближайшего большего целого числа, без учета клемм.

 N_3' обозначает общую высоту в миллиметрах, включая клеммы, округленную до ближайшего большего целого числа.

В том случае, если A_3 имеет значение R, и A_4 имеет значение C (цилиндрический аккумулятор типа C), то вместо N_3 используют N_3' .

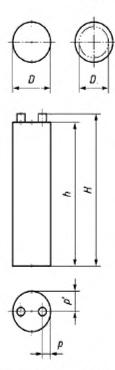
В том случае, если A_3 имеет значение P или R, то N_1 , N_2 и N_3 – это размеры оболочки аккумулятора, которая состоит из корпуса и крышки. Остальные компоненты аккумулятора, такие как клемма, УПИД, этикетка, датчик, внешняя пленка и т. д., не входят в размеры N_2 , N_3 и N_3 .

6 Условия измерения

Измерения размеров аккумуляторов проводят при температуре (25 ± 2) °C с погрешностью не более указанной в МЭК 62660-1. Измерения проводят в точках, на которые не влияет степень заряженности и давление внутри аккумулятора. Точки, в которых проводят измерения, должны быть указаны в документации поставщика аккумуляторов.

Толщину N₁ пакетного аккумулятора измеряют при степени заряженности 100 % и сдавливании по всей площади стека электродов аккумулятора между пластинами в течение 2 с. Приложенное давление должно быть в диапазоне от 5 до 30 кПа по согласованию между заказчиком и изготовителем.

Другие условия измерений могут быть определены соглашением между заказчиком и изготовителем.


7 Размеры аккумуляторов

7.1 Общие положения

Следует учитывать допуски на размеры, приведенные в спецификациях изготовителей аккумуляторов.

7.2 Цилиндрические аккумуляторы

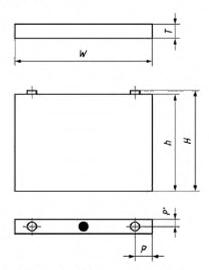
Размеры цилиндрических аккумуляторов приведены на рисунке 4 и в таблице 1.

Примечание 1 - Значения размеров приведены в таблице 1.

Примечание 2 – Для аккумулятора типа С размеры h и H равны.

Рисунок 4 – Обозначение размеров цилиндрических аккумуляторов

Таблица1 – Размеры цилиндрических аккумуляторов


Размеры в миллиметрах

Обозначение* (A,A ₂ A ₃ A ₄ N,/ N ₂ / N ₃)	Размеры						
	D	ħ	Н	D _r	р	p'	УПИД
VIRA38/-/136	37,7	136	< 145	32,5	-	D/2	RO
VIRA38/-/138	38,0	138	143	29,0	8	19	RO
VIRA54//137	54,0	137	145	35.0	13	27	RO
VIRA54/-/215	54,0	215	223	35,0	13	27	RO
VIRB27/-/-	27,0	-	66	-	-	-	RM
VIRC19/-/66	19,0	-	66	-	-	-	RM
VIRC40/-/92	40,0	-	92	-	-	-	RM
VIRC40/-/108	40,0	-	108	+	-		RM

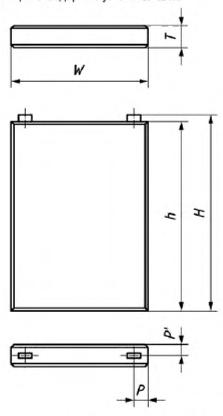
^{*}Расшифровка обозначений приведена в разделе 5.

7.3 Призматические аккумуляторы

Размеры призматических аккумуляторов приведены на рисунке 5 и в таблице 2.

Примечание – Значения размеров приведены в таблице 2.

Рисунок 5 - Обозначение размеров призматических аккумуляторов


Таблица 2 - Размеры призматических аккумуляторов

Размеры в миллиметрах Обозначение* Размеры УПИД $(A_1A_2A_3A_4N_1/N_2/N_3)$ Т W 'n Н p' VIPA12/120/81 12.0 120.0 80.5 < 105.0 6.00-28.00 6.0 PA VIPA12/160/228 12,0 160,0 228,0 275,0 32.00 T/2 PA T/2 VIPA13/120/85 12.5 120,0 85.0 < 92.0 12,00-18,00 PA VIPA13/62/94 13,0 61,8 93,7 96,0 9.00-11,00 T/2 PA VIPA14/111/92 111,0 < 115,0 10,00-30,00 T/2 PA 13,8 91,8 < 80,0 10.00-30.00 T/2 PA VIPA14/137/64 13.3 137.0 63.2 VIPA16/112/79 15.7 112.0 78.5 < 95.5 13.00 T/2 PA VIPA20/66/127 20,0 66.0 127.0 138.0 14,50 10.0 PA VIPA21/173/85 173.0 PA 21.0 85.0 < 103,0 12.00-22.00 T/2 VIPA22/115/103 21.5 115.0 103.0 105.0 16.50-18.50 PA VIPA23/167/129 22.5 167,0 129,0 144,0 T/2 PA VIPA24/180/169 23.6 179.5 181.5 45.75 11.8 PA 168.5 25.0 VIPA25/135/105 135.0 104.1 107.0 32,50-35,00 12.5 PA 148,0 10,00-39,00 T/2 PA VIPA27/148/91 26,5 91,0 < 110,0 VIPA28/100/358 99.5 357.8 374.8 10.0-15.0 PA 27.5 PA VIPA29/72/117 29.0 72.0 117.0 120.0 15.00 14.5 VIPA30/173/115 29.5 173.0 115.0 120.0 29.00-31.00 T/2 PA VIPA32/173/115 32.0 173,0 115,0 < 133,0 12,00-22,00 T/2 PA VIPA34/92/134 34.0 92.0 133.3 146.0 20.00 16.0 PA VIPA35/171/108 34.5 171.0 108.0 PA < 123,0 21,00 T/2 171,0 < 114,0 PA VIPA44/171/98 44,0 98,0 21,00 T/2 VIPA45/147/260 260,0 45.0 147.0 275,0 28.00 24,0 PA PA VIPA45/173/115 45.0 173.0 115.0 < 133,0 12,00-22,00 T/2 VIPA55/171/115 55.0 171.0 115.0 < 129.0 21.00 T/2 PA VIPB8/118/342 118,0 8,0 342,0 390,0 59.00 4.0 PF VIPB11/80/130 W/2 PF 11.0 80.0 130.0 140.0 T/2

Расшифровка обозначений приведена в разделе 5.

7.4 Пакетные аккумуляторы

Наружные размеры (включая области герметизации) пакетных аккумуляторов приведены на рисунке 6 и в таблице 3. Для пакетных аккумуляторов толщина $N_{_1}$ не является фиксированной и может быть выбрана в зависимости от электрохимической системы и конструкции аккумулятора. Размер H пакетных аккумуляторов настоящий стандарт не устанавливает.

 Π р и м е ч а н и е — Область герметизации входит в размеры W и h. Значения размеров приведены в таблице 3.

Рисунок 6 - Обозначение размеров пакетных аккумуляторов

Таблица3 – Размеры пакетных аккумуляторов

Размеры в миллиметрах

Обозначение* $(A_1A_2A_3A_4N_1/N_2/N_3)$	Размеры						
	T	W	h	р	p'		
VIFA-/130/221	-	130	221	-	-		
VIFA-/161/227	-	161	227		-		
VIFA-/162/142	~	162	142	5 = 15 - 11 = 1	T/2		
VIFA-/164/226		164	226		-		
VIFA-/164/232	-	164	232	-	-		
VIFA-/210/121	-	210	121	-	-		
VIFA-/244/190	-	244	190	-	-		
VIFA-/253/172	-	253	172	-			
VIFA-/270/135	-	270	135		-		
VIFA-/280/180	-	280	180		-		
VIFA6/249/192	5,9	249	192	124	2,95		
VIFA9/136/230	9,0	136	230	30	4,50		
VIFA-/216/262	-	216	262	7 = 7 = 7	-		
VIFA11/223/224	< 11,0	223	224	-	-		
VIFA13/330/162	13,0	330	162	-	T/2		
VIFA19/343/245	18,5	343	245	80	9		
VIFB-/99/300	0,0	99	300	0	0		
VIFB-/121/243	-	121	243	-	T/2		
VIFB-/126/325	-	126	325	-	-		
VIFB-/128/310	-	128	310	-	-		
VIFB-/128/325	-	128	325	-	-		
VIFB-/134/290	-	134	290		-		
VIFB-/144/251	1 0 -	144	251		-		
VIFB-/159/291	-	159	291	-	-		
VIFB-/172/254	-	172	254	-			
VIFB-/173/235	-	173	235	-	-		
VIFB-/210/260	-	210	260	-	-		
VIFB-/136/251		136	251	-	-		

Приложение ДА (справочное)

Сведения о соответствии ссылочных международных стандартов ссылочным национальным стандартам Российской Федерации

Таблица ДА.1

Обозначение ссылочного международного стандар- та	Степень соответствия	Обозначение и наименование соответствующего национального стандарта
MЭК 62660-1	IDT	ГОСТ Р МЭК 62660-1-2014 «Аккумуляторы литий-ионные для электрических дорожных транспортных средств. Часть 1. Опреде- ление рабочих характеристик»

Примечание степени соответствия стандартов:
- IDT – идентичный стандарт.

УДК 621.355.9:006.354 OKC 29.220.20 OKП 34 8290 43.120

Ключевые слова: литий-ионные аккумуляторы, дорожное транспортное средство, обозначение, размеры, электрическая тяга, электромобиль

> Подписано в печать 02.03.2015. Формат 60х84¹/_s. Усл. печ. л. 1,86. Тираж 31 экз. Зак. 1140.

Подготовлено на основе электронной версии, предоставленной разработчиком стандарта

ФГУП «СТАНДАРТИНФОРМ»

123995 Москва, Гранатный пер., 4. www.gostinfo.ru info@gostinfo.ru