Государственная система обеспечения единства измерений

ДАВЛЕНИЕ НАСЫЩЕННЫХ ПАРОВ НЕФТИ И НЕФТЕПРОДУКТОВ

Методика выполнения измерений

Издание официальное

Предисловие

1 РАЗРАБОТАН Государственным унитарным предприятием «Институт проблем транспорта энергоресурсов» (ГУП «ИПТЭР»), Федеральным государственным унитарным предприятием «Всероссийский научно-исследовательский институт расходометрии» (ФГУП «ВНИИР») Госстандарта России и Научно-производственным центром «СКПнефть»

ВНЕСЕН Управлением метрологии Госстандарта России

- 2 ПРИНЯТ И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Госстандарта России от 26 сентября 2003 г. № 274-ст
 - 3 ВВЕДЕН ВПЕРВЫЕ

Содержание

1	Область применения
2	Нормативные ссылки
3	Нормы погрешности измерений
4	Средства измерений, вспомогательные устройства и реактивы
5	Метод измерений
6	Требования безопасности и охраны окружающей среды
7	Требования к квалификации операторов
8	Условия измерений
9	Отбор проб
10	Подготовка к выполнению измерений
11	Выполнение измерений
12	Обработка результатов измерений
13	Контроль точности результатов измерений
Пр	иложение А Описание прибора типа АЛП-01 ДП-01
Пр	иложение Б Описание индивидуального пробоотборника типа ИП-3
Пр	иложение В Расчет эквивалентного давления по Рейду
Пр	иложение Г Библиография

к ГОСТ Р 8.601—2003 Государственная система обеспечения единства измерений. Давление насыщенных паров нефти и нефтепродуктов. Методика выполнения измерений

В каком месте	Напечатано	Должно быть RVPE=2,966 · 10-3				
Формула В.1						
таблица В.1. Го- ловка	Показания прибора типа АЛП-01, ДП-01, кПа, по методу Рейда	Показания аппарата ЛДП. кПа, по методу Рейда				

(ИУС № 6 2004 г.)

Государственная система обеспечения единства измерений

ДАВЛЕНИЕ НАСЫЩЕННЫХ ПАРОВ НЕФТИ И НЕФТЕПРОДУКТОВ

Методика выполнения измерений

State system for ensuring the uniformity of measurements. Pressure of saturated steams of crude oil and products from oil. Measurement procedure

Дата введения 2004 — 04 — 01

1 Область применения

Настоящий стандарт распространяется на давление насыщенных паров (далее — ДНП) нефти и нефтепродуктов (далее - продукты) и устанавливает методику выполнения его измерений в диапазоне от 10 до 160 кПа и в интервале температур от 10 °C до 60 °C при соотношении объемов паровой и жидкой фаз 4:1.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 12.1.005—88 Система стандартов безопасности труда, Общие санитарно-гигиенические требования к воздуху рабочей зоны

ГОСТ 1756—2000 (ИСО 3007—99) Нефтепродукты. Определение давления насыщенных паров ГОСТ 2517—85 Нефть и нефтепродукты. Методы отбора проб

ГОСТ 3885-73 Реактивы и особо чистые вещества. Правила приемки, отбор проб, фасовка, упаковка, маркировка, транспортирование и хранение

ГОСТ 8505-80 Нефрас-С 50/170. Технические условия

ГОСТ Р ИСО 5725-1-2002 Точность (правильность и прецизионность) методов и результатов измерений. Часть 1. Основные положения и определения

ГОСТ Р ИСО 5725-2-2002 Точность (правильность и прецизионность) методов и результатов измерений. Часть 2. Основной метод определения повторяемости и воспроизводимости стандартного метода измерений

ГОСТ Р ИСО 5725-3—2002 Точность (правильность и прецизионность) методов и результатов измерений. Часть 3. Промежуточные показатели прецизионности стандартного метода измерений

ГОСТ Р ИСО 5725-4-2002 Точность (правильность и прецизионность) методов и результатов измерений. Часть 4. Основные методы определения правильности стандартного метода измерений

ГОСТ Р ИСО 5725-5-2002 Точность (правильность и прецизионность) методов и результатов измерений. Часть 5. Альтернативные методы определения прецизионности стандартного метода измерений

ГОСТ Р ИСО 5725-6-2002 Точность (правильность и прецизионность) методов и результатов измерений. Часть 6. Использование значений точности на практике

3 Нормы погрешности измерений

Доверительные границы суммарной погрешности (расширенной неопределенности) измерений ДНП продуктов в диапазоне от 10 до 160 кПа в интервале температур от 10 °C до 60 °C составляют ± 2 κΠa.

4 Средства измерений, вспомогательные устройства и реактивы

- 4.1 При выполнении измерений применяют следующие средства измерений, вспомогательные устройства и реактивы:
- автоматический лабораторный прибор типа АЛП-01 ДП-01 (описание прибора приведено в приложении А);
 - барометр-анероид типа БААМ-1;
- термостат жидкостный типа VT-8 с диапазоном температур от 0 °C до 150 °C, обеспечивающий стабильность поддержания температуры в пределах ± 0,1 °C;
- пробоотборник индивидуальный типа ИП-3 (описание пробоотборника приведено в приложении Б);
 - нефрас марки 50/170 по ГОСТ 8505.
- 4.2 Допускается применение других средств измерений, которые по своим характеристикам не хуже указанных в 4.1.
- 4.3 Применяемые средства измерений должны быть внесены в Государственный реестр средств измерений и поверены, а вспомогательное оборудование проверено на работоспособность.

5 Метод измерений

Измерения ДНП выполняют методом расширения, аналогичным изложенному в [1]. При реализации метода выполняют следующие операции:

- герметичный отбор пробы продукта;
- ввод определенного количества продукта в измерительную камеру прибора типа АЛП-01 ДП-1 (далее — прибор), объем которой движением поршня увеличивают до соотношения объемов паровой и жидкой фаз 4:1;
- приведение системы «пар жидкость» в термодинамическое равновесие при заданной температуре;
 - фиксацию давления в камере.

6 Требования безопасности и охраны окружающей среды

- 6.1 При выполнении измерений соблюдают требования безопасности, изложенные в паспортах прибора типа АЛП-01 ДП-01, пробоотборника типа ИП-3 и термостата.
- 6.2 Содержание вредных веществ в воздухе рабочей зоны должно соответствовать требованиям ГОСТ 12.1.005.
- 6.3 При наливе и сливе продукта и при отборе проб необходимо использовать индивидуальные средства защиты.
- 6.4 Отработанный продукт и промывочные жидкости следует сливать в специальные герметизированные емкости.
- 6.5 Легковоспламеняющиеся жидкости следует хранить в стеклянных банках типа Б-1 или склянках типа С-1 с притертыми пробками вместимостью до 1,0 дм³ (группа фасовки VI) по ГОСТ 3885, которые помещают в закрывающиеся металлические ящики со стенками и дном, выложенными негорючими материалами.
- 6.6 При загорании небольших количеств раздитого продукта необходимо применять песок, кошму, углекислотные огнетушители, при пожарах воду из лафетных стволов, химическую и механическую пену.

7 Требования к квалификации операторов

К выполнению измерений и обработке результатов допускают лиц, имеющих специальную подготовку, изучивших настоящий стандарт, эксплуатационную документацию на прибор, термостат и пробоотборник и прошедших инструктаж по технике безопасности.

8 Условия измерений

При выполнении измерений соблюдают следующие условия:

9 Отбор проб

- 9.1 Отбор проб проводят по ГОСТ 2517 с использованием индивидуального пробоотборника типа ИП-3 (далее — пробоотборник).
- 9.2 При подготовке проб и работе с ними необходимо принять меры к исключению потерь нефтепродуктов от испарений, которые ведут к изменению состава продукта.

10 Подготовка к выполнению измерений

При подготовке к выполнению измерений проводят следующие работы:

- 10.1 Осуществляют подготовку прибора в соответствии с инструкцией по эксплуатации.
- 10.2 С целью проверки герметичности измерительной камеры (при ручном режиме работы) отводят поршень в крайнее нижнее положение. При этом в измерительной камере устанавливают давление не более 10 кПа. Камеру считают герметичной, если в течение 3 мин давление не изменится более чем на 0.5 кПа.
- 10.3 Поршень приводят в промежуточное положение. Открыванием выходного клапана измерительную камеру сообщают с атмосферой и сравнивают показания прибора со значением атмосферного давления по барометру. Если разность будет превышать 0,5 кПа, то проводят корректировку прибора в соответствии с инструкцией по эксплуатации.
- 10.4 С помощью шланга высокого давления к входному клапану прибора подключают пробоотборник с отобранной пробой продукта.
- 10.5 К термостатирующим «рубашкам» прибора и пробоотборника подключают термостат. Задают требуемую температуру и после ее стабилизации в течение 15 мин термостатируют прибор.
- 10.6 При работе в ручном режиме на пробоотборнике (рисунок Б.1) открывают выходной вентиль. Нажатием соответствующей кнопки на передней панели прибора (рисунок А.1) задают движение поршней 3 и 4 в верхнее положение и в пробоотборную камеру отбирают пробу продукта.

После достижения поршнями крайних верхних положений нажатием соответствующей кнопки задают движение поршней вниз. В измерительной камере образуется разрежение, а в пробоотборной камере создается давление 1200—1500 кПа.

Перед достижением поршнем 4 крайнего нижнего положения происходит автоматическое открывание впрыскного клапана 8 и продукт под действием перепада давления поступает в полость измерительной камеры.

Операции по 10.6 повторяют три раза.

11 Выполнение измерений

При выполнении измерений осуществляют следующие операции:

- 11.1 При работе в ручном режиме:
- 11.1.1 Нажатием соответствующей кнопки задают движение поршней 3 и 4 в верхнее положение.
- 11.1.2 После достижения поршнями крайних верхних положений нажатием соответствующей кнопки задают движение поршней вниз.
- 11.1.3 После достижения поршнями 3 и 4 крайнего нижнего положения снимают показания давления.
- 11.1.4 Операции по 11.1.1 11.1.3 повторяют не менее двух раз и полученные результаты измерений ДНП заносят в журнал.

- 11.2 При работе в автоматическом режиме:
- 11.2.1 Задают число измерений не менее двух и нажимают кнопку «Ввод». В процессе работы на табло прибора высвечиваются значение ДНП и номер выполняемого измерения. По окончании измерений на табло в автоматическом режиме высвечивается среднее значение ДНП, которое заносят в журнал.

12 Обработка результатов измерений

Обработку результатов измерений выполняют следующим способом:

- 12.1 При выполнении измерений в ручном режиме за результат измерений принимают среднее арифметическое двух результатов наблюдений.
- 12.2 При выполнении измерений в автоматическом режиме на табло прибора высвечивается среднее значение ДНП, полученное из двух наблюдений.
- 12.3 Результаты измерений ДНП по методу расширения (ДНПР) могут быть переведены в значения ДНП по ГОСТ 1756 (RVPE*) при той же температуре.
 - 12.4 Способ расчета эквивалентного давления паров по Рейду изложен в приложении В.
- 12.5 В тех случаях, когда необходима оценка точности (правильности и прецизионности) метода и результатов измерений, ее осуществляют в соответствии с ГОСТ Р ИСО 5725-1 ГОСТ Р ИСО 5725-6.

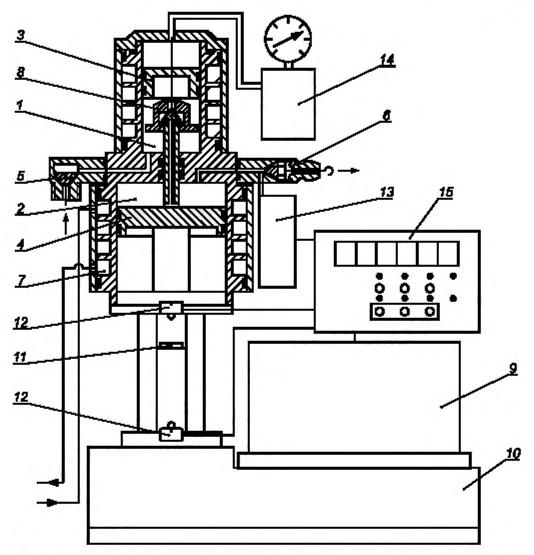
13 Контроль точности результатов измерений

Расхождение между двумя результатами измерений ДНП продукта в условиях повторяемости не должно превышать 0,6 кПа.

ПРИЛОЖЕНИЕ А (справочное)

Описание прибора типа АЛП-01 ДП-01

А.1 Прибор (рисунок А.1) предназначен для измерений давления насыщенных паров методом расширения нефти и нефтепродукта при соотношении фаз 4:1.


А.1.1 Прибор имеет следующие технические характеристики: - диапазон измерений ДНП, кПа - пределы суммарной абсолютной погрешности измерений ДНП, кПа	
- соотношение вместимости измерительной камеры и объема отбираемой пробы	5:1;
- давление ввода пробы в измерительную камеру, кПа	от 1200 до 1500;
- температура анализируемого продукта, °C	от 10 до 60;
- максимальная дискретность измерений, мин	3;
- масса, кг, не более	15;
- потребляемая мощность в номинальном режиме работы. Вт. не более	50:

А.2 Устройство прибора (рисунок А.1)

Прибор состоит из цилиндрического блока с приводом и блока управления.

А.2.1 Цилиндрический блок состоит из пробоотборной I и измерительной 2 камер с поршнями 3 и 4, входного 5 и выходного 6 клапанов, термостатирующих «рубашек» 7 и впрыскного клапана 8, а также датчика давления 13 и подпорной газовой камеры 14.

^{*} RVPE - метод Рейда.

I— пробоотборная камера; 2— измерительная камера; 3, 4— поршин; 5— входной клапан; 6— выходной клапан; 7— термостатирующая «рубашка»; 8— впрыскной клапан; 9— двигатель; 10— редуктор; 11— визир; 12— микровыключатели; 13— датчик давления; 14— подпорная газовая камера; 15— блок управления (панель прибора)

Рисунок А.1 — Прибор типа АЛП-01 ДП-01

Привод состоит из двигателя 9, одноступенчатого редуктора 10, винтовой ходовой пары с визиром 11 и микровыключателей 12.

- А.2.2 Блок управления 15, соединенный с приводом и датчиком давления, позволяет проводить измерения в ручном и автоматическом режимах.
 - А.3 Принцип работы прибора основан на:
 - герметичном отборе пробы продукта;
- расширении измерительной камеры до объема, необходимого для создания заданного соотношения фаз (4:1);
- впрыске пробы в измерительную камеру и приведении системы «пар жидкость» в термодинамическое равновесие;
 - регистрации давления,

А.4 Управление прибором осуществляют с помощью кнопок, расположенных на лицевой панели прибора.

А.4.1 Работу в ручном режиме «Руч» осуществляют с помощью кнопки «Ввод»,

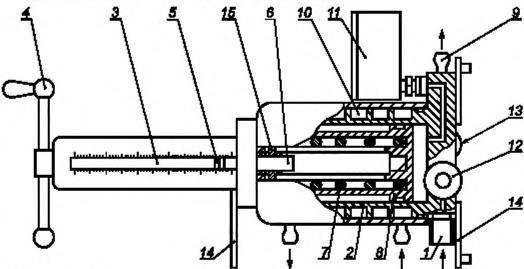
Движение поршней 3 и 4 в верхнее положение задают кнопкой «ВП», а в нижнее — кнопкой «НП». Кнопка «Стоп» — останавливает двигатель. В ручном режиме в течение всего времени на табло прибора высвечивается значение ДНП.

Светодиод «Руч» горит в ручном режиме постоянно, показывая, что прибор находится в ручном режиме управления. Выход из заданного режима осуществляют кнопкой «Выход».

А.4.2 Работу в автоматическом режиме «Auto» осуществляют с помощью кнопки «Ввод». На табло прибора высвечивается количество задаваемых наблюдений «Auto N».

Во время измерений на табло прибора высвечиваются значение ДНП и номер выполняемого измерения. По окончании измерений на табло прибора высвечивается среднее значение ДНП.

ПРИЛОЖЕНИЕ Б (справочное)


Описание индивидуального пробоотборника типа ИП-3

Б.1 Пробоотборник (рисунок Б.1) предназначен для отбора пробы анализируемого продукта и автоматической подачи ее в прибор при заданной температуре.

Б.1.1 Пробоотборник имеет следующие технические характеристики:
- объем отбираемой пробы, мл
 максимальное давление обора, кПа
 начальное давление для перемещения поршня Р1, кПа
 конечное давление для перемещения поршня P2, кПа
- масса, кг, не более
 габаритные размеры, мм, не более
E 2 Vernationna madioartionnum (augustas E 1)

Б.2 Устройство пробоотборника (рисунок Б.1)

Пробоотборник состоит из пробоотборной камеры и узла пресса.

I — входной штуцер; 2 — цилиндр; 3 — корпус с линейной шкалой; 4 — рукойтка; 5 — визир; 6 — винт; 7 — пружина; 8 — поршень; 9 — выходной штуцер; 10 — термостатирующая «рубашка»; 11 — манометр; 12 — входной вентиль; 13 — выходной вентиль; 14 — установочные опоры; 15 — ходовая гайка

Рисунок Б.1 — Пробоотборник типа ИП-3

- Б.2.1 Пробоотборная камера состоит из входного штуцера 1, цилиндра 2, выходного штуцера 9, термостатирующей «рубашки» 10, манометра 11, входного вентиля 12, выходного вентиля 13 и установочных опор 14.
- Б.2.2 Узел пресса состоит из корпуса с линейной шкалой 3, рукоятки 4, визира 5, винта 6 с ходовой гайкой 15, пружины 7 и поршия 8.
 - Б.3 Метод наполнения пробоотборника пробами, находящимися под давлением выше Р2
 - Б.3.1 Пробоотборник присоединяют к пробозаборному устройству с помощью шланга высокого давления.
 - Б.3.2 Резиновую трубку, направленную в открытый сборный контейнер, надевают на выходной штупер 9.
- Б.3.3 Последовательно открывают вентиль на пробозаборном устройстве и вентили 12 и 13 на пробоотборнике.
- Б.3.4 В контейнер сливают 50 мл продукта, закрывают выходной вентиль 13, выдерживают 30 с, закрывают входной вентиль 12 и отсоединяют пробоотборник.
- Б.3.5 Если при транспортировании и хранении температура отбираемого продукта і ниже максимально ожидаемой температуры і приткрывая выходной вентиль 13, сливают количество продукта V, мл, равное

$$V = 0.25(t_{\text{max}} - t),$$
 (6.1)

- где 0.25 усредненный коэффициент, рассчитанный исходя из максимально возможных значений объема отбираемого продукта и коэффициента его термического расширения, мл/°С.
 - Б.4 Метод наполнения пробоотборника пробами, находящимися под давлением ниже Р2
 - Б.4.1 Выполняют операции по Б.3.1—Б.3.3.
- Б.4.2 В контейнер сливают 50 мл продукта, закрывают выходной вентиль 13, вращением рукоятки 4 и винта 6 перемещают поршень 8 и ходовую гайку 15 вверх до упора.
- Б.4.3 Закрывают входной вентиль 12, затем вращением рукоятки 4 и винта 6 перемещают ходовую гайку 15 вправо до упора и отсоединяют пробоотборник.
- Б.4.4 Если при транспортировании и хранении температура отбираемого продукта t ниже максимально ожидаемой температуры t_{max} , то, приоткрывая выходной вентиль 13, сливают количество продукта V, указанное в Б.3.5.

ПРИЛОЖЕНИЕ В (справочное)

Расчет эквивалентного давления по Рейду

В.1 Взаимосвязь результатов измерений давления насыщенных паров продуктов по методу расширения (ДНПР) и методу Рейда (RVPE), кПа, выражена формулой

RVPE =
$$2.964 \cdot 10^{-4} \cdot \Pi H \Pi P^2 + 0.65578 \ \Pi H \Pi P - 4.23$$
. (B.1)

В.2 Результаты расчетов по формуле (В.1) представлены в таблице В.1.

Т а б л и д а B.1 — Перевод показаний прибора типа АЛП-01 ДП-01 по методу расширения на показания аппарата ЛДП по ГОСТ 1756

Показания прибора типа АЛП-01 ДП-01, кПа, по методу расширения														
Десятки	30	40	50	60	70	80	90	100	110	120	130	140	150	160
диницы	Показания прибора типа АЛП-01 ДП-01, кПа, по методу Рейда													
0	18,1	26,7	36,0	45,8	56,2	67,2	78,8	91,0	103,8	117,2	131,1	145,7	160,9	176,
1	18,9	27,6	36,9	46,8	57,3	68,3	80,0	92,3	105,1	118,5	132,6	147,2	162,4	178,
2	19,8	28.5	37,9	47,8	58,4	69,5	81,2	93,5	106,4	119,9	134,0	148,7	164,0	179,
3	20,6	29,4	38,9	48,8	59,4	70,6	82,4	94,8	107,7	121,3	135,4	150,2	165,5	181,
4	21,5	30,4	39,8	49,9	60,5	71,8	83,6	96,0	109,1	122,7	136,9	151,7	167,1	183,
5	22,4	31,3	40,8	50,9	61,6	72,9	84,8	97,3	110,4	124,1	138,3	153,2	168,7	184,
6	23,2	32,2	41,8	52,0	62,7	74,1	86,0	98,6	111,7	125,5	139,8	154,7	170,2	186,
7	24,1	33,1	42,8	53,0	63,8	75,3	87,3	99,9	113,1	126,9	141,3	156,3	171,8	188,
8	25,0	34,1	43,8	54,1	65,0	76,4	88,5	101,2	114,4	128,3	142,7	157,8	173,4	189,
9	25.9	35,0	44.8	55,1	66,1	77.6	89,8	102,5	115.8	129,7	144,2	159,3	175.0	191,

ПРИЛОЖЕНИЕ Г (справочное)

Библиография

[1]	ASTM D 6377-99*	Стандартный	метод	определения	давления	паров	сырой	нефти	VPCRx	(метод	расши-
	рения)										

УДК 665.6:531.787:006.354

OKC 17.020

T86.4

Ключевые слова: давление насыщенных паров, нефть, нефтепродукт, методика выполнения измерений

Редактор Т.С. Шека Технический редактор В.Н. Прусакова Корректор Н.Л. Рыбалко Компьютерная верстка Л.А. Круговой

Изл. лиц. № 02354 от 14.07.2000. Сдано в набор 07.10.2003. Уч.-изд. л. 0,95. Тираж 400 экз. Подписано в печать 28,10,2003. С 12564. Зак. 938.

Усл. печ. л. 1,40.

 ^{*} Стандарт американской корпорации ASTM. Оригинал документа находится в ОАО «Научно-исследовательский институт по переработке нефти».

к ГОСТ Р 8.601—2003 Государственная система обеспечения единства измерений. Давление насыщенных паров нефти и нефтепродуктов. Методика выполнения измерений

В каком месте	Напечатано	Должно быть RVPE=2,966 · 10 ⁻³				
Формула В.1						
таблица В.1. Го- ловка	Показания прибора типа АЛП-01, ДП-01, кПа, по методу Рейда	Показания аппарата ЛДП. кПа, по методу Рейда				

(ИУС № 6 2004 г.)