МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ (МГС)

INTERSTATE COUNCIL FOR STANDARDIZATION, METROLOGY AND CERTIFICATION (ISC)

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ ΓΟCT 32709— 2014

ПРОДУКЦИЯ СОКОВАЯ Методы определения антоцианинов

Издание официальное

Москва Стандартинформ 2014

Предисловие

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0—92 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2—2009 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, применения, обновления и отмены»

Сведения о стандарте

- 1 ПОДГОТОВЛЕН Некоммерческой организацией «Российский союз производителей соков» (РСПС) при участии Федерального государственного бюджетного учреждения «Научно-исследовательский институт питания» Российской академии медицинских наук (ФГБУ «НИИ питания» РАМН)
 - 2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии
- 3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 25 июня 2014 г. № 45-П)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004-97	Код страны по МК (ИСО 3166) 004–97	Сокращенное наименование национального органа по стандартизации
Армения	AM	Минэкономики Республики Армения
Казахстан	KZ	Госстандарт Республики Казахстан
Киргизия	KG	Кыргызстандарт
Россия	RU	Росстандарт
Узбекистан	UZ	Узстандарт
Украина	UA	Минэкономразвития Украины

- 4 Приказом Федерального агентства по техническому регулированию и метрологии от 9 июля 2014 г. № 777-ст межгосударственный стандарт ГОСТ 32709—2014 введен в действие в качестве национального стандарта Российской Федерации с 1 января 2016 г.
- 5 В настоящем стандарте учтены отдельные положения метода IFUMA71 (1998) «Anthocyanins by HPLC» International Federation of Fruit Juice Produces (ИФУ 71:1998 «Определение антоцианинов методом высокоэффективной жидкостной хроматографии» Международной федерации производителей фруктовых соков) в части качественного определения антоцианинов
 - 6 Настоящий стандарт подготовлен на основе применения ГОСТ Р 53773-2010

7 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

© Стандартинформ, 2014

В Российской Федерации настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

ПРОДУКЦИЯ СОКОВАЯ

Методы определения антоцианинов

Juice products. Methods for determination of Anthocyanins

Дата введения — 2016-01-01

1 Область применения

Настоящий стандарт распространяется на фруктовые соки и нектары, фруктовые концентрированные соки, фруктовые пюре и концентрированные пюре, морсы и концентрированные морсы, сокосодержащие напитки, из фруктов, имеющих красную, синюю и фиолетовую окраску, включая соковую продукцию обогащенную и для детского питания (далее — соковая продукция) и устанавливает следующие методы определения антоцианинов:

метод высокоэффективной обращенно-фазовой жидкостной хроматографии (далее – ВЭЖХ)
 для качественного определения антоцианинов в соковой продукции;

 метод рН-дифференциальной спектрофотометрии для определения массовой концентрации (массовой доли) суммы антоцианинов в соковой продукции.

Диапазон измерений массовой концентрации (массовой доли) суммы антоцианинов в пересчете на цианидин-3-глюкозид – от 5 мг/дм³ (млн¬¹) до 5000 мг/дм³ (млн¬¹).

Предел обнаружения метода — 1 мг/дм3 (млн-1).

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие межгосударственные стандарты:

ГОСТ 12.1.005—88 Система стандартов безопасности труда. Общие санитарно-гигиенические требования к воздуху рабочей зоны

ГОСТ 12.1.007—76 Система стандартов безопасности труда. Вредные вещества. Классификация и общие требования безопасности

ГОСТ 12.1.018—93 Система стандартов безопасности труда. Пожаровзрыво-безопасность статического электричества. Общие требования

ГОСТ 12.1.019—79 Система стандартов безопасности труда. Электробезо-пасность. Общие требования и номенклатура видов защиты

ГОСТ OIML R 76-1—2011 Государственная система обеспечения единства измерений. Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания

ГОСТ 199-78 Реактивы. Натрий уксуснокислый 3-водный. Технические условия

ГОСТ 1770-74 (ИСО 1042-83, ИСО 4788-80) Посуда мерная лабораторная стеклянная. Цилиндры, мензурки, колбы, пробирки. Общие технические условия

ГОСТ 3118-77 Реактивы. Кислота соляная. Технические условия

ГОСТ ИСО 3696–2013 Вода для лабораторного анализа. Технические требования и методы испытаний

ГОСТ 4234–77 Реактивы. Калий хлористый. Технические условия

ГОСТ ИСО 5725-1–2003 Точность (правильность и прецизионность) методов и результатов измерений. Часть 1. Основные положения и определения

ГОСТ ИСО 5725-2—2003 Точность (правильность и прецизионность) методов и результатов измерений. Часть 2. Основной метод определения повторяемости и воспроизводимости стандартного метода измерений

ГОСТ ИСО 5725-6—2003 Точность (правильность и прецизионность) методов и результатов измерений. Часть 6. Использование значений точности на практике

ГОСТ 6552-80 Реактивы. Кислота ортофосфорная. Технические условия

ГОСТ 9245–79 Потенциометры постоянного тока измерительные. Общие технические условия ГОСТ ИСО/МЭК 17025–2009 Общие требования к компетентности испытательных и калибровочных лабораторий

ГОСТ 25336-82 Посуда и оборудование лабораторные стеклянные. Типы, основные параметры и размеры

ГОСТ 26313—84 Продукты переработки плодов и овощей. Правила приемки, методы отбора проб

ГОСТ 26671—85 Продукты переработки плодов и овощей, консервы мясные и мясорастительные. Подготовка проб для лабораторных анализов

ГОСТ 29227–91 (ИСО 835-1–81) Посуда лабораторная стеклянная. Пипетки градуированные. Часть 1. Общие требования

ГОСТ 31643-2012 Продукция соковая. Определение аскорбиновой кислоты методом высокоэффективной жидкостной хроматографии

П р и м е ч а н и е — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя «Национальные стандарты» за текущий год. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применен следующий термин с соответствующим определением:

3.1 антоцианины: Водорастворимые растительные пигменты, обусловливающие красную, синюю и фиолетовую окраску фруктов, относящиеся к классу флавоноидов и представляющие собой окрашенные растительные гликозиды антоцианидинов.

П р и м е ч а н и е — Структура основных антоцианидинов, входящих в состав природных антоцианинов, приведена на рисунке А.1 приложения А.

3.2 профиль антоцианинов (профиль): Набор основных специфических, индивидуальных антоцианинов и соотношение между их содержанием, характерные для конкретного вида фруктов.

4 Отбор и подготовка проб

4.1 Отбор проб – по ГОСТ 26313, подготовка проб – по ГОСТ 26671, ГОСТ 31643 (раздел 6.2).

5 Метод обращенно-фазовой высокоэффективной жидкостной хроматографии (ВЭЖХ)

5.1 Сущность метода

Метод основан на определении индивидуальных антоцианинов путем их разделения на твердом носителе С₁₈, привитом на высокочистую силикагелевую основу по обращенно-фазовому механизму с последующим фотометрическим детектированием при длине волны 518 нм.

Полученные хроматограммы сравнивают с профилями антоцианинов аутентичных фруктовых соков и данными, приведенными в таблице Б.2 приложения Б.

5.2 Средства измерений, вспомогательное оборудование, посуда, реактивы и материалы

- 5.2.1 Хроматограф жидкостный высокоэффективный с насосом высокого давления и спектрофотометрическим детектором (рабочий диапазон длин волн поглощения от 200 до 600 нм) с относительным среднеквадратическим отклонением выходных сигналов не более 5 % (по площади и времени выхода пиков), снабженный программно-аппаратным комплексом для сбора и обработки данных.
 - 5.2.2 Колонка для ВЭЖХ длиной 250 мм и внутренним диаметром 4.6 мм, заполненная обра-

щенной фазой – октадецилсиликагелем С₁₈, размером частиц 5 мкм^{*}.

- 5.2.3 Микрошприцы хроматографические вместимостью 10 мм³, ценой деления 0,1 мм³ и вместимостью 20 мм³, ценой деления 0,2 мм³.
- 5.2.4 Весы лабораторные по ГОСТ OIML R 76-1 высокого класса точности с наибольшим пределом взвешивания не более 150 г со значением среднеквадратического отклонения (СКО), не превышающим 0.05 мг и пределом допускаемой абсолютной погрешности ± 0.005 г.
- 5.2.5 Фильтры мембранные с диаметром пор 0,20 и 0,45 мкм для фильтрования подвижной фазы и проб.
- 5.2.6 pH-метр по ГОСТ 9245 с диапазоном измерений от 2 до 14 ед. pH, погрешностью измерений не более 0,05 ед. pH, снабженный комбинированным стеклянным электродом.
 - 5.2.7 Пипетки градуированные 1-2-1, 1-2-2, 1-2-5, 1-2-10 и 1-2-25 по ГОСТ 29227.
 - 5.2.8 Колбы мерные 2-25-2 и 2-100-2 по ГОСТ 1770.
 - 5.2.9 Емкости для жидких проб (виалы) вместимостью 2–10 см³.
 - 5.2.10 Центрифуга лабораторная с фактором разделения не менее 1000 g.
 - 5.2.11 Посуда лабораторная стеклянная по ГОСТ 25336:
 - воронки лабораторные,
 - стаканы В-1-50, В-1-100 и Н-1-1000.
 - 5.2.12 Вода по ГОСТ ИСО 3696, 2-й степени чистоты.
- 5.2.13 Ацетонитрил для градиентной ВЭЖХ, массовой долей основного вещества не менее 99 %.
 - 5.2.14 Кислота ортофосфорная по ГОСТ 6552, ч. д. а.
- 5.2.15 Пробирки полимерные центрифужные с завинчивающейся крышкой вместимостью 15 см³.
 - 5.2.16 Установка лабораторная для вакуумной фильтрации жидкостей с мини-насосом.
 - 5.2.17 Соковыжималка бытовая, блендер бытовой или гомогенизатор, любой конструкции.

Допускается применение других средств измерений, вспомогательного оборудования, не уступающих вышеуказанным по метрологическим и техническим характеристикам, а также реактивов, посуды и материалов, по качеству не хуже вышеуказанных.

5.3 Подготовка к проведению определений

5.3.1 Подготовка проб для измерений

Для качественного определения антоцианинов в концентрированных соках и пюре взвешивают 1 г пробы, подготовленной по разделу 4, с записью результата до третьего десятичного знака. Пробу разбавляют в 5 см³ воды (пюре и соковую продукцию с высоким содержанием растворимых сухих веществ разбавляют водой в массовом соотношении от 1:2 до 1:5). Подготовленную пробу для удаления мутной взвеси центрифугируют и фильтруют через мембранный фильтр с диаметром пор 0,2 мкм.

Для качественного определения антоцианинов в другой соковой продукции, а также в соках прямого отжима 1 г пробы, подготовленной по разделу 4, без предварительного разбавления центрифугируют и фильтруют через мембранный фильтр с диаметром пор 0,45 мкм.

При суммарном содержании антоцианинов в соке менее 0,1 % пробу, подготовленную по разделу 4, фильтруют через мембранный фильтр, не разбавляя.

П р и м е ч а н и е — Подготовку проб сока из свежих и (или) сохраненных свежими фруктов проводят с применением вспомогательного оборудования (см. 5.2.17) и последующим центрифугированием.

5.3.2 Приготовление подвижной фазы

Готовят раствор ортофосфорной кислоты с кислотностью (2,0 ± 0,1) ед. pH. Для этого в стакан с водой по каплям добавляют концентрированную ортофосфорную кислоту, регистрируя показания pHметра.

Для приготовления подвижной фазы полученный раствор ортофосфорной кислоты смешивают с ацетонитрилом в соотношении 88:12 в процентах по объему. Подвижную фазу фильтруют под вакуумом через мембранный фильтр с диаметром пор 0,45 мкм.

Срок хранения раствора подвижной фазы в плотно укупоренной посуде в холодильнике при температуре не более 10 °C при условии визуального отсутствия нерастворимых веществ и помутне-

[&]quot; Колонки марок Phenomenex Luna и Hypersil C18 обеспечивают требуемую эффективность. Данная информация не является рекламой указанных колонок и приведена для удобства пользователей настоящего стандарта.

ния - одна неделя.

5.3.3 Порядок проведения определений

5.3.3.1 Подготовка хроматографа к работе

Включение и подготовку прибора к работе, вывод его на режим и выключение по окончании работы осуществляют в соответствии с руководством по эксплуатации.

Перед проведением определений хроматографическую систему кондиционируют подвижной фазой до установления стабильной базовой линии в условиях и порядке, рекомендованных производителем.

5.3.3.2 Условия проведения хроматографических измерений:

- температура термостата колонки, °C 35 ± 1;
- детектирование фотометрический детектор с длиной волны 518 нм;
- объем вводимой пробы, мм³ 10–20;
- элюент раствор ортофосфорной кислоты (см. 5.3.2);
- скорость подачи элюента, см³/мин 1,0;
- режим элюирования градиентный, в соответствии с таблицей 1.

Таблица 1 - Состав подвижной фазы

	Состав подвижной фазы (элюента), об. %									
Время, мин	Ортофосфорная Кислота	Ацетонитрил	Тип градиент							
0	90	10								
20	75	25	Линейный							
30	60	40								

5.3.3.3 Проведение измерений

В инжектор хроматографа микрошприцем вводят по 10–20 мм³ пробы, подготовленной по 5.3.1, и проводят измерения в условиях, указанных в 5.3.3.2.

Регистрируют на хроматограммах соответствующие пики. Порядок элюирования основных специфических, индивидуальных антоцианинов приведен в таблице Б.1 приложения Б.

5.4 Обработка и оформление результатов определений

Идентификацию пиков основных специфических, индивидуальных антоцианинов осуществляют по абсолютным временам удерживания, путем сравнения полученных хроматограмм соковой продукции с профилями антоцианинов сока, полученного из одноименных фруктов, или с профилями антоцианинов, приведенных в приложении Б.

Примеры хроматограмм с профилями антоцианинов для некоторых ягодных соков приведены на рисунках Б.1–Б.5 приложения Б.

Систематизированные данные, характеризующие порядок выхода основных специфических, индивидуальных антоцианинов и состав таких антоцианинов в соковой продукции из фруктов, приведены в таблице Б.2 приложения Б.

Относительное содержание индивидуальных антоцианинов, X_i, %, вычисляют как отношение площади хроматографического пика индивидуального антоцианина к сумме площадей пиков всех идентифицированных антоцианинов по формуле

$$X_{i} = \frac{S_{i}}{\sum_{j=1}^{n} S_{j}} \cdot 100,$$
 (1)

где S_i – площадь пика i-го антоцианина на хроматограмме, у. е-с;

п – количество пиков идентифицированных компонентов на хроматограмме.

6 Метод рН-дифференциальной спектрофотометрии

6.1 Сущность метода

Метод основан на применении рН-дифференциальной спектрофотометрии. Массовую концентрацию (массовую долю) суммы антоцианинов в пересчете на цианидин-3-глюкозид в соковой продукции определяют на основе изменения поглощения света с длиной волны 510 нм при изменении кислотности растворов соковой продукции от 1 до 4,4 ед. рН.

6.2 Средства измерений, вспомогательное оборудование, посуда, реактивы и материалы

- 6.2.1 Спектрофотометр, позволяющий проводить измерения в диапазоне длин волн от 200 до 900 нм, с допустимой абсолютной погрешностью измерения коэффициента пропускания ± 1 %.
 - 6.2.2 Кюветы кварцевые для спектрофотометрии с длиной оптического пути 10 мм.
 - 6.2.3 Установка ультразвуковая с частотой ультразвука 43-45 кГц.
 - 6.2.4 Аппарат для встряхивания проб.
- 6.2.5 Весы лабораторные по ГОСТ OIML R 76-1 специального (1-го) класса точности с наибольшим пределом взвешивания не более 150 г со значением среднеквадратического отклонения (СКО), не превышающим 0,03 мг и пределом допускаемой абсолютной погрешности ± 0,001 г.
- 6.2 Весы лабораторные по ГОСТ OIML R 76-1 высокого класса точности с наибольшим пределом взвешивания не более 150 г со значением среднеквадратического отклонения (СКО), не превышающим 0,05 мг и пределом допускаемой абсолютной погрешности ± 0,005 г.
- 6.2.7 рН-метр по ГОСТ 9245 с диапазоном измерений от 2 до 14 ед. рН, погрешностью измерений не более 0,05 ед. рН и снабженный комбинированным стеклянным электродом.
 - 6.2.8 Фильтры мембранные с диаметром пор 0.45 мкм.
 - 6.2.9 Центрифуга лабораторная с фактором разделения не менее 1000 g.
- 6.2.10 Пробирки полимерные центрифужные с завинчивающейся крышкой вместимостью 15 см³.
 - 6.2.11 Колбы мерные 2-50-2, 2-100-2, 2-250-2 по ГОСТ 1770.
 - 6.2.12 Пипетки 4-1-2 или 5-1-2. 4-2-10 или 5-2-10, 4-2-25 или 5-2-25 по ГОСТ 29227.
 - 6.2.13 Вода по ГОСТ ИСО 3696, не ниже 2-й степени чистоты.
- 6.2.14 Цианидин-3-О-глюкозид (куромаин) хлористый для ВЭЖХ $C_{21}H_{21}CIO_{11}$, массовой долей основного вещества не менее 95 %.
 - 6.2.15 Натрий уксуснокислый 3-водный по ГОСТ 199, ч. д. а.
 - 6.2.16 Калий хлористый по ГОСТ 4234, ч. д. а.
 - 6.2.17 Кислота соляная по ГОСТ 3118, х. ч.

Допускается применение других средств измерений, вспомогательного оборудования, не уступающих вышеуказанным по метрологическим и техническим характеристикам и обеспечивающим необходимую точность измерения, а также посуды, реактивов и материалов по качеству не хуже вышеуказанных.

6.3 Проведение измерений

6.3.1 Условия проведения измерений

Измерения проводят при следующих лабораторных условиях:

- температура окружающего воздуха, °C 25 ± 5;
- атмосферное давление, кПа 97 ± 10:
- относительная влажность, % 65 ± 25;
- частота переменного тока, Гц 50 ± 5;
- напряжение в сети, В 220 ± 10.

Помещение, в котором проводят работы с реактивами, должно быть обеспечено приточновытяжной вентиляцией.

Все операции с реактивами следует проводить в вытяжном шкафу.

6.3.2 Подготовка к проведению измерений

6.3.2.1 Приготовление раствора соляной кислоты молярной концентрацией 0.2 моль/дм³

В мерную колбу вместимостью 100 см³ помещают 75 см³ воды, осторожно приливают 1,7 см³ концентрированной соляной кислоты, доводят до метки водой и тщательно перемешивают.

Раствор устойчив в течение трех месяцев при хранении в герметично закрытой емкости.

- 6.3.2.2 Приготовление буферных растворов
- а) Приготовление буферного раствора с (1,0 ± 0,1) ед. pH

Взвешивают (1,49 ± 0,1) г хлористого калия, переносят в мерную колбу вместимостью 100 см³, доводят до метки водой и тщательно перемешивают. Затем в стакане вместимостью 100 см³ смешивают 25 см³ полученного раствора с 67 см³ раствора соляной кислоты молярной концентрации 0,2 моль/дм³. При необходимости доводят значение pH раствора до (1,0 ± 0,1) ед. pH концентрированной соляной кислотой, регистрируя показания pH-метра.

Раствор устойчив в течение трех месяцев при хранении в герметично закрытой емкости.

б) Приготовление буферного раствора с (4,5 ± 0,1) ед. рН

Взвешивают $(1,64 \pm 0,1)$ г уксуснокислого натрия, переносят в мерную колбу вместимостью 100 см^3 , доводят до метки водой и тщательно перемешивают. При необходимости доводят значение pH раствора до $(4,5 \pm 0,1)$ ед. pH концентрированной соляной кислотой, регистрируя показания pH-метра.

Раствор устойчив в течение трех месяцев при хранении в герметично закрытой емкости.

6.3.2.3 Измерение проб

а) Измерение массовой концентрации суммы антоцианинов в соковой продукции, не содержа-

щей нерастворимые в воде вещества

В две мерные колбы, вместимостью 50 см³ каждая, помещают по 2,5 см³ аликвоты пробы, подготовленной по разделу 4 и доводят до метки буферными растворами с 1,0 и 4,5 ед. рН, (см. 6.3.2.2), содержимое в двух колбах перемешивают, выдерживают в течение 15 мин и проводят измерение оптической плотности каждого раствора при длинах волн 510 и 700 нм соответственно. Измерение оптической плотности растворов при 700 нм проводят для установления величины поглощения света посторонними примесями.

 б) Измерение массовой концентрации суммы антоцианинов в соковой продукции, содержащей мякоть или нерастворимые в воде вещества

Пробы предварительно гомогенизируют, а затем центрифугируют в течение 20 мин или фильт-

руют через мембранный фильтр с размером пор 0.45 мкм.

После этого в две мерные колбы, вместимостью 50 см³ каждая, отбирают по 2,5 см³ аликвоты прозрачного слоя или фильтрата и доводят до метки буферными растворами с 1,0 и 4,5 ед. рН, (см. 6.3.2.2), содержимое в двух колбах перемешивают, выдерживают в течение 15 мин и проводят измерение оптической плотности каждого раствора при длинах волн 510 и 700 нм соответственно. Измерение оптической плотности при 700 нм проводят для установления величины поглощения света посторонними примесями.

 в) Измерение массовой доли суммы антоцианинов в концентрированных соках проводят после их предварительного разбавления водой весовым методом в соотношении 1:5.

При вычислении по 6.4.3 учитывают коэффициент разбавления F.

Затем проводят процедуры как указано в 6.3.2.3а.

г) Измерения оптической плотности подготовленных проб проводят на спектрофотометре при длинах волн 510 и 700 нм. Результатом измерений является разность оптической плотности ∆А растворов с 1,0 и 4,5 ед. рН при длинах волн 510 и 700 нм соответственно, которая пропорциональна массовой концентрации (массовой доле) антоцианинов в растворе.

Значения оптической плотности растворов должны находиться в пределах 0,2-1,0.

Если значения оптической плотности растворов, приготовленных по 6.3.2.3a, 6.3.2.36 более 1,0, то уменьшают объем аликвоты (V_2) при разбавлении в мерной колбе (V_1). Для растворов, имеющих значения оптической плотности менее 0,2, увеличивают объем аликвоты.

6.4 Обработка и оформление результатов измерений

Измерения проб проводят два раза в условиях повторяемости в соответствии с требованиями ГОСТ ИСО 5725-1 (подраздел 3.14) и ГОСТ ИСО 5725-2.

6.4.1 Разность оптической плотности ∆А вычисляют как разность оптических плотностей растворов при разных длинах волн и соответствующих значениях рН по формуле

$$\Delta A = \left(A_{510} - A_{700}\right)_{\text{pH1}} - \left(A_{510} - A_{700}\right)_{\text{pH4,5}} \tag{1}$$

где A₅₁₀ – оптическая плотность раствора пробы при длине волны 510 нм, е. о. п.;

А700 - оптическая плотность раствора пробы при длине волны 700 нм, е. о. п.

6.4.2 Массовую концентрацию антоцианинов в соковой продукции (см. 6.3.2.3а и 6.3.2.3б) С, мг/дм³, в пересчете на цианидин-3-глюкозид, вычисляют по формуле

$$C = \frac{\Delta A \cdot M \cdot V_1 \cdot 10^3}{V_2 \cdot \varepsilon \cdot I},$$
 (2)

где дА – разность оптической плотности раствора, е. о. п.;

М – молекулярная масса цианидин-3-глюкозида, равная 449,2 г/моль;

V₁ – вместимость мерной колбы, взятой для разбавления, см³;

V₂ – объем аликвоты, взятой на определение, см³;

є - молярный коэффициент экстинкции цианидин-3-глюкозида,

 $\varepsilon = 26900 \text{ дм}^3 \cdot \text{моль}^{-1} \cdot \text{см}^{-1}$;

I – длина оптического пути кюветы, см.

6.4.3 Массовую долю антоцианинов в концентрированной соковой продукции (см. 6.3.2.3в) X, млн⁻¹, в пересчете на цианидин-3-глюкозид, вычисляют по формуле

$$X = \frac{\Delta A \cdot M \cdot V_1 \cdot F \cdot 10^3}{\varepsilon \cdot I \cdot V_2 \cdot m}.$$
 (3)

где дА – разность оптической плотности раствора, е. о. п;

М – молекулярная масса цианидин-3-глюкозида, равная 449,2 г/моль;

 V_1 — вместимость мерной колбы, взятой для разбавления, см³;

F – величина фактора разбавления;

 ε – молярный коэффициент экстинкции цианидин-3-глюкозида, ε = 26900 дм³-моль⁻¹-см⁻¹;

I – длина оптического пути кюветы, см;

 V_2 – объем аликвоты, взятой на определение, см³;

т – масса пробы, взятой для определения, г.

Все вычисления проводят с точностью до третьего десятичного знака.

Расхождение между двумя параллельными определениями (в процентах от среднего значения), выполненными в условиях повторяемости, не должно превышать предела повторяемости (сходимости) r_{опи}, приведенного в таблице 2, при вероятности P = 0.95.

Т а б л и ц а 2 — Основные метрологические характеристики метода определения массовой концентрации или массовой доли суммы антоцианинов при доверительной вероятности P = 0,95

Наименование показателя	Значение показателя при диапазонах измерений масс вой концентрации (массовой доли), мг/дм ³ (млн ⁻ ;)										
(при <i>P</i> = 0,95 и <i>n</i> = 2)	От 5 до 100 включ. ¹⁾	Св. 100 до1000 включ. 21	Св. 1000 до 5000 включ. ³⁾								
Предел повторяемости (сходимости) $r_{\text{отне}}$ %	14	9	8								
Предел воспроизводимости $R_{\text{отн}}$, %	19	14	10								
Границы относительной погрешности ± δ, %	14	10	7								
Предел обнаружения метода, мг/ дм3 (млн3)		1,0									

Исследования проводились на образцах клубники, выращенной в средней полосе Российской Федерации.

²⁾ Исследования проводились на образцах клюквы, выращенной в Российской Федерации.

³⁾ Исследования проводились на образцах черной смородины, выращенной в средней полосе Российской Федерации.

За окончательный результат определения принимают среднеарифметическое значение результатов двух параллельных определений.

Границы относительной погрешности определения массовой концентрации (массовой доли) суммы антоцианинов $\pm \delta$, %, при соблюдении условий, регламентированных настоящим методом, не должны превышать значений, приведенных в таблице 2.

Окончательные результаты определений в документах, предусматривающих их использование, представляют согласно ГОСТ ИСО/МЭК 17025 с указанием метода определения и настоящего стандарта в виде

$$\overline{C} \pm 0.01 \cdot \delta \cdot \overline{C}$$
 и $\overline{X} \pm 0.01 \cdot \delta \cdot \overline{X}$, при $P = 0.95$

где \overline{C} , \overline{X} – среднеарифметическое значение результатов двух параллельных определений, выполненных в условиях повторяемости, мг/дм 3 (млн $^{-1}$);

 $\pm \delta$ - границы относительной погрешности измерений, %, (см. таблицу 2).

Числовое значение окончательного результата определения должно оканчиваться цифрой того же разряда, что и значение границы абсолютной погрешности. Значение границы абсолютной погрешности приводят с двумя значащими цифрами.

В случае, если результат определения менее нижней границы диапазона измерений, то приводят следующую запись: «Массовая концентрация (массовая доля) антоцианинов, в пересчете на цианидин-3-глюкозид, менее 5 мг/дм³ (млн⁻¹)».

6.5 Контроль качества результатов измерений при реализации метода в лаборатории

6.5.1 Контроль повторяемости результатов измерений

Контроль повторяемости результатов измерений массовой концентрации или массовой доли антоцианинов проводят при получении каждого результата путем сравнения расхождения между результатами двух параллельных определений с пределом повторяемости (сходимости), приведенным в таблице 2

Повторяемость результатов признают удовлетворительной при условии

$$2 \cdot \frac{\left|C_{1} - C_{2}\right|}{C_{1} + C_{2}} \le 0.01 \cdot r_{\text{отн}} \quad 2 \cdot \frac{\left|X_{1} - X_{2}\right|}{X_{1} + X_{2}} \le 0.01 \cdot r_{\text{отн}}, \tag{4}$$

где С₁, С₂ – результаты параллельных определений массовой концентрации суммы антоцианинов в пробе, подготовленной по 6.1, мг/дм³;

 X_1 , X_2 – результаты параллельных определений массовой доли суммы антоцианинов в пробе, подготовленной по 6.2 и 6.3, млн⁻¹;

r_{отн} – значение предела повторяемости (см. таблицу 2), %.

При превышении предела повторяемости (сходимости) определение повторяют. При повторном превышении указанного предела выясняют причины, приводящие к неудовлетворительным результатам, устраняют их и определение повторяют.

6.5.2 Проверка приемлемости результатов измерений, полученных в условиях воспроизводимости

- 6.5.2.1 Проверку приемлемости результатов параллельных определений в условиях воспроизводимости проводят:
 - при возникновении спорных ситуаций между двумя лабораториями;
 - проверке совместимости результатов измерений, полученных при сличительных испытаниях.
- 6.5.2.2 Для проведения проверки приемлемости результатов параллельных определений в условиях воспроизводимости каждая лаборатория использует контрольные пробы, оставленные на хранение.

Приемлемость результатов параллельных определений, полученных в двух лабораториях, оценивают сравнением разности этих результатов с критической разностью $CD_{0.95}$ по формуле

$$\frac{2 \cdot \left| \overline{C}_{_1} - \overline{C}_{_2} \right| \cdot 100}{\overline{C}_{_1} + \overline{C}_{_2}} \le CD_{_{0,95}} \text{ или } \frac{2 \cdot \left| \overline{X}_{_1} - \overline{X}_{_2} \right| \cdot 100}{\overline{X}_{_4} + \overline{X}_{_2}} \le CD_{_{0,95}}, \tag{5}$$

где $\overline{C_1}$, $\overline{C_2}$ — среднеарифметические значения массовой концентрации суммы антоцианинов в пересчете на цианидин-3-глюкозид, полученные в первой и второй лабораториях, мг/дм³;

 $\overline{X}_1, \overline{X}_2$ — среднеарифметические значения массовой доли суммы антоцианинов в пересчете на цианидин-3-глюкозид, полученные в первой и второй лабораториях, млн $^{-1}$.

СD_{0.95} — значение критической разности, вычисляемое по формулам

$$CD_{0,95} = 2,77 \cdot 0,01 \cdot \overline{C}_{12} \sqrt{\sigma_R^2 - \sigma \left(1 - \frac{1}{2n_1} - \frac{1}{}\right)},$$

$$CD_{0,95} = 2,77 \cdot 0,01 \cdot \overline{X}_{12} \sqrt{\sigma_R^2 - \sigma \left(1 - \frac{1}{2n_1} - \frac{1}{}\right)},$$
(6)

где 2,77 – коэффициент критического диапазона для двух параллельных определений, полученных в условиях воспроизводимости по ГОСТ ИСО 5725-6;

0.01 - множитель для перехода от процентов к абсолютным значениям;

 $\overline{C}_{1,2}$ — среднеарифметическое значение результатов определений, полученных в первой и второй лабораториях, мг/дм 3 ;

 $\overline{X}_{1,2}$ — среднеарифметическое значение результатов определений, полученных в первой и второй лабораториях, млн⁻¹; о_в – показатель воспроизводимости, %, (см. таблицу 2);

о, – показатель повторяемости, %, (см. таблицу 2);

п – число параллельных определений.

 6.5.2.3 Если критическая разность не превышена, то приемлемы оба результата определений. проводимых двумя лабораториями, и в качестве окончательного результата используют их среднеарифметическое значение. Если критическая разность превышена, то выполняют процедуры в соответствии с ГОСТ ИСО 5725-6 (пункт 5.3.3).

При разногласиях руководствуются ГОСТ ИСО 5725-6 (пункт 5.3.4).

6.5.3 Оперативный контроль погрешности (точности) результатов измерений

Оперативный контроль погрешности (точности) результатов измерений осуществляют методом добавок на рабочих пробах продукции.

Организацию и оценку результатов контроля осуществляют в соответствии с рекомендациями [1].

 б.5.3.1 Для проведения оперативного контроля погрешности (точности) определение проводят в пробах, объем или масса которых должны соответствовать удвоенному их количеству, необходимому для проведения определения. Пробу делят на две равные части. В одну из них добавляют цианидин-3-глюкозид в таком количестве, чтобы величина добавки в 0,5-1,5 раза отличалась от исходного содержания компонента в пробе, но не превышала верхней границы диапазона определения массовой концентрации или массовой доли компонента с учетом границ погрешности определения (см. таблицу 2). В обеих частях пробы проводят определение в соответствии с требованиями настоящего стандарта.

6.5.3.2 Результаты контрольных определений признают удовлетворительными, если погрешность определения массовой концентрации (массовой доли) цианидина-3-глюкозида в добавке не превышает норматива оперативного контроля погрешности (точности), то есть выполняется условие

$$\left|\overline{C}_{\text{доб}} - \overline{C} - C_{\text{доб}}\right| \le K_{\text{доб}}$$
 или $\left|\overline{X}_{\text{доб}} - \overline{X} - X_{\text{доб}}\right| \le K_{\text{доб}}$, (7)

где \overline{C}_{a_0a} , \overline{X}_{a_0a} - среднеарифметические значения параллельных определений массовой концентрации (массовой доли) общего диоксида серы в пробе с добавкой, мг/дм³ или млн⁻¹;

 \overline{C} . \overline{X} – среднеарифметические значения параллельных определений массовой концентрации (массовой доли) общего диоксида серы в пробе без добавки, мг/дм³ или млн⁻¹

 $C_{\text{доб}}$ или $X_{\text{доб}}$ – величина добавки, мг/дм³ или млн⁻¹;

К_{доб} – норматив контроля погрешности, мг/дм³ или млн⁻¹.

При проведении внутрилабораторного контроля (P = 0.90) значение K_{non} вычисляют по формулам:

$$K_{\alpha\alpha\delta} = 0.84 \cdot 0.01 \cdot \delta \cdot \sqrt{C_{\alpha\alpha\delta}^2 + \overline{C}^2}$$
 (8)

$$K_{dob} = 0.84 \cdot 0.01 \cdot \delta \cdot \sqrt{X_{dob}^2 + \overline{X}^2}, \qquad (9)$$

где 0.84 - коэффициент, учитывающий вид контроля;

 $\pm \delta$ – границы относительной погрешности измерений массовой концентрации (массовой доли) общего диоксида серы (см. таблицу 3), %.

При проведении внешнего контроля (P = 0.95) значение K_{nob} вычисляют по формулам:

$$K_{\sigma \sigma \sigma} = 0.01 \cdot \delta \cdot \sqrt{C_{\sigma \sigma \sigma}^2 + \overline{C}^2}$$

$$NDM$$
(10)

$$K_{\sigma\sigma\sigma} = 0.01 \cdot \delta \cdot \sqrt{X_{\sigma\sigma\sigma}^2 + \overline{X}^2}$$
 (11)

При превышении норматива оперативного контроля погрешности проводят повторные контрольные определения. При повторном превышении указанного норматива выясняют причины, приводящие к неудовлетворительным результатам, и устраняют их.

Периодичность контроля погрешности (точности) устанавливает сама лаборатория с учетом фактического состояния работ. При замене оборудования, колонок, реактивов или при построении

новой градуировочной зависимости проведение оперативного контроля погрешности обязательно.

6.5.4 Контроль стабильности результатов измерений при реализации метода в лаборатории

Контроль стабильности результатов измерений в лаборатории осуществляют по ГОСТ ИСО 5725-6, используя метод контроля стабильности стандартного отклонения промежуточной прецизионности по ГОСТ ИСО 5725-6 с применением контрольных карт Шухарта.

При неудовлетворительных результатах контроля: превышении предела действия или регулярном превышении предела предупреждения — выясняют и устраняют причины этих отклонении.

Периодичность контроля и процедуры контроля стабильности результатов измерений регламентируют в руководстве по качеству лаборатории в соответствии с ГОСТ ИСО/МЭК 17025 (пункт 4.2).

7 Требования, обеспечивающие безопасность

7.1 Условия безопасного проведения работ

При работе с химическими реактивами следует соблюдать требования безопасности, установленные для работ с токсичными, едкими и легковоспламеняющимися веществами по ГОСТ 12.1.005 и ГОСТ 12.1.007. При подготовке проб к определению и выполнении измерений с использованием жидкостного хроматографа соблюдают правила пожаровзрывобезопасности по ГОСТ 12.1.018, по электробезопасности – по ГОСТ 12.1.019 и инструкции по эксплуатации прибора.

7.2 Требования к квалификации оператора

К выполнению измерений, обработке и оформлению результатов допускаются инженер-химик, техник или лаборант, имеющие высшее или среднее специальное образование, опыт работы в химической лаборатории и изучившие инструкцию по эксплуатации метода высокоэффективной жидкостной хроматографии. Первое применение метода высокоэффективной жидкостной хроматографии в лаборатории следует проводить под руководством специалиста, владеющего теорией метода высокоэффективной жидкостной хроматографии и имеющего практические навыки в этой области.

Приложение А (справочное)

Структура основных антоцианидинов, входящих в состав природных антоцианинов

А.1 Общая структурная формула антоцианидинов приведена на рисунке А.1.

Рисунок А.1 - Общая структурная формула антоцианидинов

 Π р и м е ч а н и е – Конкретный вид антоцианидина зависит от состава радикалов R_1 , R_2 , приведенных в таблице A.1.

Т а б л и ц а А.1 – Виды антоцианидинов в зависимости от состава радикалов

Burn automatica	Состав р	Сокращенное наим					
Вид антоцианидина	R ₁	R ₂	нование				
Пеларгонидин	Н	H	Pgd				
Цианидин	OH	H	Cyd				
Пеонидин	OCH ₃	Н	Pnd				
Дельфинидин	OH	OH	Dpd				
Петунидин	OCH ₃	OH	Ptd				
Мальвидин	OCH ₃	OCH ₃	Mvd				

Приложение Б (справочное)

Систематизированные данные по порядку выхода основных антоцианинов фруктов и их составу

Б.1 Порядок выхода индивидуальных антоцианинов, их сокращенное и полное наименования приведены в таблице Б.1.

Таблица Б.1 - Порядок выхода индивидуальных антоцианинов, их сокращенное и полное наименования

No -	Наименование антоцианинов							
	Сокращенное	Полное						
1	Dpd-3,5-diglu	Дельфинидин-3,5-диглюкозид						
2	Cyd-3,5-diglu	Цианидин-3,5-диглюкозид						
3	Dpd-3-samb	Дельфинидин-3- самбубиозид						
4 5 6	Dpd-3-gal	Дельфинидин-3-галактозид						
5	Dpd-3-glu	Дельфинидин-3-глюкозид						
6	Cyd-3-sop	Цианидин-3-софорозид						
7	Cyd-3-glu-rut	Цианидин-3-гликорутинозид						
8	Dpd-3-rut	Дельфинидин-3-рутинозид						
9	Cyd-3-gal	Цианидин-3-галактозид						
10	Dpd-3-ara	Дельфинидин-3-арабинозид						
11	Cyd-3-samb	Цианидин-3-самбубиозид						
12	Cyd-3-glu	Цианидин-3-глюкозид						
13	Cyd-3-xyl-rut	Цианидин-3-ксилозорутинозид						
14	Cyd-3-rut	Цианидин-3-рутинозид						
15	Ptd-3-gal	Петунидин-3-галактозид						
16	Cyd-3-ara	Цианидин-3-арабинозид						
17	Ptd-3-glu	Петунидин-3-глюкозид						
18	Pgd-3-glu	Пеларгонидин-3-глюкозид						
19	Pnd-3-gal	Пеонидин-3-галактозид						
20	Pgd-3-ara	Пеларгонидин-3-арабинозид						
21	Pnd-3-glu	Пеонидин-3-глюкозид						
22	Mvd-3-glu	Мальвидин-3-глюкозид						
23	Pnd-3-ara	Пеонидин-3-арабинозид						

Б.2 Состав основных индивидуальных, специфических антоцианинов фруктов приведен в таблице Б.2

^{*} Приведены данные – по материалам исследований ФГБУ «НИИ питания» РАМН.

Таблица Б.2 - Состав основных индивидуальных, специфических антоцианинов фруктов

Габлица Наиме-	ь.2	- 0	оста	IB OC	нові	ных						ифич цержа						рукто	В				
нование фрукта	Dpd-3,5-diglu	Cyd-3,5-diglu	Dpd-3-gal	Cyd-3-samb	Dpd-3-glu	Cyd-3-sop	Cyd-3-glu-rut	Dpd-3-rut	Cyd-3-gal	Dpd-3-ara	Cyd-3-samb	Cyd-3-glu	Cyd-3-xyl-rut	Cyd-3-rut	Ptd-3-gal	Cyd-3-ara	Ptd-3-glu	Pgd-3-glu	Pnd-3-gal	Pgd-3-ara	Pnd-3-glu	Mvd-3-glu	Pnd-3-ara
Гранат	0-15	0-15	ì	1	15-45	ī	т		Ţ	ı	,	15-45	-		1		1	,	-1	-	4	,	,
Гиби- скус	1	,		,	,	,	1	,	,	1	Sones 45	-	-	,	,	,	1	,	,	-	ŀ	,	,
Черника	,	,	9-15	ı	0-15			ı	0-15	0-15		15-45	1	,	0-15	0-15	0-15	,	1	-	0-15	0-15	,
Красный вино- град	,	ì	,	ì	15-45	1	ī	1	ī	,	1	0-15	1		1	,	15-45	,	Ţ	,	0-15	Бо-лее 45	,
Черная сморо- дина	i	1	ı	,	15-45	1	3	15-45	ī	ì		0-15	-	15-45	ı	í			ī	-	,	1	,
Красная сморо- дина	i		ı	1		0-15	0-15	,	1	,	í	0-15	Более 45	0-15	1	,	,	,	ī	-	1	ï	,
Слива		í		,			1	1	,	,	ı	Sonee 45	-	Fones 45	,	1	,	,		1		,	,
Клюква	,	,	,	1	ı	,	-	,	15-45	1		0-15	1	1	,	15-45	,	,	15-45	-	0-15	1	15-45
Клубни- ка	,	,	,	1	1	1	1	ı	,	,	1	0- 15	-	r	r	1	,	Sonee 45		0- 15	1	1	,
Череш- ня	,	,	,	1	1	15-45			,		1	Sonee 45	7	15-45	,		1	,	- 1	1	-	,	į
Вишня	r		1	1	-	0-15	Sonee 45	,	-	,	1	0-15	1	15-45	1	1	1		ī	-	1	1	,

Окончание таблицы Б.2

Наиме-							(Отно	сите.	пьно	e co,	цержа	эние	анто	циа	нино	з. %						
нование фрукта	Dpd-3,5-digiu	Cyd-3,5-diglu	Dpd-3- gal	Cyd-3-samb	Dpd-3-glu	Cyd-3-sop	Cyd-3-glu-rut	Dpd-3-rut	Cyd-3-gal	Dpd-3-ara	Cyd-3-samb	Cyd-3-glu	Cyd-3-xyl-rut	Cyd-3-rut	Ptd-3-gal	Cyd-3-ara	Ptd-3-glu	Pgd-3-glu	Pnd-3-gal	Pgd-3-ara	Pnd-3-glu	Mvd-3-glu	Pnd-3-ara
Малина						_						1.1							H				
	1	i	7	1		15-45	0-15	,	1	1	J.	15-45		0-15	1	1	- 1	T.	1	T.		1	J
Ежевика	-			-	H		_	-				_							H				
	1	,		1	ì	1		ŀ	J		1-	Более 45	1	-1.	1	ţ	-1.	1	1	-1	0-15	1	1
Брусни- ка									m							-							-
K.d	1	1	,	1	i ·	1	1	ŀ	Более 45		1-	0-15		-	1	0-15	1	1	ı	1		1	1
Бузина											60												
	,	1	,	1	1	1	,	1	1	Ţ	Sones 45	1	T	-1	1	ŗ	-1_	1	1	1	1	1	1
Черно- плодная рябина	,	,	, ,	1	,	,	ì	,	Более 45	,	1	0-15	1	1.0		15-45	-		,	1	0-15		,
Кры- жовник черный	7	,		-	Ť.	,	,	0-15	ı	,	i	0-15	1.	Более 45	,	1	1		ì	7		ı	ī
Калина	1	,		,	,	,	,	,	Sonee 45	0-15	1	,	,	1	,	,	1	ı	1	1		,	1
Ирга	1	1	1				,	,	Sones 45	ï	,	15-45	1	ı	,	,	0-15		,	1	,	1	1

Б.3 Примеры хроматограмм с профилями антоцианинов для некоторых ягодных соков приведены на рисунках Б.1–Б.5

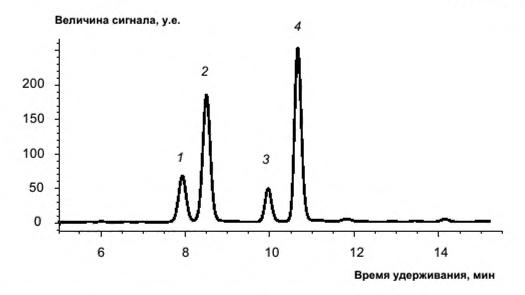


Рисунок Б.1 – Пример хроматограммы с профилем антоцианинов сока черной смородины (происхождение – Россия, 2013 год, исследования ФГБУ «НИИ питания» РАМН)

1 – Dpd-3-glu (дельфинидин-3-глюкозид), 2 – Dpd-3-rut (дельфинидин-3-рутинозид), 3 – Cyd-3-glu (цианидин-3-глюкозид), 4 – Cyd-3-rut (цианидин-3-рутинозид)

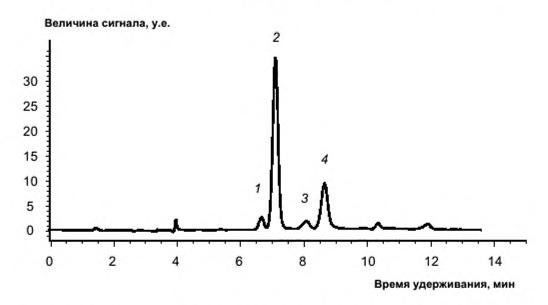


Рисунок Б.2 – Пример хроматограммы с профилем антоцианинов сока вишни (происхождение – Россия, 2013 год, исследования ФГБУ «НИИ питания» РАМН)

1 – Cyd-3-soph (цианидин-3-софорозид), 2 – Cyd-3-glu-rut (цианидин-3-глюкозилрутинозид), 3 – Cyd-3-glu (цианидин-3-глюкозид), 4 – Cyd-3-rut (цианидин-3-рутинозид)

Рисунок Б.3 - Пример хроматограммы с профилем антоцианинов сока черники (происхождение – Россия, 2013 год, исследования ФГБУ «НИИ питания» РАМН)

1 – Dpd-gal (дельфинидин-3-галактозид), 2 – Gpg-3-glu (дельфинидин-3-глюкозид), 3, 4 – Cyd-3-gal (цианидин-3-галактозид) + Dpd-3-ara (цельфинидин-3-арабинозид), 5 – Cyd-3-glu (цианидин-3-глюкозид), 6 – Ptd-3-glu (петунидин-3-глюкозид), 7 – Cyd-3-ara (цианидин-3-арабинозид), 8 – Ptd-3-ara (петунидин-3-арабинозид), 9, 10 – Pnd-3-glu (пеонидин-3-глюкозид) + Mvd-3-gal (мальвидин-3-галактозид), 11 – Mvd-3-glu (мальвидин-3-глюкозид), 12 – Pnd-3-аra (пеонидин-3-арабинозид)

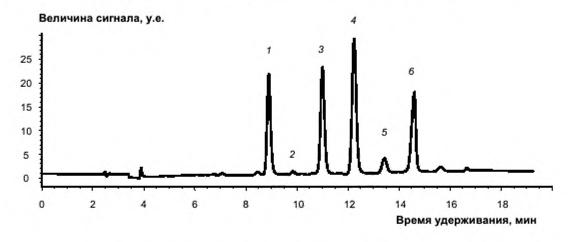


Рисунок Б.4 – Пример хроматограммы с профилем антоцианинов сока клюквы болотной (происхождение – Россия, 2013 год, исследования ФГБУ «НИИ питания» РАМН)

1 — Cyd-3-gal (цианидин-3-галактозид), 2 — Cyd-3-glu (цианидин-3-глюкозид), 3 — Cyd-3-ara (цианидин-3-арабинозид), 4 — Pnd-3-gal (пеонидин-3-галактозид), 5 — Pnd-3-glu (пеонидин-3-глюкозид), 6 — Pnd-3-ara (пеонидин-3-арабинозид)

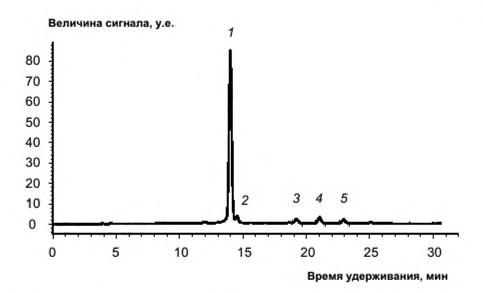


Рисунок Б.5 - Пример хроматограммы с профилем антоцианинов сока ежевики (происхождение – Россия, 2013 год, исследования ФГБУ «НИИ питания» РАМН)

1 – Cyd-3-glu (цианидин-3-глюкозид), 2 – Cyd-3-rut (цианидин-3-рутинозид), 3 – Cyd-3-xyl (цианидин-3-ксилозид), 4 – Cyd-3-(6"malonyl)glu-(цианидин-3-(6"-малонил)-глюкозид), 5 – Cyd-3-dioxaylglu (цианидин-3-диоксаилглюкозид)

Библиография

[1] PMF 76-2004

Государственная система обеспечения единства измерений. Внутренний контроль качества результатов химического анализа

УДК 664.863.001.4:006.354

MKC 67.080, 67.050

Ключевые слова: продукция соковая, метод высокоэффективной жидкостной хроматографии, метод рН-дифференциальной спектрофотометрии, качественное определение, хроматографический анализ, стандартный раствор, элюент, антоцианины, антоцианидины, предел повторяемости, предел воспроизводимости, границы относительной погрешности

Подписано в печать 01.12.2014. Формат 60х84¹/_в. Усл. печ. л. 2,33. Тираж 46 экз. Зак. 4953

Подготовлено на основе электронной версии, предоставленной разработчиком стандарта

ФГУП «СТАНДАРТИНФОРМ» 123995 Москва, Гранатный пер., 4. www.gostinfo.ru info@gostinfo.ru