МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ (МГС)

INTERSTATE COUNCIL FOR STANDARDIZATION, METROLOGY AND CERTIFICATION (ISC)

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ ΓΟCT 8.637— 2013

Государственная система обеспечения единства измерений

ГОСУДАРСТВЕННАЯ ПОВЕРОЧНАЯ СХЕМА ДЛЯ СРЕДСТВ ИЗМЕРЕНИЙ МАССОВОГО РАСХОДА МНОГОФАЗНЫХ ПОТОКОВ

Издание официальное

Предисловие

Цели, основные принципы и общие правила проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены»

Сведения о стандарте

- РАЗРАБОТАН Федеральным государственным унитарным предприятием «Всероссийский научно-исследовательский институт расходометрии» (ФГУП «ВНИИР»)
- 2 ВНЕСЕН Управлением метрологии Федерального агентства по техническому регулированию и метрологии
- 3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации по переписке (протокол от 27 декабря 2013 г. № 63-П)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004-97	Код страны по МК (ИСО 3166) 004 97	Сокращенное наименование национального органа по стандартизации
Армения	AM	Минэкономики Республики Армения
Беларусь	BY	Госстандарт Республики Беларусь
Казахстан	KZ	Госстандарт Республики Казахстан
Киргизия	KG	Кыргызстандарт
Молдова	MD	Стандарт-Молдова
Россия	RU	Росстандарт
Таджикистан	TJ	Таджикстандарт
Украина	UA	Минэкономразвития Украины

- 4 Приказом Федерального агентства по техническому регулированию и метрологии от 11 июня 2014 г. № 530-ст межгосударственный стандарт ГОСТ 8.637—2013 введен в действие в качестве национального стандарта Российской Федерации с 1 июля 2015 г.
 - 5 ВВЕДЕН ВПЕРВЫЕ
 - 6 ПЕРЕИЗДАНИЕ, Апрель 2019 г.

Информация о введении в действие (прекращении действия) настоящего стандарта и изменений к нему на территории указанных выше государств публикуется в указателях национальных стандартов, издаваемых в этих государствах, а также в сети Интернет на сайтах соответствующих национальных органов по стандартизации.

В случае пересмотра, изменения или отмены настоящего стандарта соответствующая информация будет опубликована на официальном интернет-сайте Межгосударственного совета по стандартизации, метрологии и сертификации в каталоге «Межгосударственные стандарты»

© Стандартинформ, оформление, 2014, 2019

В Российской Федерации настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

Содержание

1 Область применения
2 Термины и определения
3 Первичный эталон
4 Рабочие эталоны
5 Рабочие средства измерений
Приложение A (обязательное) Государственная поверочная схема для средств измерений массового расхода многофазных потоков

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

Государственная система обеспечения единства измерений

ГОСУДАРСТВЕННАЯ ПОВЕРОЧНАЯ СХЕМА ДЛЯ СРЕДСТВ ИЗМЕРЕНИЙ МАССОВОГО РАСХОДА МНОГОФАЗНЫХ ПОТОКОВ

State system for ensuring the uniformity of measurements. State verification schedule of multiphase flow measuring tools

Дата введения — 2015—07—01

1 Область применения

Настоящий стандарт распространяется на государственную поверочную схему для средств измерений массового расхода многофазных потоков (см. приложение A) и устанавливает назначение государственного первичного специального эталона единицы массового расхода газожидкостных смесей ГЭТ 195—2011 (далее — первичный эталон), его метрологические характеристики и состав, основные метрологические характеристики рабочих эталонов и порядок передачи единицы массового расхода многофазных потоков (т/ч), от первичного эталона рабочим эталонам и рабочим средствам измерений, с указанием основных методов передачи.

2 Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями:

- 2.1 многофазный расходомер: Средство измерений, предназначенное для динамических измерений расходов многофазного потока и его отдельных компонентов без предварительной сепарации.
- 2.2 газожидкостная смесь: Трехкомпонентная смесь, с различными долевыми соотношениями жидких и газообразных компонентов.
- 2.3 многофазный поток: Поток газожидкостной смеси, находящийся в двухфазном состоянии при заданных значениях температуры и давления.

3 Первичный эталон

- 3.1 Первичный эталон предназначен для воспроизведения, хранения и передачи единицы массового расхода многофазных потоков рабочим эталонам и рабочим средствам измерений с целью обеспечения единства измерений массового расхода многофазных потоков.
- 3.2 В основу измерений физической величины массового расхода многофазных потоков должны быть положены единицы, воспроизводимые первичным эталоном.
- 3.3 Первичный эталон состоит из комплекса следующих технических средств и вспомогательных устройств:
- эталонного массового расходомера Promass 83 F (кориолисового) компании «Endress + Hauser»,
 DN15 с диапазоном измерений расхода от 0,2 до 6,5 т/ч (2 шт.);
- эталонного массового расходомера Promass 83 F (кориолисового) компании «Endress + Hauser»,
 DN50 с диапазоном измерений расхода от 0,2 до 28,0 т/ч;
- эталонного массового расходомера Promass 83 F (кориолисового) компании «Endress + Hauser»,
 DN80 с диапазоном измерений расхода от 0,2 до 110,0 т/ч;

- набора критических микросопел типа МСК №№ 1H, 2H, 3H, 4H, 5H, 6H, 7H, 8H, 9H, 10H, 11H, с диапазоном измерений расхода воздуха, приведенного к стандартным условиям, от 0,1 до 250 м³/ч;
- термопреобразователя сопротивления ТСП Метран-206-04-100-В-4-1-Н10-У1.1 с диапазоном измерений температур от минус 50 °C до плюс 200 °C;
- термопреобразователя с унифицированным выходным сигналом Метран-2700 с диапазоном измерений температуры от минус 50 °C до плюс 120 °C (9 шт.);
- преобразователя плотности жидкости измерительного модели 7835 компании «Mobray Measurement» с диапазоном измерений плотности от 300 до 1100 кг/м³;
- влагомера нефти поточного серии ПВН-615.001 с поддиапазонами измерений объемной доли воды [0.01 ÷ 50.0] %, [50.0 ÷ 70.0] %, [70.0 ÷ 99.9] %;
- измерителя обводненности RedEye® модели RedEye 2G компании «Weatherford International Ltd» с пределами допускаемой основной абсолютной погрешности измерений объемной доли воды в сырой нефти;
 - при измерениях объемной доли воды от 0 % до 50 % ± 0,85 %;
 - при измерениях объемной доли воды от 50 % до 70 % ± 1,00 %;
 - при измерениях объемной доли воды от 70 % до 100 % ± 0,50 %;
- датчиков избыточного давления Метран-55-ДИ модели 515 с диапазоном измерений давления от 0,25 до 2,5 МПа;
- датчика абсолютного давления Метран-55-ДА, модели 505 с диапазоном измерений давления от 0,25 до 2,5 МПа;
 - манометра типа МТИ модели 1246 с диалазоном измерений давления от 0 до 10,0 МПа;
- счетчика газа ротационного модели RVG G 65 компании «Elster» DN50 с диапазоном измерений расхода от 5 до 100 м³/ч;
- счетчика газа ротационного модели RVG G160 компании «Elster» DN80 с диапазоном измерений расхода от 13 до 250 м³/ч;
- прибора цифрового для измерений давления DPI 740 с диапазоном измерений давления от 0,5 до 110 кПа;
- устройства для определения свободного газа УОСГ100-СКП в комплекте с манометром типа
 МТИ с диапазоном измерений газосодержания от 0,1 % до 10 %;
- насоса центробежного Mhie-403 компании «Wilo» производительностью 4,6 м³/ч и мощностью двигателя 1,1 кВт;
- насоса серии Red2m типа 230-50-9/STD компании «Espa» производительностью 3,6 м³/ч и мощностью двигателя 0.9 кВт;
- насоса центробежного серии CR-5-12 компании «Grundfos» производительностью 5,8 м³/ч и мощностью двигателя 2,2 кВт;
- насоса магистрального центробежного серии NB 40 компании «Grundfos» с максимальной производительностью 50 м³/ч и мощностью двигателя 7,5 кВт;
- насоса магистрального центробежного серии NB 50 компании «Grundfos» с максимальной производительностью 110 м³/ч и мощностью двигателя 55 кВт;
- насоса центробежного серии NB 65 компании «Grundfos» с максимальной производительностью 117,4 м³/ч и мощностью двигателя 22 кВт;
 - системы хранения рабочей жидкости с тремя баками объемом 3 м³ каждый;
 - ресиверов системы подачи воздуха объемом 0,5 м³ каждый (3 шт.);
 - сепаратора газожидкостного вертикального вихревого типа СЦВ-8А-159/16-10;
 - трехэлементного сепаратора компании «АК «ОЗНА»;
 - датчика уровня кондуктометрического ДС.К;
- датчика уровня РУПТ-АМ-2,26-Ж-0,8-1П-4/20 с диапазоном измерений уровня от 310 до 1950 мм;
- преобразователя уровня буйкового «Сапфир-22» МП-ДУ-Ех модели 2615 с диапазоном измерений уровня от 300 до 2615 мм;
 - ручного пробоотборника DN 50-6,3 с зондом пробозаборным щелевого типа ЩПУ-1;
 - блока охлаждения и стабилизации температуры жидкости YCRM 60;
- автоматизированной системы управления технологическим процессом первичного специального эталона;
 - предохранительного клапана 6,5 атм. DN 15;
 - предохранительного клапана 15 атм. DN 25;

- предохранительного клапана УФ 55115-025, рабочее давление 0,8 МПа;
- блока эжекторов;
- измерительного стола для монтажа испытуемых средств измерений с набором сменных трубопроводов;
 - компенсаторов длины DN 100 и DN 50;
 - компрессора мобильного компании «АВАС»;
 - компрессора винтового Allegro 38 компании «ALUP»;
 - фильтра газового;
 - бака дренажного объемом 1,5 м³ (2 шт);
 - запорной арматуры шаровых кранов с пневмо- или электроприводами.
- 3.4 В качестве рабочей среды применяют газожидкостную смесь, состоящую из EXXSOL D100 (нефтепродукт), питьевой воды¹⁾ и атмосферного воздуха в различных соотношениях.
- 3.5 Диапазон значений массового расхода газожидкостных смесей, воспроизводимого первичным эталоном от 2 до 110 т/ч.
- 3.6 Диапазон значений массового расхода жидкой смеси в составе газожидкостных смесей, воспроизводимого первичным эталоном, от 2 до 110 т/ч.
- З.7 Диапазон значений объемного расхода газа, приведенных к стандартным условиям, в составе газожидкостных смесей, воспроизводимого первичным эталоном, — от 0,1 до 250 м³/ч.
- 3.8 Первичный эталон обеспечивает воспроизведение единицы массового расхода газожидкостных смесей со средним квадратическим отклонением результата измерений S_0 , не превышающим 0,11 % при проведении не менее 11 независимых измерений. Неисключенная систематическая составляющая погрешности Θ_0 не превышает 0.35 %, стандартная неопределенность по типу A U_A = 0,11 %, стандартная неопределенность по типу B U_B = 0.2 %, суммарная неопределенность U_C = 0,23 %, расширенная неопределенность U_P = 0,46 %, при доверительной вероятности P = 0,95.
- 3.9 Первичный эталон обеспечивает воспроизведение единицы массового расхода жидкой смеси в составе газожидкостных смесей со средним квадратическим отклонением результата измерений S_0 , не превышающим 0,03 % при проведении не менее 11 независимых измерений. Неисключенная систематическая составляющая погрешности Θ_0 не превышает 0,06 %, стандартная неопределенность по типу $A U_A = 0.03$ %, стандартная неопределенность по типу $B U_B = 0.03$ %, суммарная неопределенность $U_C = 0.04$ %, расширенная неопределенность $U_p = 0.08$ %, при доверительной вероятности P = 0.95.
- 3.10 Первичный эталон обеспечивает воспроизведение единицы объемного расхода газа в составе газожидкостных смесей со средним квадратическим отклонением результата измерений S_0 , не превышающим 0,1 % при проведении не менее 11 независимых измерений. Неисключенная систематическая составляющая погрешности Θ_0 не превышает 0,28 %, стандартная неопределенность по типу $A U_A = 0,1\%$, стандартная неопределенность по типу $B U_B = 0,16$ %, суммарная неопределенность $U_C = 0,17$ %, расширенная неопределенность $U_p = 0,38$ %, при при доверительной вероятности P = 0,95.
- 3.11 Для обеспечения воспроизведения единицы массового расхода газожидкостных смесей, а также массового расхода жидкой смеси, объемного расхода газа в составе газожидкостных смесей с указанной точностью должны быть соблюдены правила содержания и применения первичного эталона, утвержденные в установленном порядке.
- 3.12 Первичный эталон применяют для передачи единицы массового расхода газожидкостных смесей рабочим эталонам 1-го разряда сличением с помощью компаратора, эталонам 2-го разряда сличением с помощью компаратора и методом прямых измерений, рабочим средствам измерений методом прямых и косвенных измерений.

4 Рабочие эталоны

4.1 Рабочие эталоны 1-го разряда

В качестве рабочих эталонов 1-го разряда применяют эталонные расходомерные установки газожидкостных смесей с диапазоном воспроизведения массового расхода газожидкостных смесей от

В Российской Федерации действуют СанПиН 2.1.4.1074—2001.

FOCT 8.637-2013

0,1 до 150 т/ч с относительной погрешностью от 0,5 % до 1,0 % и диапазоном воспроизведения объемного расхода газа, приведенного к стандартным условиям, от 0,1 до 1600 м³/ч с относительной погрешностью от 1,0 % до 1,5 %;

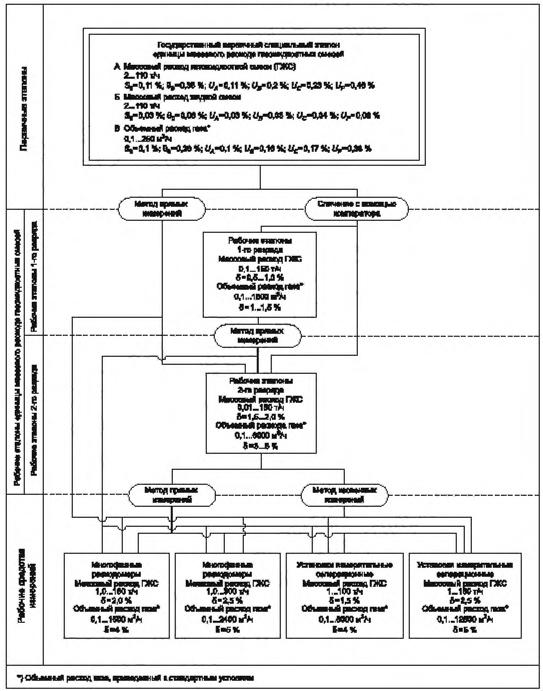
Рабочие эталоны 1-го разряда применяют для аттестации рабочих эталонов 2-го разряда и поверки рабочих средств измерений методом прямых и косвенных измерений.

4.2 Рабочие эталоны 2-го разряда

В качестве рабочих эталонов 2-го разряда применяют:

 поверочные установки с диапазоном воспроизведения массового расхода газожидкостных смесей от 0,01 до 150 т/ч с относительной погрешностью от 1,5 % до 2,0 % и диапазоном воспроизведения объемного расхода газа, приведенного к стандартным условиям, от 0,1 до 6000 м³/ч с относительной погрешностью от 3 % до 5 %.

Рабочие эталоны 2-го разряда применяют для поверки рабочих средств измерений методом прямых и косвенных измерений.


5 Рабочие средства измерений

В качестве рабочих средств измерений применяют:

- многофазные расходомеры с диапазоном измерений массового расхода газожидкостных смесей от 1 до 150 т/ч с относительной погрешностью 2,0 % и диапазоном измерений объемного расхода газа от 0,1 до 1600 м³/ч с относительной погрешностью 4,0 %;
- многофазные расходомеры с диапазоном измерений массового расхода газожидкостных смесей от 1 до 300 т/ч с относительной погрешностью 2,5 % и диапазоном измерений объемного расхода газа, приведенного к стандартным условиям, от 0,1 до 2400 м³/ч с относительной погрешностью 5 %;
- установки измерительные сепарационные с диапазоном измерений массового расхода газожидкостных смесей от 1,0 до 100 т/ч с относительной погрешностью 1,5 % и диапазоном измерений объемного расхода газа, приведенного к стандартным условиям, от 0,1 до 8000 м³/ч с относительной погрешностью 4 %;
- установки измерительные сепарационные с диапазоном измерений массового расхода газожидкостных смесей от 1,0 до 150 т/ч с относительной погрешностью 2,5 % и диапазоном измерений объемного расхода газа, приведенного к стандартным условиям, от 0,1 до 12500 м³/ч с относительной погрешностью 5 %.

Приложение А (обязательное)

Государственная поверочная схема для средств измерений массового расхода многофазных потоков

УДК 532.57:53.089.68:006.354

MKC 17.120

Ключевые слова: государственная поверочная схема, эталон, средство измерений, массовый расход, газожидкостная смесь, многофазный поток, многофазный расходомер

Редактор *Е.И. Мосур* Технический редактор *В.Н. Прусакова* Корректор *Л.С. Лысенко* Компьютерная верстка *Е.А. Кондрашовой*

Сдано в набор 16,04,2019. Подписано в печать 14.06.2019. Формат 60×84%. Гарнитура Ариал. Усл. печ. л. 1,40 - Уч.-изд. л. 1,12.

Подготовлено на основе электронной версии, предоставленной разработчиком стандарта

Создано в единичном исполнении во ФГУП «СТАНДАРТИНФОРМ» для комплектования Федерального информационного фонда стандартов, 117418 Москва, Нахимовский пр-т д. 31, к. 2.

www.gostinfo.ru info@gostinfo.ru