МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ (МГС)

INTERSTATE COUNCIL FOR STANDARDIZATION, METROLOGY AND CERTIFICATION (ISC)

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ ΓΟCT ISO 6614— 2013

НЕФТЕПРОДУКТЫ

Определение способности нефтяных масел и синтетических жидкостей отделяться от воды

(ISO 6614:1994, Petroleum products — Determination of water separability of petroleum oils and synthetic fluids, IDT)

Издание официальное

Предисловие

Цели, основные принципы и общие правила проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены»

Сведения о стандарте

- 1 ПОДГОТОВЛЕН Федеральным государственным унитарным предприятием «Всероссийский научно-исследовательский центр стандартизации, информации и сертификации сырья, материалов и веществ» (ФГУП «ВНИЦСМВ») на основе собственного перевода на русский язык англоязычной версии стандарта, указанного в пункте 5
 - 2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии
- 3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 14 ноября 2013 г. № 44)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004—97	Код страны по МК (ИСО 3166) 004—97	Сокращенное наименование национального органа по стандартизации Минэкономики Республики Армения	
Армения	AM		
Киргизия	KG	Кыргызстандарт	
Молдова	MD Молдова-Стандарт	Молдова-Стандарт	
Россия	RU	Росстандарт	
Узбекистан	UZ	Узстандарт	

- 4 Приказом Федерального агентства по техническому регулированию и метрологии от 22 ноября 2013 г. № 713-ст межгосударственный стандарт ГОСТ ISO 6614—2013 введен в действие в качестве национального стандарта Российской Федерации с 1 января 2015 г.
- 5 Настоящий стандарт идентичен международному стандарту ISO 6614:1994 «Нефтепродукты. Определение способности к отделению от воды нефтяных масел и синтетических жидкостей» («Petroleum products Determination of water separability of petroleum oils and synthetic fluids», IDT).

Международный стандарт разработан Техническим комитетом по стандартизации ISO/TC 28 «Нефтепродукты и смазочные материалы» Международной организации по стандартизации (ISO).

Наименование настоящего стандарта изменено относительно наименования указанного международного стандарта для приведения в соответствие с ГОСТ 1.5 (подраздел 3.6).

При применении настоящего стандарта рекомендуется использовать вместо ссылочных международных стандартов соответствующие им межгосударственные стандарты, сведения о которых приведены в дополнительном приложении ДА

6 ВВЕДЕН ВПЕРВЫЕ

7 ПЕРЕИЗДАНИЕ, Сентябрь 2019 г.

Информация о введении в действие (прекращении действия) настоящего стандарта и изменений к нему на территории указанных выше государств публикуется в указателях национальных стандартов, издаваемых в этих государствах, а также в сети Интернет на сайтах соответствующих национальных органов по стандартизации.

В случае пересмотра, изменения или отмены настоящего стандарта соответствующая информация будет опубликована на официальном интернет-сайте Межгосударственного совета по стандартизации, метрологии и сертификации в каталоге «Межгосударственные стандарты»

> © ISO, 1994 — Все права сохраняются © Стандартинформ, оформление, 2014, 2019

В Российской Федерации настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

FOCT ISO 6614-2013

Содержание

1 Область применения	. 1
2 Нормативные ссылки	. 1
3 Термины и определения	. 2
4 Сущность метода	. 2
5 Реактивы	. 2
6 Аппаратура	. 2
7 Отбор проб	. 3
8 Подготовка аппаратуры	
9 Проведение испытания	. 3
10 Оформление результатов	. 4
11 Прецизионность	. 4
12 Протокол испытания	. 5
Приложение А (обязательное) Стандартизованные описания слоев эмульсии, масла (или жидкости))
и воды и их поверхностей раздела	. 6
Приложение ДА (справочное) Сведения о соответствии ссылочных международных стандартов межгосударственным стандартам	. 7

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

НЕФТЕПРОДУКТЫ

Определение способности нефтяных масел и синтетических жидкостей отделяться от воды

Petroleum products. Determination of the demulsification ability of petroleum oils and synthetic fluids

Дата введения — 2015—01—01

Предупреждение — Применение настоящего стандарта может быть связано с использованием опасных материалов, операций и оборудования. В настоящем стандарте не предусмотрено рассмотрение всех проблем безопасности, связанных с его применением. Пользователь настоящего стандарта несет ответственность за установление соответствующих мер по технике безопасности и охране здоровья, а также определяет возможности применения законодательных ограничений перед его применением.

1 Область применения

Настоящий стандарт устанавливает метод определения способности нефтяных масел и синтетических жидкостей отделяться от воды (деэмульсации) при заданной температуре.

Примечание 1 — Испытания проводят при температуре (54 ± 1) °C, для продуктов с вязкостью более 90 мм 2 /с при температуре 40 °C температуру можно увеличить до (82 ± 1) °C. Также можно проводить испытания при других значениях температуры.

Данный метод был разработан специально для турбинных масел вязкостью от 32 до 95 мм²/с при температуре 40 °C, его можно использовать для определения способности к отделению от воды масел разных типов и диапазонов вязкости, а также синтетических жидкостей.

Метод может быть непригоден для продуктов с высокой вязкостью, для которых возможно недостаточное перемешивание масла и воды.

Примечание 2—Идентичную процедуру используют для синтетических жидкостей плотностью не менее 1000 кг/м³ при температуре 15 °C, при этом следует отметить, что вода, как правило, находится над эмульсией или жидкостью.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты. Для датированных ссылок применяют только указанное издание ссылочного стандарта, для недатированных последнее издание (включая все изменения).

ISO 3170:1988¹⁾, Petroleum liquids — Manual sampling (Нефтепродукты жидкие. Ручной отбор проб) ISO 3171:1988, Petroleum liquids — Automatic pipeline sampling (Нефтепродукты жидкие. Автоматический отбор проб из трубопроводов)

ISO 3696:1987, Water for analytical laboratory use — Specification and test methods (Вода для лабораторного анализа. Технические требования и методы испытаний)

ISO 4788:1980²), Laboratory glassware — Graduated measuring cylinders (Лабораторная стеклянная посуда. Градуированные мерные цилиндры)

ISO 7120:1987, Petroleum products and lubricants — Petroleum oils and other fluids — Determination of rust-preventing characteristics in the presence of water (Нефтепродукты и смазочные материалы. Нефтяные масла и другие жидкости. Определение противокоррозионных характеристик в присутствии воды)

Действует ISO 3170:2004.

²⁾ Действует ISO 4788:2005.

3 Термины и определения

В настоящем стандарте применен следующий термин с соответствующим определением:

3.1 способность к отделению от воды (water separability): Способность нефтяных масел или синтетических жидкостей отделяться от воды при заданной температуре, которая выражается цифровым кодом, определяемым в соответствии с настоящим стандартом, содержащим соответствующие объемы масла, воды и эмульсии, а также время (в скобках) и описание внешнего вида каждого слоя в соответствии с приложением А.

4 Сущность метода

В мерном цилиндре при температуре испытания перемешивают в течение 5 мин 40 см³ образца нефтяного масла или синтетической жидкости и 40 см³ дистиллированной воды. Регистрируют время, необходимое для разделения образовавшейся эмульсии. Если после выдерживания в течение 1 ч не происходит полного разделения, регистрируют полученные объемы масла (или жидкости), воды и эмульсии.

5 Реактивы

5.1 Вода квалификации ч. д. а. класса 3 по ISO 3696. Для арбитражных испытаний используют дистиллированную воду с удельной электрической проводимостью не более 10⁻⁴ См/м при температуре 25 °C.

Очищающий растворитель, полностью смешивающийся с испытуемым материалом.

Для синтетических жидкостей используют низкокипящий растворитель в зависимости от испытуемого материала.

Примечание 3 — Для нефтяных масел пригоден нефтяной растворитель или пентан.

- 5.3 Ацетон чистотой не менее 99 %.
- 5.4 Очищающий раствор хромсерной кислоты или очищающий раствор сильно окисляющей кислоты, не содержащей хрома¹).

Предупреждение — Хромсерная кислота опасна для здоровья. Она токсична, является канцерогеном, так как содержит соединения хрома (VI), коррозионно-активная и потенциально опасна при контакте с органическими веществами. При использовании чистящего раствора хромсерной кислоты необходимо использовать защитную одежду й очки. Нельзя всасывать хромсерную кислоту в пипетку ртом. После использования чистящие растворы не сливают в отверстие для стоков, а нейтрализуют с большой осторожностью из-за присутствия концентрированной серной кислоты и утилизируют в соответствии со стандартными процедурами для токсичных лабораторных отходов (хром очень опасен для окружающей среды).

Не содержащие хром сильно окисляющие чистящие растворы также являются коррозионно-активными и потенциально опасными при контакте с органическими веществами, но не содержат хром, для которого требуются особые процедуры утилизации.

5.5 Искусственная морская вода или 1 % масс. раствор хлорида натрия (NaCl) в воде (5.1), или искусственная морская вода по ISO 7120.

6 Аппаратура

Используют обычную лабораторную аппаратуру, а также по 6.1-6.4.

- 6.1 Мерный цилиндр вместимостью 100 см³, соответствующий ISO 4788, предпочтительно из жаропрочного стекла. Внутренний диаметр должен быть не менее 27 мм и не более 30 мм по всей высоте, измеренной от верха до точки, находящейся на расстоянии 6 мм от дна цилиндра.
- 6.2 Баня для нагревания с размерами, позволяющими погружение не менее двух испытательных цилиндров в жидкость бани до отметки 85 см³, обеспечивающая поддержание температуры в пределах

¹⁾ При использовании горячего раствора «Нохромикс»[®] или выдержанного в течение 24 ч раствора «Микро»[®] получают результаты, сопоставимые с результатами, полученными при использовании хромсерной киспоты. «Нохромикс»[®] и «Микро»[®] — примеры имеющихся в продаже не содержащих хром продуктов. Данная информация приведена для удобства пользователей настоящего стандарта, а не в качестве поддержки этой продукции ISO. Можно использовать аналогичную продукцию при условии получения эквивалентных результатов.

1 °C (см. примечание 1). Баня должна быть оснащена зажимами, надежно удерживающими цилиндры при перемешивании так, чтобы продольная ось мешалки (6.3) соответствовала вертикальной оси цилиндра.

Примечание 4 — Предпочтительно использовать баню со стеклянным корпусом, так как это позволит регистрировать высоту образующихся слоев, не извлекая цилиндр из бани.

- 6.3 Лопастная мешалка из хромированной или нержавеющей стали следующих размеров:
- длина, мм 120,0 ± 1,5;
- ширина, мм 19,0 ± 0,5;
- толщина, мм от 1,5 до 1,6.

Мешалку устанавливают на вертикальный вал из аналогичного металла диаметром приблизительно 6 мм, подключенный к приводному механизму, вращающему лопасть со скоростью (1500 ± 15) об/мин. При опускании мешалки в цилиндр, закрепленный в бане, конструкция устройства должна обеспечивать фиксирование упора мешалки на расстоянии 6 мм от нижнего края лопасти до дна цилиндра.

Во время работы мешалки нижний край лопасти должен отклоняться не более чем на 1 мм от оси вращения.

Цилиндр очищают при отключенной и поднятой вертикально мешалке.

 6.4 Стеклянный стержень, покрытый устойчивым к воздействию испытуемого масла или жидкости материалом, например резиной.

7 Отбор проб

Образцы отбирают по ISO 3170, ISO 3171 или эквивалентным национальным стандартам. Пробы для испытания получают после тщательного перемешивания образца, при необходимости используя механические средства перемешивания.

8 Подготовка аппаратуры

- 8.1 Очищают мерный цилиндр (6.1), удаляя пленку масла (или жидкости) очищающим растворителем (5.2), затем ацетоном (5.3) и водопроводной водой. Полностью погружают цилиндр в моющий раствор хромсерной кислоты (5.4). При необходимости раствор нагревают до температуры не выше 50 °C. Тщательно промывают водопроводной водой, затем водой по 5.1.
- 8.2 Очищают мешалку (6.3) и вал гигроскопической ватой или тканью, смоченной очищающим растворителем (5.2), и сушат потоком воздуха. При очистке следует соблюдать осторожность, чтобы не деформировать лопасть и не сместить настройку мешалки.

9 Проведение испытания

9.1 Нагревают воду (5.1) или искусственную морскую воду (5.5), если продукт предназначен для применения на море, до температуры испытания и наливают ее в мерный цилиндр (6.1) до отметки 40 см³. Нагревают образец масла или жидкости до такой же температуры и наливают в цилиндр до отметки 80 см³. Помещают цилиндр в нагревательную баню (6.2) до отметки на цилиндре не менее 85 см³ и выдерживают до установления температурного равновесия с баней.

Примечание 5 — Для нагревания образца до температуры испытания достаточно 20 мин.

 9.2 Закрепляют цилиндр (6.1) непосредственно под перемешивающей лопастью (6.3). Опускают мешалку в цилиндр на необходимую глубину до упора.

Мешалку (6.3) и секундомер включают одновременно и перемешивают 5 мин при частоте вращения (1500 ± 15) об/мин. Затем выключают мешалку, вынимают ее из мерного цилиндра, оставляя над цилиндром.

Стеклянной палочкой (6.4) снимают жидкость с лопасти в цилиндр. Вынимают цилиндр из зажимов и аккуратно перемещают его в другую часть бани.

- 9.3 Через 5 мин замеряют объемы слоев масла (или жидкости), воды и эмульсии через корпус прозрачной бани или вынимая цилиндр из бани.
- 9.4 Регистрируют время (с 5-минутными интервалами), необходимое для снижения объема эмульсии до 3 см³ или менее. Если через 1 ч после окончания перемешивания объем эмульсии превышает 3 см³, испытание прекращают и регистрируют объемы масла, воды и эмульсии в кубических сантиметрах.

FOCT ISO 6614-2013

9.5 Внешний вид каждого слоя и каждой поверхности раздела должен быть описан в соответствии с приложением А.

10 Оформление результатов

Результаты испытания выражают цифровым кодом (9.3—9.5), как показано в примерах в следующей последовательности: объемы масла, воды, эмульсии и время (в скобках). Максимальный объем слоя масла составляет 43 см³. Добавляют шифр в соответствии с приложением A, например b) a) b) b).

Способность отделяться от воды	Описание результата
40400 (20)	Полное разделение произошло за 20 мин. В течение 15 мин оставалось более $3\ \mathrm{cm}^3$ эмульсии.
39—38—3 (20)	Полного разделения не произошло, но объем эмульсии уменьшился до 3 см ³ , поэтому испытание было прекращено.
39356 (60)	Более 3 см ³ эмульсии оставалось после 60 мин, т. е. 39 см ³ масла, 35 см ³ воды и 6 см ³ эмульсии.
43—37—0 (30)	Объем слоя эмульсии уменьшился до 3 см ³ или менее после 30 мин. Слой эмульсии после 25 мин превышал 3 см ³ , например 0—36—44 или 43—33—4.

11 Прецизионность

Прецизионность метода, полученная при статистическом анализе результатов межлабораторных испытаний, следующая.

11.1 Повторяемость

Расхождение между результатами последовательных испытаний, полученными одним и тем же оператором с использованием одной и той же аппаратуры при постоянных рабочих условиях на идентичном исследуемом материале в течение длительного времени при нормальном и правильном выполнении процедуры в соответствии с данным методом испытания, может превысить значения, указанные на рисунке 1, только в одном случае из 20.

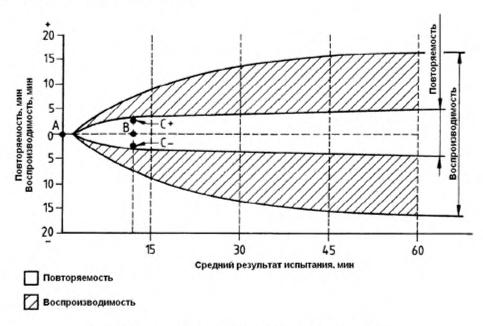


Рисунок 1 — Диаграмма определения прецизионности испытания

Использование диаграммы

Вычисляют средний результат испытания в минутах. Перемещаются от точки A на оси ординат вправо в точку В по оси абсцисс. Вычисляют и наносят на диаграмму точки отклонения C+ и C- от среднего значения результата испытания. Если точки отклонения попадают в область повторяемости, результаты расположены в пределах прецизионности испытания.

Пример — Масло имеет значения 40—40—0 (10 мин) и 40—40—0 (15 мин). Средний результат испытания составляет 12,5 мин (В), отклонение от среднего значения +2,5 (С+) и -2,5 (С-). Эти точки попадают в область повторяемости.

Эту диаграмму можно использовать для определения воспроизводимости при участии разных лабораторий.

11.2 Воспроизводимость

Расхождение между результатами двух единичных и независимых результатов испытаний, полученных разными операторами в разных лабораториях на идентичном исследуемом материале в течение длительного времени при нормальном и правильном выполнении процедуры в соответствии с данным методом испытания, может превысить значения, указанные на рисунке 1, только в одном случае из 20.

П р и м е ч а н и е 6 — Прецизионность метода была получена при статистическом анализе результатов межлабораторных испытаний турбинного масла вязкостью от 32 до 95 мм²/с при температуре 40 °C.

12 Протокол испытания

Протокол испытания должен содержать:

- а) тип и полную идентификацию испытуемого нефтепродукта;
- b) обозначение настоящего стандарта;
- с) температуру проведения испытания и используемый водный раствор по 5.5 (при использовании);
- d) результат испытания, оформленный в соответствии с разделом 10;
- е) отклонение от методики настоящего стандарта:
- f) дату проведения испытания.

Приложение А (обязательное)

Стандартизованные описания слоев эмульсии, масла (или жидкости) и воды и их поверхностей раздела

А.1 Описание слоев

Описывают внешний вид каждого слоя следующим образом.

А.1.1 Слой масла (или жидкости)

- а) Прозрачный;
- b) помутневший;
- с) мутный (молочный).

А.1.2 Слой воды

- а) Прозрачный;
- b) узорчатый и/или с пузырьками;
- с) помутневший:
- d) мутный (молочный).

А.1.3 Слой эмульсии

- а) Рыхлый и узорчатый:
- b) мутный (молочный);
- с) пенообразный.

А.2 Описание поверхностей раздела

Описывают внешний вид поверхностей раздела «масло/эмульсия» и «вода/эмульсия» следующим образом:

- а) четко выраженная, резкая;
- b) слабовыраженная, с пузырьками;
- с) слабовыраженная, узорчатая.

А.3 Пояснение к описанию терминов

Помутневший слой является прозрачным, мутный — непрозрачным.

Принципиальное отличие между мутной и пенообразной эмульсией в том, что мутная эмульсия может быть нестабильной, пенообразная эмульсия имеет густую консистенцию и может быть достаточно стабильной. Мутная эмульсия легко вытекает из наклоненного цилиндра, пенообразная эмульсия — не вытекает.

Узорчатый слой — слой, в котором небольшое количество масла находится во взвешенном состоянии в фазе, состоящей в основном из воды, в результате чего появляется эффект плетения или марли.

Приложение ДА (справочное)

Сведения о соответствии ссылочных международных стандартов межгосударственным стандартам

Таблица ДА.1

Обозначение ссылочного международного стандарта	Степень соответствия	Обозначение и наименование соответствующего межгосударственного стандарта
ISO 3170:1988		
ISO 3171:1988	-	•
ISO 3696:1987	-	•
ISO 4788:1980	-	•
ISO 7120:1987	IDT	ГОСТ ISO 7120—2015 «Нефтепродукты и смазочные материа- лы. Масла нефтяные и другие жидкости. Определение проти- вокоррозионных свойств в присутствии воды»

^{*} Соответствующий межгосударственный стандарт отсутствует. До его принятия рекомендуется использовать перевод на русский язык данного стандарта.

Примечание — В настоящей таблице использовано следующее условное обозначение степени соответствия стандартов:

⁻ IDT — идентичный стандарт.

УДК 665.76:620.162:006.354

MKC 75.080

Ключевые слова: нефтепродукты, нефтяные масла, синтетические жидкости, способность отделяться от воды

Редактор А.Е. Минкина Технические редакторы В.Н. Прусакова, И.Е. Черепкова Корректор Е.И. Рычкова Компьютерная верстка Д.В. Кардановской

Сдано в набор 24.09.2019. Подписано в печать 25.10.2019. Формат 60 × 84¹/₈. Гарнитура Ариал. Усл. печ. л. 1,40. Уч.-изд. л. 1,20.

Подготовлено на основе электронной версии, предоставленной разработчиком стандарта

ИД «Юриспруденция», 115419, Москва, ул. Орджоникидзе, 11. www.jurisizdat.ru y-book@mail.ru

Создано в единичном исполнении во ФГУП «СТАНДАРТИНФОРМ» для комплектования Федерального информационного фонда стандартов, 117418 Москва, Нахимовский пр-т, д. 31, к. 2. www.gostinfo.ru info@gostinfo.ru