МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ (МГС)

INTERSTATE COUNCIL FOR STANDARDIZATION, METROLOGY AND CERTIFICATION (ISC)

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ ΓΟCT 32324— 2013

МАСЛА СМАЗОЧНЫЕ Определение характеристик деэмульсации

Издание официальное

Предисловие

Цели, основные принципы и общие правила проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены»

Сведения о стандарте

- 1 ПОДГОТОВЛЕН Открытым акционерным обществом «Всероссийский научно-исследовательский институт по переработке нефти» (ОАО «ВНИИ НП») на основе собственного перевода на русский язык англоязычной версии стандарта, указанного в пункте 5
 - 2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии
- 3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 27 сентября 2013 г. № 59-П)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004-97	Код страны по МК (ИСО 3166) 004—97	Сокращенное наименование национального органа по стандартизации
Армения	AM	Минэкономики Республики Армения
Беларусь	BY	Госстандарт Республики Беларусь
Киргизия	KG	Кыргызстандарт
Молдова	MD	Молдова-Стандарт
Россия	RU	Росстандарт
Таджикистан	TJ	Таджикстандарт
Узбекистан	UZ	Узстандарт

- 4 Приказом Федерального агентства по техническому регулированию и метрологии от 22 ноября 2013 г. № 682-ст межгосударственный стандарт ГОСТ 32324—2013 введен в действие в качестве национального стандарта Российской Федерации с 1 января 2015 г.
- 5 Настоящий стандарт идентичен стандарту ASTM D 2711—11 «Стандартный метод определения характеристик деэмульсации смазочных масел» («Standard test method for demulsibility characteristics of lubricating oils», IDT).

Стандарт разработан Комитетом ASTM D02 «Нефтепродукты и смазочные материалы» и находится под контролем Подкомитета D02.L0.02 «Смазочные материалы механизмов».

Наименование настоящего стандарта изменено относительно наименования указанного стандарта для приведения в соответствие с ГОСТ 1.5 (подраздел 3.6).

При применении настоящего стандарта рекомендуется использовать вместо ссылочных стандартов соответствующие им межгосударственные стандарты, сведения о которых приведены в дополнительном приложении ДА

6 ВВЕДЕН ВПЕРВЫЕ

7 ПЕРЕИЗДАНИЕ. Август 2019 г.

Информация о введении в действие (прекращении действия) настоящего стандарта и изменений к нему на территории указанных выше государств публикуется в указателях национальных стандартов, издаваемых в этих государствах, а также в сети Интернет на сайтах соответствующих национальных органов по стандартизации.

В случае пересмотра, изменения или отмены настоящего стандарта соответствующая информация будет опубликована на официальном интернет-сайте Межгосударственного совета по стандартизации, метрологии и сертификации в каталоге «Межгосударственные стандарты»

В Российской Федерации настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

FOCT 32324-2013

Содержание

1 Область применения
2 Нормативные ссылки
3 Сущность метода 1
4 Назначение и применение
5 Аппаратура 2
6 Реактивы и материалы
7 Подготовка аппаратуры. ,
8 Метод А
9 Метод В 6
10 Оформление результатов
11 Прецизионность метода А 8
12 Прецизионность метода В
13 Смещение
Приложение Х1 (справочное) Аппаратура
Приложение ДА (справочное) Сведения о соответствии ссылочных стандартов
межгосударственным стандартам

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

МАСЛА СМАЗОЧНЫЕ

Определение характеристик деэмульсации

Lubricating oils. Determination of demulsibility characteristics

Дата введения — 2015—01—01

1 Область применения

- 1.1 Настоящий стандарт устанавливает метод определения характеристик деэмульсации способности масла и воды отделяться друг от друга и распространяется на смазочные масла со средней или высокой вязкостью.
- Значения в единицах системы СИ являются стандартными. Значения в скобках приведены для информации.
- 1.3 В настоящем стандарте не предусмотрено рассмотрение всех вопросов обеспечения безопасности, связанных с его применением. Пользователь настоящего стандарта несет ответственность за установление соответствующих правил по технике безопасности и охране здоровья, а также определяет целесообразность применения законодательных ограничений перед его использованием.

2 Нормативные ссылки

В настоящем стандарта использованы нормативные ссылки на следующие стандарты. Для датированных ссылок применяют только указанное издание ссылочного стандарта, для недатированных последнее издание (включая все изменения)¹).

ASTM D 1193, Specification for reagent water (Спецификация на реактив воду)

ASTM D 1796, Standard test method for water and sediment in fuel oil by the centrifuge method (laboratory procedure) [Стандартный метод определения воды и осадка в нефтяном топливе методом центрифугирования (лабораторная процедура)]

3 Сущность метода

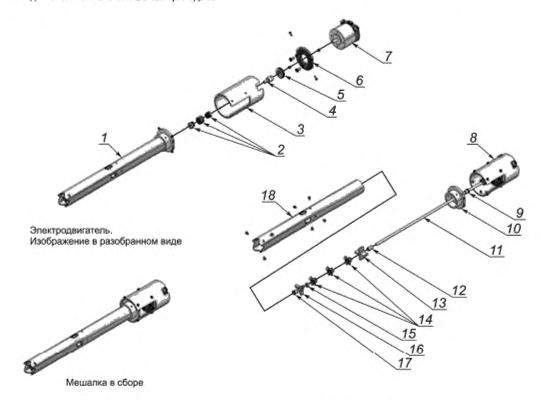
3.1 Масла без присадок, работающие при сверхвысоком давлении (ЕР) (метод А)

Перемешивают в специальной градуированной делительной воронке 405 см³ образца масла и 45 см³ дистиллированной воды в течение 5 мин при температуре 82 °C. После перемешивания выдерживают 5 ч, затем измеряют и регистрируют процентное содержание воды в масле и объемы воды и эмульсии, отделяющиеся от масла.

3.2 Масла с присадками, работающие при сверхвысоком давлении (ЕР) (метод В)

Перемешивают в специальной градуированной делительной воронке 360 см³ образца масла и 90 см³ дистиллированной воды в течение 5 мин при температуре 82 °C. После перемешивания выдерживают в течение 5 ч, затем измеряют и регистрируют процентное содержание воды в масле и объемы воды и эмульсии, отделяющиеся от масла.

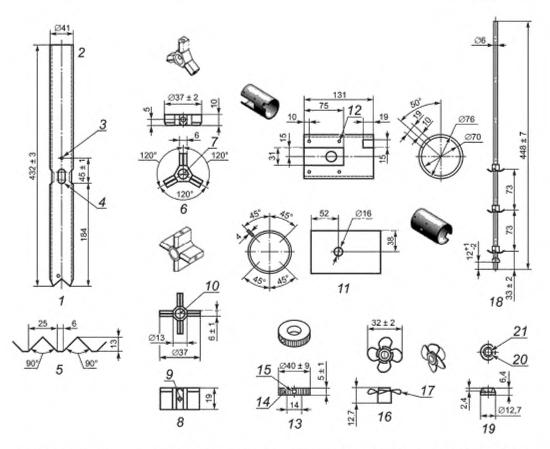
¹⁾ Ссылки на стандарты ASTM можно уточнить на сайте ASTM: www.astm.org или в службе поддержки клиентов ASTM: service@astm.org, а также в информационном томе ежегодного сборника стандартов ASTM (Website standard's Document Summary).


4 Назначение и применение

4.1 Настоящий метод испытания позволяет определить характеристики деэмульсации смазочных масел, склонных к загрязнению водой, при перекачке и циркуляции которых может наблюдаться турбулентность, способствующая образованию эмульсии вода-в-масле.

5 Аппаратура

5.1 Мешалка, состоящая из деталей, указанных на рисунках 1—3.


П р и м е ч а н и е 1 — для предотвращения образования опасных электрических разрядов следует использовать двигатель с пневматическим приводом.

Вал и корпус мешалки. Изображение в разобранном виде

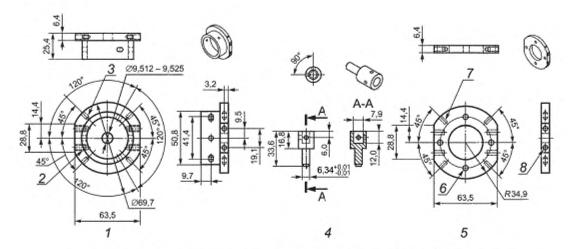
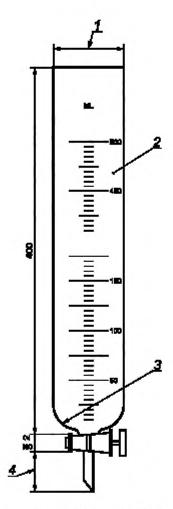

1 — вал и корпус мешалки в сборе; 2 — кулачковая муфта 1/4" типа FA5 BOSTON (6 мм) или аналогичная; 3 — алюминиевый корпус электродвигателя; 4 — адаптер вала мешалки; 5 — диск тахометра; 6 — крепление электродвигателя; 7 — бесщеточный электродвигатель постоянного тока напряжением 24 В, или аналогичный (безыскровый электродвигатель); 8 — электродвигатель в сборе; 9 — верхний подшипник; 10 — опора мешалки; 11 — вал пропеллера; 12 — центральный подшипник; 13 — опора центрального подшипника; 14 — пропеллер; 15 — направляющая вала пропеллера, 16 — опора нижнего подшипника; 17 — нижний подшипник; 18 — корпус вала пропеллера

Рисунок 1 — Мешалка

1 — хромированный корпус вала пропеллера; 2 — медная или латунная трубка типа К диаметром (40 ± 2) мм; 3 — четыре высверленных отверстия диаметром 5 мм; 4 — четыре утпубления диаметром 13 мм, глубиной 25 мм, расположенные на одинаковом расстоянии друг от друга; 5 — развертка внутренней поверхности трубки 1; 6 — хромированная опора нижнего подшилника из меди или стали; 7 — высверленное отверстие диаметром (7 ± 3) мм; 8 — хромированная опора центрального подшилника из меди или стали; 9 — четыре отверстия резьбой 8—32 или 6—32; 10 — высверленное отверстие диаметром (7 ± 3) мм; 11 — корпус электродвигателя из анодированного алюминия; 12 — четыре отверстия диаметром 4 мм; 13 — диск тахометра из хромированной стали; 14 — нассеча; 15 — резьбовое отверстие для установочного винта; 16 — пропеллер из нержавеющей стали; 17 — наклоч 25° от горизонтали, 18 — вал пропеллера из нержавеющей или хромированной стали; 19 — направляющая вала пропеллера из нержавеющей стали; 20 — углубление диаметром 7,6 мм, высотой 2,4 мм, 21 — сквозное отверстие диаметром 8,4 мм

Рисунок 2 — Детальная конструкция мешалки, часть 1



7 — опора мешалки из алюминия марки 6061-Т6; 2, 8 — четыре отверстия резьбой 10—32 UNF-2B [наружным диаметром 4,826 мм (0,190 дюйма) и шагом 32 витка на 1 дюйм] глубиной 10,414 мм (0,410 дюйма); 3, 7 — четыре отверстия резьбой 6—32 UNC-2B [наружным диаметром 3,5052 мм (0,1380 дюйма) и шагом 32 витка на 1 дюйм] глубиной 7,874 мм (0,310 дюйма); 4 — адалтер вала мешалки из нержавеющей стали; 5 — крепление электродвигателя из алюминия марки 6061-Т6; 6 — четыре сквозных отверстия диаметром 5,1 мм с центрами, расположенными на окружности диаметром 50,8 мм

Рисунок 3 — Детальная конструкция мешалки, часть 2

- 5.2 Специальная градуированная делительная воронка (см. рисунок 4).
- 5.3 Нагревательная баня размерами, позволяющими погружать в жидкость бани не менее двух испытательных делительных воронок до метки 500 см³. В нагревательной бане следует поддерживать температуру (82 ± 1) °С и надежно фиксировать делительные воронки при перемешивании масла и воды так, чтобы вертикальная ось мешалки соответствовала центральной линии делительной воронки.

П р и м е ч а н и е 2 — Не рекомендуется использовать силиконовое масло в качестве среды бани, поскольку любое загрязнение смеси масло/вода может привести к неудовлетворительным результатам.

Т— внутренний диаметр — приблизительно 50 мм, наружный диаметр — приблизительно 54 мм; 2 — воронка наружным диаметром 54 мм, изготовленная из трубки из жаропрочного боросиликатного стекла, имеющая стандартную толщину стенки; 3 — радиус — приблизительно 27 мм; 4 минимальный размер

Примечание — Запорный кран должен быть размещен как можно ближе к корпусу воронки.

Рисунок 4 — Градуированная делительная воронка

- 5.4 Центрифуга, требования к которой приведены в ASTM D 1796.
- 5.5 Центрифужные пробирки длиной от 195 до 203 мм (см. ASTM D 1796, рисунок 1).

6 Реактивы и материалы

6.1 Растворитель для очистки

Применяют любой растворитель, обеспечивающий очистку и эффективное удаление любого масла или жидкости с мешалки и мерного цилиндра. Установлено, что для настоящего стандарта пригоден 1,1,1-трихлорэтан.

Предупреждение — 1,1,1-Трихлорэтан опасен при вдыхании или проглатывании. Раздражает глаза. Высокая концентрация может вызвать обморок или привести к летальному исходу.

FOCT 32324-2013

П р и м е ч а н и е -3 — Если нельзя применять 1,1,1-трихлорэтан, в качестве альтернативных растворителей лаборатории используют гептан или уайт-спириты. Влияние альтернативного растворителя на прецизионность настоящего метода не установлено.

6.2 Вода класса реактив типа II, соответствующая ASTM D 1193.

7 Подготовка аппаратуры

7.1 Очищают градуированную делительную воронку, удаляя растворителем для очистки пленку масла, промывают ацетоном, затем водопроводной водой и водой класса реактив.

Предупреждение — Ацетон — легковоспламеняющийся, его пары могут возгораться. Рекомендуется использовать безыскровый двигатель.

7.2 Очищают мешалку, используя растворитель для очистки (см. 6.1). Перед проведением испытания мешалку сушат на воздухе.

8 Метод А

- 8.1 Нагревают жидкость в бане до температуры (82 ± 1) °С и поддерживают эту температуру в течение испытания.
- 8.2 Наливают в делительную воронку (405 ± 5) см 3 испытуемого масла комнатной температуры. Помещают делительную воронку с маслом в баню с постоянной температурой и доводят температуру в бане до $82\,^{\circ}$ С. Добавляют к маслу (45.0 ± 0.5) см 3 дистиллированной воды, отмеренной при комнатной температуре. Погружают мешалку в масло и аккуратно устанавливают следующим образом: опускают мешалку до касания с дном воронки, затем поднимают ее приблизительно на $25\,$ мм. Следят за тем, чтобы вертикальная ось мешалки располагалась по центральной вертикальной оси воронки. Включают на $5\,$ мин (с учетом времени запуска) мотор мешалки и плавно за $25-30\,$ с доводят до скорости перемешивания (4500 ± 500) об/мин, затем вынимают мешалку из смеси масло-вода, но не полностью из делительной воронки. Дают смеси стечь с мешалки в течение $5\,$ мин, затем полностью вынимают мешалку из делительной воронки и очищают.

П р и м е ч а н и е 4 — Не допускается использовать силиконовую смазку для запорных кранов. В качестве смазки для запорных кранов используют испытуемое масло или другие не содержащие силикон материалы или используют запорные краны из политетрафторэтилена (PTFE).

П р и м е ч а н и е 5 — Более быстрый режим запуска мешалки, в отличие от рекомендуемого, может привести к неудовлетворительным результатам.

- 8.3 Через 5 ч после перемешивания из центра воронки пипеткой вместимостью 50 см³ отбирают 50 см³ образца приблизительно с уровня на 50 мм ниже поверхности смеси масло-вода. Помещают содержимое пипетки в центрифужную пробирку и определяют содержание воды по ASTM D 1796. Регистрируют объем воды в центрифужной пробирке.
- 8.4 Сразу же вынимают делительную воронку из бани и сливают любую свободную воду, отделившуюся от смеси масло-вода, в мерный цилиндр вместимостью 50 см³. Выдерживают воду до комнатной температуры, измеряют и регистрируют ее объем.
- 8.5 После удаления свободной воды из делительной воронки объем оставшейся жидкости уменьшают до 100 см³ осторожным сифонированием жидкости сверху (конец сифона всегда должен находиться не более чем на 20 мм ниже поверхности жидкости) до градуировочной метки 100 см³ на делительной воронке. Оставшиеся 100 см³ жидкости (масло, воду и эмульсию) сливают в центрифужную пробирку.
- 8.6 Центрифугируют пробирку и ее содержимое в течение 10—15 мин с относительной центробежной силой, равной 700, и регистрируют объем отделенных воды и эмульсии.
- 8.7 Выполняют не менее двух определений на каждом образце масла, повторяя операции по 8.1—8.6. Если расхождения двух полученных результатов выходят за пределы повторяемости метода А, результаты не учитывают и проводят испытания на новом образце.

9 Метод В

9.1 Нагревают жидкость бани до температуры (82 ± 1) °C и поддерживают эту температуру в течение испытания.

9.2 Помещают в делительную воронку (360 ± 5) см³ испытуемого масла комнатной температуры. Устанавливают делительную воронку с маслом в баню с постоянной температурой и доводят ее температуру до 82 °C. Добавляют к маслу (90.0 ± 0,5) см³ дистиллированной воды, отмеренной при комнатной температуре. Погружают мешалку в масло и аккуратно устанавливают ее следующим образом: опускают мешалку до касания дна воронки, затем поднимают ее приблизительно на 25 мм. Следят за тем, чтобы вертикальная ось мешалки располагалась по центральной вертикальной оси воронки. Включают на 5 мин (с учетом времени запуска) мотор мешалки и плавно за 25—30 с доводят до скорости перемешивания (2500 ± 250) об/мин (см. примечание 7). Затем не полностью вынимают мешалку из делительной воронки из смеси масло-вода. Дают смеси стечь с мешалки в течение 5 мин, затем полностью вынимают из делительной воронки и очищают.

 Π р и м е ч а н и е -6 — Более быстрый режим запуска мешалки, в отличие от рекомендуемого, может привести к неудовлетворительным результатам.

- 9.3 Через 5 ч после перемешивания пипеткой вместимостью 50 см³ отбирают 50 см³ образца с уровня на 50 мм ниже поверхности смеси масло-вода приблизительно из центра воронки. Помещают содержимое пипетки в центрифужную пробирку и определяют содержание воды в образце по ASTM D 1796. Регистрируют результаты как процентное содержание воды в масле.
- 9.4 Сразу же вынимают делительную воронку из бани и сливают свободную воду, отделившуюся от смеси масло-вода, в мерный цилиндр вместимостью 100 см³. Выдерживают воду до комнатной температуры, измеряют и регистрируют ее объем.
- 9.5 После удаления свободной воды из делительной воронки объем оставшейся жидкости уменьшают до 100 см³ осторожным сифонированием жидкости сверху (конец сифона всегда должен находиться не более чем на 20 мм ниже поверхности жидкости) до градуировочной метки 100 см³ на делительной воронке. Оставшиеся 100 см³ жидкости (масло, воду и эмульсию) сливают непосредственно в центрифужную пробирку.
- 9.6 Центрифугируют пробирку и ее содержимое в течение 10—15 мин с относительной центробежной силой, равной 700, и регистрируют отделенные объемы воды и эмульсии.
- 9.7 Выполняют не менее двух определений на каждом образце масла, повторяя процедуру по 9.1—9.3. Если расхождение двух полученных результатов выходит за пределы повторяемости метода В, результаты не учитывают и проводят испытания на новом образце.

Примечание 7 — При испытании высоковязких или образующих эмульсию масел частота оборотов электродвигателя мешалки может понижаться. Частоту оборотов электродвигателя мешалки проверяют часто в течение 5-минутного перемешивания и при необходимости регулируют. Рекомендуется использовать пропорционально-интергально-дифференциальный (ПИД) контроллер электродвигателя.

10 Оформление результатов

- 10.1 Указывают используемый метод А или В.
- 10.2 Вычисляют содержание воды в масле, %, по формуле (см. 8.3 или 9.3)

Содержание воды в масле =
$$\frac{\text{Объем воды в центрифужной пробирке, см}^3}{50 \text{ cm}^3}$$
100. (1)

- 10.2.1 Если содержание воды в масле не более 0,1 %, записывают: < 0,1 % или следовое количество.</p>
- 10.3 Регистрируют содержание воды в масле (%) (см. примечание 8), общее содержание свободной воды (см³) и содержание отделенной центрифугированием эмульсии (см³) для каждого определения и среднеарифметическое значение каждого измерения для всех испытаний. Общее содержание свободной воды это содержание свободной воды (см³), собранной в градуированный цилиндр вместимостью 50 см³ (см. 8.4 или 9.4) и содержание свободной воды, отделенной центрифугированием (см. 8.6 или 9.6). Эти параметры необходимы при определении характеристик деэмульсации смазочного масла.

Примечание 8 — Содержание воды в масле не более 0,1 % записывают: < 0,1 % или следовое количество.

11 Прецизионность метода А

11.1 При определении прецизионности метода А не использовали набор лабораторий и образцов, требуемый отчетом ASTM D 02-1007. Для оценки приемлемости результатов (с 95%-ным уровнем доверительной вероятности) использовали следующие критерии: показатели прецизионности основаны на результатах, полученных в семи лабораториях с использованием трех типов масел, и применяют для масел с классами вязкости в диапазоне от ISO 220 до ISO 460 (1000 SUS — 2000 SUS при 100 °F).

11.1.1 Повторяемость r

Расхождение между последовательными результатами, полученными одним и тем же оператором на одной и той же аппаратуре при постоянно действующих условиях на идентичном исследуемом материале при нормальном и правильном выполнении метода испытания в течение длительного времени, может превышать следующие значения только в одном случае из двадцати:

11.1.2 Воспроизводимость R

Расхождение между двумя единичными и независимыми результатами, полученными разными операторами в разных лабораториях на идентичном материале при нормальном и правильном выполнении метода испытания в течение длительного времени, может превышать следующие значения только в одном случае из двадцати:

12 Прецизионность метода В

12.1 При определении прецизионности метода В были использованы результаты межлабораторных испытаний, выполненных в 13 лабораториях, с использованием шести типов смазочных масел для работы при сверхвысоких давлениях, смешанных в лаборатории. Информацию о маслах, результаты их испытаний и анализ данных программы межлабораторных испытаний приведены в отчете ASTM D 02-1449. В зависимости от значений, полученных соответствующим методом, по уровню деэмульсации испытуемые масла были разделены на три группы (А, В и С), для каждой группы была установлена прецизионность (см. таблицу 1).

Таблица 1 — Прецизионност	ь метода В для смазочных масел	, работающих при сверхвысоком давлении
---------------------------	--------------------------------	--

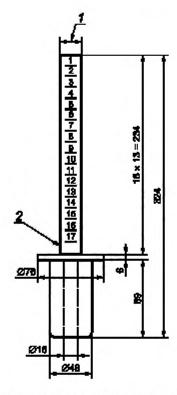
Группа де- змуль- сации	Значения для классификации		Повторяемость г		Воспроизводимость Я				
	Содержа- ние воды в масле, %	Общее со- держание свободной воды, см ³	Содержа- ние эмуль- сии, см ³	Содержа- ние воды в масле, %	Общее со- держание свободной воды, см ³	Содержание змульсии, см ³	Содержа- ние воды в масле, %	Общее со- держание свободной воды, м ³	Содержание змульсии, см ³
Α	Не более 1,4	Не менее 79	Не более 0,2	0,4	3,6	0,1 ^{A)}	8,0	5,1	0,2 ^{A)}
В	Не более 6,0	Не менее 60	Не более 4,0	4,0	11	1,6	4,2	23	3,5
С	Не менее 6,0	Не более 60	Не менее 4,0	5,6	18	Приблизи- тельно 23	22	57	Приблизи- тельно 96

12.1.1 Повторяемость г

Расхождение между двумя единичными и независимыми результатами, полученными разными операторами в разных лабораториях на идентичном материале при нормальном и правильном выполнении метода испытания в течение длительного времени, может превышать значения, указанные в таблице 1, только в одном случае из двадцати.

12.1.2 Воспроизводимость R

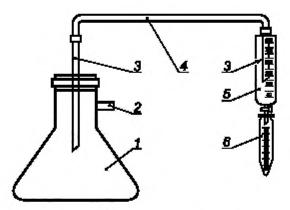
Расхождение между двумя единичными и независимыми результатами, полученными разными операторами, работающими в разных лабораториях на одном и том же испытуемом материале в течение длительного времени, может превышать значения, указанные в таблице 1, только в одном случае из двадцати.


13 Смещение

13.1 Смещение по настоящему стандарту не может быть определено, т. к. значения общего содержания свободной воды и эмульсии можно определить только в терминах настоящих методов испытаний.

Приложение X1 (справочное)

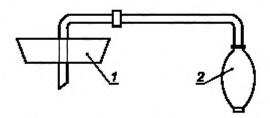
Аппаратура


X1.1 Пробоотборник и центрирующее приспособление (см. рисунок X1.1) являются вспомогательными устройствами для отбора образцов объемом 50 см³ из делительной воронки при определении содержания воды в масле (см. 8.3 настоящего стандарта).

1 — прикреплено тангенциально к окружности отверстия диаметром 16 мм; 2 — диаметр 25 мм, калибр 16

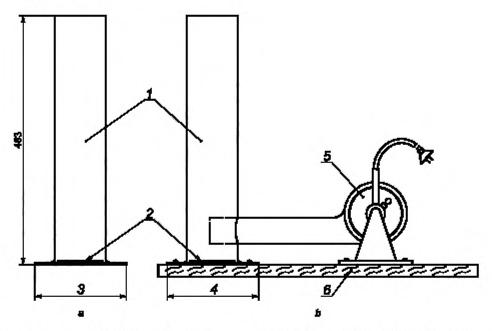
Рисунок X1.1 — Пробоотборник и центрирующее приспособление

X1.2 На рисунке X1.2 приведен экспресс-метод уменьшения объема жидкости, остающейся в делительной воронке, до 100 см³ сифонированием жидкости сверху [конец сифона всегда должен находиться не более чем на 20 мм (3/4 дюйма) ниже поверхности жидкости] до метки 100 см³ на делительной воронке.



1 — фильтровальная колба вместимостью 1000 см³; 2 — к всасывающему насосу; 3 — стеклянная трубка; 4 — резиновая трубка; 5 — делительная воронка вместимостью 500 см³; 6 — длинная центрифужная пробирка

Рисунок X1.2 — Устройство для уменьшения объема в делительной воронке


X1.2.1 Время, необходимое для перемещения 100 см³ жидкости из делительной воронки в центрифужную пробирку, можно сократить, особенно для высоковязких масел или эмульсии типа «майонез», создавая слабое давление (см. рисунок X1.3) на открытом конце делительной воронки.

X1.3 На рисунке X1.4 в представлен подходящий контейнер для растворителя, используемого для очистки мешалки после перемешивания масла и воды (см. 8.2 настоящего стандарта), на рисунке X1.4b — подходящий метод осушки мешалки после промывки растворителем.

1 — резиновая пробка № 11; 2 — резиновая груша

Рисунок X1.3 — Устройство для создания давления

а — резервуар с растворителем для очистки

b — сушилка, нагнетающая нагретый воздух

† — метаплический цилиндр внутренним диаметром 102 мм; 2 — спаянное соединение; 3 — квадрат со стороной 89,7 мм, калибр 16; 4 — квадрат со стороной 178 мм, калибр 16; 5 — вентилятор для нагнетания горячего воздуха; 6 — деревянное основание размерами 19 × 178 × 305 мм

Рисунок Х1.4 — Дополнительное оборудование

Приложение ДА (справочное)

Сведения о соответствии ссылочных стандартов межгосударственным стандартам

Таблица ДА.1

Обозначение ссылочного стандарта	Стелень срответствия	Обозначение и наименование соответствующего межгосударственного стандарга
ASTM D 1193	-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\	
ASTM D 1796	_	•

Соответствующий межгосударственный стандарт отсутствует. До его принятия рекомендуется использовать перевод на русский язык данного международного стандарта.

УДК 662.753:006.354 MKC 75.080

Ключевые слова: смазочные масла, средняя и высокая вязкость, деэмульсация

Редактор Е.И. Мосур Технические редакторы В.Н. Прусакова, И.Е. Черепкова Корректор Е.Р. Ароян Компьютерная верстка Г.В. Струковой

Сдано в набор 16.08.2019. Подписано в печать 17.09.2019. Формат 60 × 84.1/в. Гарнитура Ариал. Усл. леч. л. 2,33. Уч.-изд. л. 2,10.

Подготовлено на основе электронной версии, предоставленной разработчиком стандарта

ИД «Юриспруденция», 115419, Москва, ул. Орджоникидзе, 11. www.jurisizdat.ru y-book@mail.ru

Создано в единичном исполнении во ФГУП «СТАНДАРТИНФОРМ» для комплектования Федерального информационного фонда стандартов, 117418 Москва, Нахимовский пр-т, д. 31, к. 2. www.gostinfo.ru info@gostinfo.ru