МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ (МГС)

INTERSTATE COUNCIL FOR STANDARDIZATION, METROLOGY AND CERTIFICATION (ISC)

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ ΓΟCT 32271— 2013

БИТУМЫ НЕФТЯНЫЕ

Определение вязкости при повышенных температурах на ротационном вискозиметре

Издание официальное

Предисловие

Цели, основные принципы и общие правила проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены»

Сведения о стандарте

- 1 ПОДГОТОВЛЕН Техническим комитетом по стандартизации ТК 160 «Продукция нефтехимического комплекса», Федеральным государственным унитарным предприятием «Всероссийский научно-исследовательский центр стандартизации, информации и сертификации сырья, материалов и веществ» (ФГУП «ВНИЦСМВ») на основе собственного перевода на русский язык англоязычной версии стандарта, указанного в пункте 5
 - 2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии
- 3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации по переписке (протокол от 28 августа 2013 г. № 58-П)

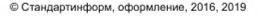
За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004—97	Код страны по МК (ИСО 3166) 004—97	Сокращенное наименование национального органа по стандартизации
Армения	AM	Минэкономики Республики Армения
Казахстан	KZ	Госстандарт Республики Казахстан
Киргизия	KG	Кыргызстандарт
Молдова	MD	Молдова-Стандарт
Россиия	RU	Росстандарт
Таджикистан	TJ	Таджикстандарт
Узбекистан	UZ	Узстандарт

- 4 Приказом Федерального агентства по техническому регулированию и метрологии от 28 августа 2013 г. № 754-ст межгосударственный стандарт ГОСТ 32271—2013 введен в действие в качестве национального стандарта Российской Федерации с 1 января 2015 г.
- 5 Настоящий стандарт идентичен стандарту ASTM D 4402-06 «Standard test method for viscosity determination of asphalt at elevated temperatures using a rotational viscometer» («Стандартный метод определения вязкости битума при повышенных температурах с помощью ротационного вискозиметра»).

Стандарт разработан Комитетом ASTM D08 «Кровельные и гидроизоляционные материалы» и находится под контролем подкомитета D08.03 «Покрытия и битуминозные материалы для гидроизоляции и кровли» Американского общества специалистов по испытаниям материалов.

Наименование настоящего стандарта изменено относительно наименования указанного стандарта для приведения в соответствие с ГОСТ 1.5 (подраздел 3.6).


При применении настоящего стандарта рекомендуется использовать вместо ссылочных стандартов соответствующие им межгосударственные стандарты, сведения о которых приведены в дополнительном приложении ДА

6 ВВЕДЕН ВПЕРВЫЕ

7 ПЕРЕИЗДАНИЕ. Август 2019 г.

Информация о введении в действие (прекращении действия) настоящего стандарта и изменений к нему на территории указанных выше государств публикуется в указателях национальных стандартов, издаваемых в этих государствах, а также в сети Интернет на сайтах соответствующих национальных органов по стандартизации.

В случае пересмотра, изменения или отмены настоящего стандарта соответствующая информация будет опубликована на официальном интернет-сайте Межгосударственного совета по стандартизации, метрологии и сертификации в каталоге «Межгосударственные стандарты»

В Российской Федерации настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

БИТУМЫ НЕФТЯНЫЕ

Определение вязкости при повышенных температурах на ротационном вискозиметре

Petroleum asphalts. Determination of viscosity at elevated temperatures using a rotational viscometer

Дата введения — 2015—01—01

1 Область применения

- 1.1 Настоящий стандарт устанавливает метод определения кажущейся вязкости нефтяного битума при температуре от 38 °C до 260 °C (от 100 °F до 500 °F) на ротационном вискозиметре с использованием термокамеры с контролируемой температурой для поддержания температуры испытания.
- 1.2 Значения в единицах измерения системы СИ являются стандартными. Значения в скобках приведены только для информации.
- 1.3 В настоящем стандарте не предусмотрено рассмотрение всех вопросов обеспечения безопасности, связанных с его применением. Пользователь настоящего стандарта несет ответственность за установление соответствующих правил по технике безопасности и охране здоровья, а также определяет целесообразность применения законодательных ограничений перед его использованием.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты. Для датированных ссылок применяют только указанное издание стандарта. Для недатированных — последнее издание (включая любые изменения)¹⁾.

ASTM E 220, Standard test method for calibration of thermocouples by comparison techniques (Стандартный метод калибровки термопар методом сравнения)

3 Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями:

- 3.1 кажущаяся вязкость (apparent viscosity): Отношение напряжения сдвига к скорости сдвига для ньютоновской или неньютоновской жидкости.
- 3.2 битум с наполнителем (filled asphalt): Битумная смесь, содержащая мелкодисперсные нерастворимые минеральные частицы.
- 3.3 ньютоновская жидкость (newtonian liquid): Жидкость, в которой скорость сдвига пропорциональна напряжению сдвига. Константа (постоянная) отношения напряжения сдвига к скорости сдвига является вязкостью жидкости. Следовательно, вязкость ньютоновской жидкости не зависит от скорости сдвига. Если отношение не является постоянным, жидкость является неньютоновской. В зависимости от температуры и/или скорости сдвига многие жидкости имеют свойства как ньютоновских, так и неньютоновских жидкостей.

¹⁾ Уточнить ссылки на стандарты ASTM можно на сайте ASTM www.astm.org или в службе поддержки клиентов ASTM: service@astm.org. В информационном томе ежегодного сборника стандартов ASTM следует обращаться к сводке стандартов ежегодного сборника стандартов на странице сайта.

- 3.4 скорость сдвига (shear rate): Скорость, с которой промежуточные слои жидкости движутся относительно друг друга. Единицей измерения является с⁻¹.
- 3.5 напряжение сдвига (shear stress): Отношение силы сдвига к единице площади. Единицей измерения в системе СИ является Па, в системе СГС дин/см².
- 3.6 вязкость (viscosity): Отношение между приложенным напряжением сдвига и скоростью сдвига (коэффициент вязкости), которое является мерой сопротивления течению жидкости. Единицей измерения вязкости в системе СИ является паскаль секунда (Па·с), в системе СГС пуаз (дин·с/см²), равный 0,1 Па·с. Часто сантипуаз (спз), равный одной миллипаскаль секунде (мПа·с), используют в качестве единицы вязкости.
- 3.7 размеры измерительной аппаратуры (apparatus-measuring geometry): Размеры деталей аппаратуры, контактирующих с пробой битума, и сопротивление крутящему моменту при вращении, используемые для расчета кажущейся вязкости. Производитель указывает используемую измерительную аппаратуру шпиндель, диск, коаксиальные цилиндры, лопасть и т. д.

4 Сущность метода

4.1 Для измерения кажущейся вязкости битума при повышенных температурах используют ротационный вискозиметр, требования к которому установлены в настоящем стандарте. Для измерения сопротивления вращению используют крутящий момент вращающейся измерительной аппаратуры, контактирующей с пробой битума, при контролируемой температуре. Для определения вязкости битума (Па·с, мПа·с или спз) используют крутящий момент и скорость.

5 Назначение и применение

- 5.1 Настоящий метод используют для измерения кажущейся вязкости битумов при переработке, смешивании или нагревании.
- 5.2 Некоторые битумы могут проявлять свойства неньютоновских жидкостей в условиях настоящего метода испытаний. Так как вязкость неньютоновских жидкостей не является абсолютным свойством, а характеризует поведение жидкости в пределах конкретной системы измерения, следует отметить, что результаты измерения по настоящему методу испытаний не всегда можно использовать для прогнозирования эксплуатационных характеристик.
- 5.3 Сравнивают значения вязкости неньютоновских жидкостей только для измерений, выполненных при одинаковых температурах, скорости и характеристике сдвига.

6 Аппаратура

- 6.1 Ротационный вискозиметр, измеряющий крутящий момент, необходимый для вращения с постоянной скоростью выбранной измерительной аппаратуры, контактирующей с пробой при заданной постоянной температуре испытания, и преобразующий измеренный крутящий момент в вязкость (Па·с, мПа·с или спз). При необходимости для некоторых аппаратов это преобразование можно проводить вручную.
- 6.2 Измерительная аппаратура разных конфигураций и размеров для измерения разных значений вязкости битума.
 - 6.3 Термокамера с контролируемой температурой для поддержания температуры испытания пробы.
 - 6.4 Многоразовые или одноразовые камеры для проб.
- 6.5 Терморегулятор, поддерживающий температуру пробы с точностью до \pm 1.0 °C (\pm 2,0 °F) при температуре испытания от 38 °C до 260 °C (от 100 °F до 500 °F).
 - 6.6 Весы для определения массы пробы с точностью взвешивания до 0,1 г.
 - Калибровочное устройство для калибровки регулятора температуры в соответствии с ASTM E 220.

7 Реактивы и материалы

7.1 Растворители для очистки камеры для проб, измерительной аппаратуры и вспомогательного оборудования.

8 Подготовка аппаратуры

8.1 Ротационный вискозиметр и термокамеру подготавливают к измерениям в соответствии с рекомендациями изготовителя.

9 Калибровка и стандартизация

- 9.1 Перед использованием и/или при необходимости устанавливают вискозиметр на нулевую отметку в соответствии с инструкциями изготовителя.
- 9.2 Точность вискозиме ра проверяют не реже 1 раза в год, используя сертифицированную стандартную жидкость известной вязкости при различных температурах, по методу, установленному поставщиком жидкости. Сертифицированная стандартная жидкость должна иметь свойства ньютоновской жидкости по всему диапазону температур испытания и скорости сдвига. Жидкость должна быть сертифицирована в диапазоне температур от 50 °C (90 °F) до значений температуры испытания. Измеренная вязкость жидкости должна быть в пределах ± 2 % от сертифицированного значения, в противном случае вискозиметр калибруют повторно.
- 9.3 Точность измерения температуры и температурную стабильность регулятора температуры проверяют не реже 1 раза в 6 мес. Точность проверяют, помещая пробы битума или масла с высокой температурой вспышки в испытательную камеру и приводя в равновесие до температуры в пределах 50 °C (90 °F) от температур испытания. Затем температуру пробы измеряют с точностью до ± 0,1 °C (± 0,2 °F) с помощью прослеживаемого измерительного прибора NIST, как описано в ASTM E 220. При разности температур соответствующим образом настраивают установку регулятора температуры.

10 Проведение испытания

- 10.1 Следуют инструкциям изготовителя по эксплуатации аппаратуры.
- 10.2 Перед калибровкой или испытанием прогревают электронную аппаратуру в течение не менее 5 мин.
- 10.3 Устанавливают регулятор температуры на требуемую температуру испытания с учетом корректировки по 9.3.
- 10.4 Выбирают измерительную аппаратуру, которая будет развивать на выбранной скорости сопротивление крутящего момента в интервале от 10 % до 98 % от мощности аппаратуры. Как правило, более точные измерения можно получить при более высоких показаниях крутящего момента.
- 10.5 Следует предварительно нагревать камеру для проб и выбранную измерительную аппаратуру в течение 15 мин для достижения температурного равновесия. При измерении вязкости битума для заполняемой аппаратуры эта процедура является обязательной.
- 10.6 В камеру для проб добавляют объем пробы, указанный изготовителем измерительной аппаратуры. Удобным способом для измерения объема является взвешивание в камере для проб количества битума, рассчитанного по приблизительным данным плотности образца, и затем возвращение камеры для проб в термокамеру с регулятором температуры. Перед взвешиванием необходимо тщательно перемешать битум для получения представительной пробы.

П р и м е ч а н и е — Следует соблюдать осторожность, чтобы не перегреть пробу и избежать возгорания материала с низкой температурой вспышки.

- 10.7 Не следует переполнять камеру для проб, достаточно того, чтобы измерительная часть аппаратуры была полностью погружена в образец. Необходимо соблюдать инструкции производителя. Объем пробы очень важен для соответствия стандарту калибровки системы.
- 10.8 Погружают нагретый измерительный аппарат в жидкость в термокамере, подсоединяют его к вискозиметру, следуя инструкциям изготовителя для точной настройки.
- 10.9 Доводят температуру пробы битума до необходимой в течение 30 мин и перед началом измерений выравнивают с температурой испытания в течение не менее 10 мин. Для битума с наполнителем немедленно включают двигатель.
- 10.10 Устанавливают скорость вращения двигателя вискозиметра, обеспечивающую сопротивление крутящего момента, составляющего от 10 % до 98 % полной мощности прибора. Поддерживают эту скорость и дают пробе прийти в равновесие в течение еще 5 мин. В течение этого периода кондиционирования температура не должна отклоняться более чем на ± 1,0 °C (± 2,0 °F).

- 10.11 Общее время измерения вязкости и крутящего момента с интервалами 1 мин составляет 3 мин. Оборудование может проводить эти измерения автоматически.
- 10.12 Повторяют операции по 10.9—10.11 для каждой требуемой температуры. При испытании битума с наполнителем для каждой температуры испытания необходимо использовать новую свежеперемешанную пробу.
- 10.13 Если показания крутящего момента более 98 % мощности прибора при минимальной температуре испытания, уменьшают скорость вращения измерительной аппаратуры и продолжают испытание или повторяют процедуры по 10.5—10.11 с измеряющей аппаратурой меньшего диаметра и соответствующим меньшим объемом пробы.
- 10.14 Если показания крутящего момента ниже 10 % мощности прибора при максимальной температуре испытания, увеличивают скорость вращения измерительной аппаратуры и продолжают испытание или повторяют процедуры по 10.5—10.11 с измерительной аппаратурой большего диаметра и соответствующим большим объемом пробы.
- 10.15 Если прибор не переводит показания крутящего момента в единицы вязкости, для получения значений вязкости умножают эти показания на соответствующий коэффициент.

11 Вычисления

11.1 Если прибор автоматически не определяет среднее значение трех показаний, вычисляют результат как среднеарифметическое значение трех определений с интервалами 1 мин с точностью до третьего десятичного знака. Если ротационный вискозиметр имеет цифровой выход, выражающий вязкость в сантипуазах, для получения вязкости в паскаль-секундах умножают значение на 0,001.

Автоматическое оборудование должно определять среднеарифметическое значение трех определений.

12 Отчет

12.1 Регистрируют результаты измерения вязкости в паскаль-секундах (Па·с), миллипаскаль-секундах (мПа·с) или сантипуазах (спз), температуру испытания, тип и размеры измерительной аппаратуры, крутящий момент в мН·м или в процентах от мощности оборудования, угловую скорость в с⁻¹ или об/мин.

Например, вязкость при температуре 135 °C составляет 0,455 Па·с с использованием диска Болина диаметром 25 мм, крутящим моментом 8,3 мН·м при угловой скорости 10 с⁻¹; или вязкость при температуре 400 °F составляет 240 спз с использованием шпинделя Брукфельда № 31, крутящим моментом 48 % при угловой скорости 60 об/мин.

13 Прецизионность и отклонение

13.1 Кровельный битум без наполнителя

Приемлемость любого результата (95%-ный доверительный уровень) оценивают по следующим критериям.

13.1.1 Повторяемость

Результаты двух последовательных испытаний, полученные одним и тем же оператором на одном и том же оборудовании в течение минимального периода времени, считают эквивалентными, если разность между ними не превышает 3,5 % среднеарифметического значения.

13.1.2 Воспроизводимость

Результаты, полученные в двух разных лабораториях, считают эквивалентными, если разность между ними не превышает 14,5 % среднеарифметического значения.

13.2 Кровельный битум с наполнителем

В 2004 г. были проведены межлабораторные испытания 3 проб кровельного битума с наполнителем 3 разных поставщиков. Испытания проводили при температуре 205 °C (400 °F) в 9 разных лабораториях. Полученные данные были использованы для оценки прецизионности битума с наполнителем. Прецизионность любого результата (95 %-ный доверительный уровень) можно оценить по следующим критериям.

- 13.2.1 Среднеквадратичное отклонение повторяемости составило 21,0 %. Результаты двух последовательных испытаний, полученные одним и тем же оператором на одном и том же оборудовании в течение минимального периода времени, считают эквивалентными, если разность между ними не превышает 59,4 % среднеарифметического значения.
- 13.2.2 Среднеквадратичное отклонение воспроизводимости составило 33,2 %. Результаты, полученные при испытании одного и того же материала двумя разными операторами в разных лабораториях, считают эквивалентными, если разность между ними не превыщает 94,0 % среднеарифметического значения.

13.3 Дорожный битум без наполнителя

По результатам анализа испытания 8 пар квалификационных проб AMRL приведены следующие оценки прецизионности. Были проанализированы данные результатов 142—202 лабораторий для каждой из 8 пар проб. Детали анализа представлены в заключительном отчете NCHRP (NCHRP Project № 9-26, Phase 3). Приемлемость любого результата (95 %-ный доверительный уровень) можно оценить по следующим критериям.

- 13.3.1 Коэффициент вариации (1s, %) повторяемости составил 1,2 %. Результаты двух последовательных испытаний, полученные одним и тем же оператором на одном и том же оборудовании в течение минимального периода времени, считают эквивалентными, если разность между ними не превышает 3,5 % (d2s, %) среднеарифметического значения.
- 13.3.2 Коэффициент вариации (1s, %) воспроизводимости составил 4,3 %. Результаты, полученные при испытании одного и того же материала двумя разными операторами в разных лабораториях, считают эквивалентными, если разность между ними не превышает 12,1 % (d2s, %) среднеарифметического значения.

13.4 Отклонение

Отклонение настоящего метода определения кажущейся вязкости не определено, т. к. отсутствует материал, имеющий принятое установленное значение.

Приложение ДА (справочное)

Сведения о соответствии ссылочных стандартов межгосударственным стандартам

Таблица ДА.1

Обозначение ссылочного стандарта	Степень соответствия	Обозначение и наименование межгосударствен- ного стандарта
ASTM E 220	_	*

^{*} Соответствующий межгосударственный стандарт отсутствует. До его принятия рекомендуется использовать перевод на русский язык данного стандарта.

УДК 665.6.033:006.354 MKC 75.140

Ключевые слова: нефтяные битумы, кажущаяся вязкость, повышенные температуры, ротационный вискозиметр

Редактор Е.И. Мосур Технический редактор В.Н. Прусакова Корректор М.И. Першина Компьютерная верстка Е.О. Асташина

Сдано в набор 15.08.2019. Подписано в печать 22.08.2019. Формат 60×84¹/₈. Гарнитура Ариал. Усл. печ. л. 1,40. Уч.-изд. л. 1,10. Подготовлено на основе электронной версии, предоставленной разработчиком стандарта

Создано в единичном исполнении во ФГУП «СТАНДАРТИНФОРМ» для комплектования Федерального информационного фонда стандартов, 117418 Москва. Нахимовский пр-т, д. 31, к. 2. www.gostinfo.ru info@gostinfo.ru