МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ (МГС)

INTERSTATE COUNCIL FOR STANDARDIZATION, METROLOGY AND CERTIFICATION (ISC)

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ ΓΟCT ISO 20884— 2012

ТОПЛИВА АВТОМОБИЛЬНЫЕ

Метод определения содержания серы рентгенофлуоресцентной спектрометрией с дисперсией по длине волны

(ISO 20884:2004, IDT)

Издание официальное

Предисловие

Цели, основные принципы и порядок проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0—92 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2—2009 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, применения, обновления и отмены»

Сведения о стандарте

- 1 ПОДГОТОВЛЕН Открытым акционерным обществом «Всероссийский научно-исследовательский институт по переработке нефти», Техническим комитетом по стандартизации ТК 31 «Нефтяные топлива и смазочные материалы» на основе собственного аутентичного перевода на русский язык стандарта, указанного в пункте 4
 - 2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии
- 3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 15 ноября 2012 г. № 42)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3168) 004—97	Код страны по МК (ИСО 3166) 004—97	Сокращенное наименование национального органа по стандартизации
Беларусь	BY	Госстандарт Республики Беларусь
Киргизия	KG	Кыргызстандарт
Россия	RU	Росстандарт
Таджикистан	TJ	Таджикстандарт
Узбекистан	UZ	Узстандарт

4 Настоящий стандарт идентичен международному стандарту ISO 20884:2004 Petroleum products — Determination of sulfur content of automotive fuels — Wavelength-dispersive X-ray fluorescence spectrometry (Нефтепродукты. Определение содержания серы в автомобильных топливах. Метод рентгенофлуоресцентной спектрометрии с волновой дисперсией).

Настоящий стандарт разработан на основе ГОСТ Р 52660—2006 «Топлива автомобильные. Метод определения содержания серы рентгенофлуоресцентной спектрометрией с дисперсией по длине волны».

Международный стандарт разработан техническим комитетом ТС 28 «Нефтепродукты и смазочные материалы» Международной организации по стандартизации (ISO).

Перевод с английского языка (en).

Официальные экземпляры международного стандарта, на основе которого подготовлен настоящий межгосударственный стандарт, и стандартов, на которые даны ссылки, имеются в Федеральном информационном фонде технических регламентов и стандартов.

Наименование настоящего стандарта изменено относительно наименования указанного стандарта для приведения в соответствие с ГОСТ 1.5—2001 (подраздел 3.6).

Степень соответствия — идентичная (IDT)

5 Приказом Федерального агентства по техническому регулированию и метрологии от 19 июня 2013 г. № 175-ст межгосударственный стандарт ГОСТ ISO 20884—2012 введен в действие в качестве национального стандарта Российской Федерации с 1 июля 2014 г.

6 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

© Стандартинформ, 2013

В Российской Федерации настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

FOCT ISO 20884-2012

Содержание

1	Область применения	. 1
2	Нормативные ссылки	. 1
3	Сущность метода	. 1
	Реактивы	
	Аппаратура	
6	Or6op npo6	.2
	Приготовление калибровочных растворов	
8	Подготовка к испытанию	. 3
9	Калибровка	.4
10	Проведение испытания	. 4
	Обработка результатов	
12	Прецизионность	. 5
13	Отчет	.5
П	риложение А (обязательное) Факторы, влияющие на результаты измерений и матричные	
	эффекты	. 6
Б	блиография	.6
П	оиложение ДА (справочное) Сведения о соответствии межгосударственных стандартов ссылочны	M
	международным стандартам	

ТОПЛИВА АВТОМОБИЛЬНЫЕ

Метод определения содержания серы рентгенофлуоресцентной спектрометрией с дисперсией по длине волны

Automotive fuels. Method for determination of sulfur content by wavelength-dispersive X-ray fluorescence spectrometry

Дата введения — 2014—07—01

1 Область применения

Настоящий стандарт распространяется на жидкие гомогенные автомобильные бензины, массовая концентрация кислорода в которых не более 2,7 %, и дизельные топлива, содержащие не более 5 % об. метилового эфира жирной кислоты (МЭЖК), и устанавливает метод определения содержания серы в диапазоне от 5 до 500 мг/кг рентгенофлуоресцентной спектрометрией с дисперсией по длине волны.

Соединения с более высокой массовой концентрацией кислорода, например такие, как МЭЖК, используемый как добавка биологического происхождения к дизельному топливу, обнаруживают значительные матричные эффекты. Однако МЭЖК может быть проанализирован настоящим методом при соблюдении условий, изложенных в 4.3 и 7.1.

Факторы, влияющие на результаты измерений и матричные эффекты, изложены в приложении А.

Настоящий метод применим к другим продуктам, однако прецизионность для них не установлена.

Разработка мер по обеспечению техники безопасности, связанных с использованием настоящего стандарта, не является целью настоящего стандарта. Пользователь настоящего стандарта несет ответственность за разработку соответствующих мер по технике безопасности и охране здоровья персонала.

2 Нормативные ссылки

Для применения настоящего стандарта необходимы следующие ссылочные документы. Для датированных ссылок применяют только указанное издание ссылочного документа.

ISO 3170:2004 Petroleum liquids — Manual sampling (Нефтепродукты жидкие. Ручной отбор проб) ISO 3171:1988 Petroleum liquids — Automatic pipeline sampling (Нефтепродукты жидкие. Автоматический отбор проб из трубопровода)

3 Сущность метода

Испытуемый образец, помещенный в кювету, облучают потоком первичного излучения рентгеновской трубки. Измеряют скорость счета импульсов от S-Ка рентгенофлуоресцентного излучения и скорость счета импульсов фоновой радиации. Содержание серы определяют по калибровочной кривой, построенной для измеряемого диапазона серы.

П р и м е ч а н и е — В настоящем стандарте используют обозначение рентгеновской спектральной линии по Сигбану — S-Kα, соответствующее обозначение для рентгеновской спектральной линии в системе IUPAC—SK-L₂₋₄.

4 Реактивы

4.1 Дибутилсульфид с содержанием серы 21,92 % масс. или дибутилдисульфид с содержанием серы 35,95 % масс., используемые в качестве калибровочного вещества для определения серы.

П р и м е ч а н и е — Вещества, указанные в 4.1, — летучие, поэтому при обращении с ними необходимо соблюдать определенные меры предосторожности (А.5, приложение А).

- 4.2 Масло белое (на основе парафина) высокой степени чистоты с содержанием серы менее 1 мг/кг. Используют в качестве холостого раствора, который перед применением проверяют спектрометром (5.1) на содержание в нем серы. Характерный для серы сигнал не должен обнаруживаться.
- 4.3 Метилолеат с содержанием серы менее 1 мг/кг используют в качестве холостого раствора при анализе МЭЖК, который перед применением проверяют спектрометром (5.1) на содержание в нем серы. Характерный для серы сигнал не должен обнаруживаться.

В качестве холостых растворов можно использовать другие кислородсодержащие соединения, свободные от серы, например октанол.

5 Аппаратура

5.1 Спектрометр рентгенофлуоресцентный с дисперсией по длине волны, способный измерять скорости счета S-К_К рентгенофлуоресцентного излучения и фонового излучения. В таблице 1 представлен минимальный объем требований к прибору.

Таблица 1 — Характеристика спектрометра

Компонент спектрометра	Требования	Рекомендации
Анод	Родий, скандий или хром	_
Напряжение*	Не менее 30 kV	30 kV
Tox*	Не менее 50 мА	100 MA
Коллиматор	Крупнозернистый	-
Анализирующий кристалл	Германий, лентаэритрит или графит	Германий
Оптический контур	Гелий	_
Окошечко кюветы для образ-	Полизфирная пленка, не содержа-	Полиэфирная пленка
ήa**	щая серы, толщиной 4 мкм	толщиной 3,5 мкм
Детектор	Пропорциональный счетчик с высо- коамплитудным анализатором	_

Могут быть использованы системы малой мощности с подтверждением соответствия требованиям по прецизионности, указанным в разделе 12.

5.2 Весы аналитические с точностью взвешивания не менее 0,1 мг.

6 Отбор проб

Если отсутствуют другие указания, пробы отбирают в соответствии с процедурами, представленными в стандартах [1] или [2]. Отбор проб можно проводить в соответствии с ГОСТ 2517.

7 Приготовление калибровочных растворов

7.1 Холостой раствор

В качестве холостого раствора используют белое масло (4.2).

При анализе МЭЖК, чтобы свести к минимуму возможные матричные эффекты (приложение А), в качестве холостого используют раствор по 4.3.

7.2 Исходный раствор

Раствор с известным содержанием серы, равным (1000 ± 1) мг/кг.

Для его приготовления рассчитывают и взвешивают при комнатной температуре с точностью 0,1 мг требуемое количество калибровочного вещества (4.1), добавляют холостой раствор по 4.2 или 4.3 в таком количестве, чтобы получить раствор с указанным выше содержанием серы. Следует соблюдать меры предосторожности из-за летучести полученного раствора (приложение A).

^{**} Могут быть также использованы другие материалы для окошечек кюветы для образца с такой же или лучшей пропускающей способностью для рентгеновских лучей, чистотой и стабильностью.

7.3 Калибровочные растворы

Взвешивают исходный раствор (7.2) с точностью 0,1 мг в колбе необходимой вместимости и добавляют холостой раствор (4.2 или 4.3) в количестве, необходимом для получения стандартных растворов с концентрацией серы, указанной в таблицах 2 и 3. Перемешивают полученные растворы при комнатной температуре.

Таблица 2 — Концентрация серы в халибровочных растворах (низхий диапазон)

Номер калибровочного раствора	Концентрация серы, м <i>r/кг</i>	
0 (холостой опыт)	0,0	
2,1	5,0	
2,2	10,0	
2,3	25,0	
2.4	50,0	

Таблица 3 — Концентрация серы в халибровочных растворах (высокий дивлазон)

Номер калибровочного раствора	Концентрация серы, мг/кг
0 (холостой опыт)	0,0
3,1	50,0
3,2	100,0
3,3	200,0
3,4	350,0
3,5	500.0

П р и м е ч а н и е — В то время, как исходные растворы могут быть стабильными продолжительное время, калибровочные растворы нестабильны.

Концентрацию серы в калибровочных растворах записывают в миллиграммах на килограмм, округляя значения с точностью до 0,1 мг/кг.

7.4 Хранение и стабильность калибровочных растворов

Калибровочные растворы, приготовленные в соответствии с таблицей 2, имеют ограниченную стабильность, поэтому их используют в тот же день.

Калибровочные растворы, приготовленные в соответствии с таблицей 3, стабильны не более одной недели при их хранении в прохладном месте, например в холодильнике.

8 Подготовка к испытанию

- 8.1 Оптимальные параметры измерения представлены в таблице 1.
- 8.2 Спектрометр должен быть подготовлен в соответствии со спецификациями изготовителя таким образом, чтобы достигалось оптимальное соотношение «сигнал — фон». Для оптимизации рекомендуют использовать калибровочный раствор с содержанием серы 50 мг/кг.

Время счета импульсов должно быть отрегулировано таким образом, чтобы для калибровочного раствора с содержанием серы 50 мг/кг при оптимальном соотношении «сигнал — фон» и оптимальной площади сигнала получалось, например, 40000 импульсов. Это оптимальное время счета должно быть использовано и при калибровке (раздел 9), и при измерениях (раздел 10).

8.3 Проверяют правильность работы спектрометра перед проведением серии измерений (калибровка и/или измерение), но в любом случае не реже одного раза в день, используя спецификации изготовителя прибора, чтобы гарантировать проведение подготовки к работе на высшем уровне.

Проверки прибора следует проводить регулярно, так как они позволяют получить важную информацию о состоянии и стабильности работы спектрометра.

9 Калибровка

 9.1 Перед калибровкой проводят мероприятия, гарантирующие, что спектрометр находится в оптимальных условиях после проведения проверки по 8.3 и работает стабильно.

Для диапазонов содержания серы от 5 до 60 мг/кг и от 60 до 500 мг/кг калибровки должны быть проведены отдельно.

 Калибровочные растворы (7.3) наливают в соответствующие кюветы до определенного уровня (см. примечание настоящего подраздела).

В зависимости от диапазона концентраций все калибровочные растворы, приготовленные в соответствии с таблицами 2 и 3, должны быть измерены последовательно по возрастанию концентрации серы. Последовательно измеряют скорость счета импульсов $I_{\rm S}$ для рентгенофлуоресцентного излучения S-K α на длине волны 0,5373 нм и скорости счетов импульсов $I_{\rm B}$ для фонового излучения на длине волны 0,545 нм.

П р и м е ч а н и е — Слишком малое количество испытуемого образца при анализе летучих образцов может дать сомнительные результаты или соответственно оказать большое влияние за счет испарения образца, в то время как слишком большое количество образца будет вызывать большое выгибание окошечка кюветы, особенно при измерении образцов на основе летких ароматических соединений.

9.3 Чистую скорость счета импульсов R_0 рассчитывают по формуле (1). Используя калибровочные растворы таблиц 2 и 3, строят две калибровочные кривые зависимости чистой скорости счета импульсов R_0 от концентрации серы в калибровочном растворе. При построении обеих калибровочных кривых используют формулу (2)

$$R_0 = I_S - I_B; \qquad (1)$$

$$R_n(x) = a + bx + cx^2, (2)$$

- где $R_{\rm o}$ чистая скорость счета импульсов S-К α рентгенофлуоресцентного излучения при длине волны 0,5373 нм;
 - $I_{\rm S}$ скорость счета импульсов S-K $_{\rm X}$ рентгенофлуоресцентного излучения при длине волны 0.5373 нм;
 - І_в скорость счета импульсов фонового излучения при длине волны 0,545 нм;
- $R_0(x)$ чистая скорость счета импульсов, полученная из регрессии для концентрации серы, равной (x) в калибровочном растворе:
 - содержание серы в испытуемом калибровочном растворе, мг/кг;
- а. b ,с параметры регрессии.

Расчеты, связанные с регрессией, выполняют отдельно или с помощью калькулятора в спектрометре.

9.4 Проверка калибровочных кривых

Регулярно, не реже одного раза в шесть месяцев, проверяют не менее двух точек на каждой калибровочной кривой. Для таких проверок используют образцы для контроля качества результатов испытания с известным содержанием серы. При использовании новой партии пленки для окошечка кюветы проверку проводят в обязательном порядке. Если результаты проверки отличаются от данных калибровочной кривой на значение, превышающее значение повторяемости настоящего стандарта, снова проводят калибровку. При возникновении сомнений относительно состояния прибора необходимо провести повторную калибровку.

10 Проведение испытания

10.1 Испытания образцов с содержанием серы в диапазоне от 5 до 60 мг/кг

Помещают достаточное количество испытуемого образца в кювету в соответствии с 9.1. Облучают образец рентгеновским излучением. Последовательно измеряют скорость счета импульсов $I_{\rm s}$ S-K α рентгенофлуоресцентного излучения при длине волны 0,5373 нм и скорость счета импульсов $I_{\rm s}$ фонового излучения при длине волны 0,545 нм. Рассчитывают чистую скорость счета импульсов $R_{\rm o}$ в соответствии с формулой (1). По калибровочной кривой (9.3) определяют содержание серы (мг/кг) для измеряемого диапазона.

Если содержание серы выше, чем 60 мг/кг, тогда измеряют новый образец в новой кювете и используют калибровочную кривую для измеряемого диапазона от 60 до 500 мг/кг.

10.2 Испытания образцов с содержанием серы в диапазоне от 60 до 500 мг/кг

Помещают достаточное количество испытуемого образца в кювету в соответствии с 9.1. Облучают образец рентгеновским излучением. Последовательно измеряют скорость счета импульсов $I_{\rm S}$ S-K α рентгенофлуоресцентного излучения при длине волны 0,5373 нм и скорость счета импульсов $I_{\rm B}$ фонового излучения при длине волны 0,545 нм. Рассчитывают чистую скорость счета импульсов $R_{\rm O}$ в соответствии с формулой (1).

По калибровочной кривой (9.3) определяют содержание серы (мг/кг) для измеряемого диапазона.

Если содержание серы выше 500 мг/кг, образец анализируют другим подходящим методом по стандартам [3] и [4].

11 Обработка результатов

Записывают массовую концентрацию серы в образце с точностью до 0,1 мг/кг для диапазона содержания серы от 5 до 99 мг/кг и с точностью 1 мг/кг для диапазона содержания серы от 100 до 500 мг/кг.

12 Прецизионность

12.1 Общие положения

Прецизионность определяют статистическим исследованием в соответствии со стандартами [1] и [2].

12.2 Повторяемость г

Расхождение между двумя результатами испытаний, полученными одним и тем же оператором на одной и той же аппаратуре в постоянном рабочем режиме на идентичном испытуемом материале в течение длительного времени при нормальном и правильном выполнении метода испытания, может превышать значения, приведенные в таблице 4, только в одном случае из двадцати.

12.3 Воспроизводимость R

Расхождение между двумя единичными и независимыми результатами испытаний, полученными разными операторами, работающими в разных лабораториях, на идентичном испытуемом материале в течение длительного времени при нормальном и правильном выполнении метода испытания, может превышать значения, приведенные в таблице 4, только в одном случае из двадцати.

П р и м е ч а н и е — Указанные показатели прецизионности применимы только для продуктов с массовой концентрацией кислорода не более 2,7 % масс.

1	a (блица	4 - 1	Токазатели	прецизионности
---	-----	-------	-------	------------	----------------

Массовая концентрация серы, мг/кг	Повторяемость г, мг/кг	Воспроизводимасть R, мг/кг
От 5 до 60 включ.	1,7 + 0,024 8X*	1,9 + 0,120 1X*
Св. 60 до 500 включ.	4.0	4,6 + 0,075X

13 Отчет

- 13.1 Отчет по испытанию должен содержать:
- а) ссылку на настоящий стандарт;
- тип испытуемого продукта и его полную идентификацию,
- с) результат испытания (см. раздел 11);
- d) любое отклонение от установленной процедуры;
- е) дату проведения испытания.

Приложение А (обязательное)

Факторы, влияющие на результаты измерений и матричные эффекты

- А.1 Если образцы содержат воду или механические примеси, результаты могут быть неправильными. Поэтому непрозрачные образцы должны быть профильтрованы через бумажный фильтр, чтобы удалить воду и механические примеси.
- А.2 Жир, оставленный пальцами при соприкосновении с внутренней стенкой кюветы для образца, или образец на пленке окошечка кюветы, могут оказывать влияние на результат при анализе низкого содержания серы. Этих факторов следует избегать.
 - А.З Кюветы для образца должны готовиться на чистой поверхности; можно использовать бумагу для печати.
- А.4 Окошечки кювет для образцов должны быть проверены на герметичность; следует избегать складок на пленке.
- А.5 Кюветы, содержащие летучие образцы, должны быть накрыты, чтобы свести к минимуму испарение и изменение концентрации.
- А.6 Измерение (большого числа) летучих образцов может повлиять на чувствительность прибора отрицательным образом.
- А.7 Использованные кюветы для образцов не следует применять повторно в том случае, когда предполагают получить большие значения. Те же результаты могут быть получены при длительном времени измерения.

Библиография

[1] ISO 4259:1992	Petroleum products — Determination and application of precision data in relation to methods of test (Нефтепродукты. Определение и применение данных прецизионности в отношении методов испытания)
[2] ISO 4259:1992/Cor 1:1993	Petroleum products — Determination and application of precision data in relation to methods of test. Technical corrigendum 1 (Нефтепродукты. Определение и примене-
	ние данных прецизионности в отношении методов испытания. Техническая по- правка 1)
[3] ISO 14596:1998	Petroleum products — Determination of sulfur content — Wavelength-dispersive X-ray fluorescence spectrometry (Нефтепродукты. Определение содержания серы. Рентгенофлуоресцентная спектрометрия с дисперсией по длине волны)
[4] ISO 14596:1998/Cor 1:1999	Petroleum products — Determination of sulfur content — Wavelength-dispersive X-ray fluorescence spectrometry. Technical corrigendum 1 (Нефтепродукты. Определение содержания серы. Рентгенофлуоресцентная спектрометрия с дисперсией по длине волны. Техническая поправка 1)

Приложение ДА (справочное)

Сведения о соответствии межгосударственных стандартов ссылочным международным стандартам

Таблица ДА.1

Обозначение и наименование ссылочного международного стандарта	Степень соответствия	Обозначение и наименование межгосударственного стандарта
ISO 3170:2004 Нефтепродукты жидкие. Ручной отбор проб	-	•
ISO 3171:1988 Нефтепродукты жидкие. Автоматический от- бор проб из трубопровода	-	•

Соответствующий межгосударственный стандарт отсутствует. До его утверждения рекомендуется использовать перевод на русский язык данного международного стандарта. Перевод данного международного стандарта находится в Федеральном информационном фонде технических регламентов и стандартов.

УДК 631.829.543.06:006.354

MKC 75.160.30, 75.080 Б19

IDT

Ключевые слова: автомобильные топлива, топливо для двигателей, концентрация серы, рентгенофлуоресцентная спектрометрия, дисперсия по длине волны

> Редактор Л.И. Нахимова Технический редактор В.Н. Прусакова Корректор М.М. Малахова Компьютерная верстка В.И. Грищенко

Сдано в набор 26.11.2013. Подписано в печать 05.12.2013. Формат 60×84 $^{1}/_{0}$. Гариитура Ариал. Усл. печ. л. 1,40. Уч.-изд. л. 0,95. Тираж. 76 экз. Зак. 1457,