МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ (МГС)

INTERSTATE COUNCIL FOR STANDARDIZATION, METROLOGY AND CERTIFICATION (ISC)

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ ΓΟCT 32057— 2013

ПРОДУКТЫ БИТУМНЫЕ РАЗЖИЖЕННЫЕ Определение фракционного состава

Издание официальное

Предисловие

Цели, основные принципы и общие правила проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены»

Сведения о стандарте

- 1 ПОДГОТОВЛЕН Федеральным государственным унитарным предприятием «Всероссийский научно-исследовательский центр стандартизации, информации и сертификации сырья, материалов и веществ» (ФГУП «ВНИЦСМВ») на основе собственного аутентичного перевода на русский язык стандарта, указанного в лункте 5
 - 2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии
- 3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 25 марта 2013 г. № 55-П)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004—97	Код страны по МК (ИСО 3166) 004—97	Сокращенное наименование национального органа по стандартизации
Армения	AM	Минэкономики Республики Армения
Беларусь	BY	Госстандарт Республики Беларусь
Казахстан	KZ	Госстандарт Республики Казахстан
Киргизия	KG	Кыргызстандарт
Молдова	MD	Молдова-Стандарт
Россия	RU	Росстандарт
Таджикистан	TJ	Таджикстандарт
Узбекистан	UZ	Узстандарт

- 4 Приказом Федерального агентства по техническому регулированию и метрологии от 14 августа 2013 г. № 503-ст межгосударственный стандарт ГОСТ 32057—2013 введен в действие в качестве национального стандарта Российской Федерации с 1 июля 2014 г.
- 5 Настоящий стандарт идентичен стандарту ASTM D 402-08 «Стандартный метод определения фракционного состава битумных разжиженных продуктов» [«Standard test method for distillation of cutback asphaltic (bituminous) products», IDT].

Наименование настоящего стандарта изменено относительно наименования указанного стандарта для приведения в соответствие с ГОСТ 1.5 (подраздел 3.6).

При применении настоящего стандарта рекомендуется использовать вместо ссылочных стандартов соответствующие им межгосударственные стандарты, сведения о которых приведены в дополнительном приложении ДА

6 ВВЕДЕН ВПЕРВЫЕ

7 ПЕРЕИЗДАНИЕ. Август 2019 г.

Информация о введении в действие (прекращении действия) настоящего стандарта и изменений к нему на территории указанных выше государств публикуется в указателях национальных стандартов, издаваемых в этих государствах, а также в сети Интернет на сайтах соответствующих национальных органов по стандартизации.

В случае пересмотра, изменения или отмены настоящего стандарта соответствующая информация будет опубликована на официальном интернет-сайте Межгосударственного совета по стандартизации, метрологии и сертификации в каталоге «Межгосударственные стандарты»

FOCT 32057-2013

Содержание

ПРОДУКТЫ БИТУМНЫЕ РАЗЖИЖЕННЫЕ

Определение фракционного состава

Cutback bituminous products. Determination of distillation characteristics

Дата введения — 2014—07—01

1 Область применения

- 1.1 Настоящий стандарт устанавливает метод определения фракционного состава разжиженных битумных продуктов.
- 1.2 Значения, указанные в единицах СИ, являются стандартными, значения, приведенные в скобках, даны только для информации.
- 1.3 В настоящем стандарте не предусмотрено рассмотрение всех вопросов обеспечения безопасности, связанных с его использованием. Пользователь настоящего стандарта несет ответственность за установление соответствующих правил по технике безопасности и охране здоровья, а также определяет целесообразность применения законодательных ограничений перед его использованием.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты. Для датированных ссылок применяют только указанное издание ссылочного стандарта, для недатированных последнее издание (включая все изменения).

ASTM D 86, Standard test method for distillation of petroleum products at atmospheric pressure (Стандартный метод дистилляции нефтепродуктов при атмосферном давлении)

ASTM D 370, Standard practice for dehydration of oil-type preservatives (Практическое руководство для дегидратации консервантов масляного типа)

ASTM E 1, Standard specification for ASTM liquid-in-glass thermometers (Стандартные технические требования на стеклянные жидкостные термометры ASTM)

ASTM E 133, Standard specification for distillation equipment (Стандартные технические требования на оборудование для дистилляции)

ASTM E 220, Standard test method for calibration of thermocouples by comparison techniques (Стандартный метод калибровки термопар методом сравнения)

IP 123 / ASTM D 86, Distillation of petroleum products (Перегонка нефтепродуктов)

IP C.O.3, Standard methods for testing tar and its products (Стандартные методы испытаний пека и его продуктов)

3 Сущность метода

3.1 Образец объемом 200 см³ перегоняют с контролируемой скоростью в колбе вместимостью 500 см³ до температуры жидкости 360 °C (680 °F) и измеряют объемы дистиллятов, полученных при указанных температурах. При необходимости могут быть испытаны остаток после перегонки и дистиллят.

4 Назначение и применение

4.1 Настоящий метод определяет количество летучих компонентов в разжиженных битумных продуктах. Свойства остатка после дистилляции не являются обязательной характеристикой ни битума,

FOCT 32057-2013

используемого в исходной смеси, ни остатка, который может остаться в любое время после эксплуатации разжиженных битумных продуктов. Наличие силикона в разжиженном битуме может повлиять на остаток перегонки, замедляя выделение летучих компонентов после налива остатка в соответствующий контейнер.

5 Аппаратура

5.1 Перегонная колба вместимостью 500 см³ с боковой трубкой, имеющая размеры, показанные на рисунке 1.

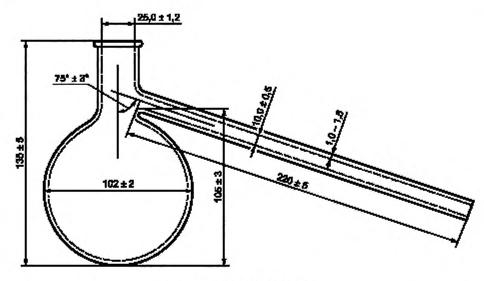
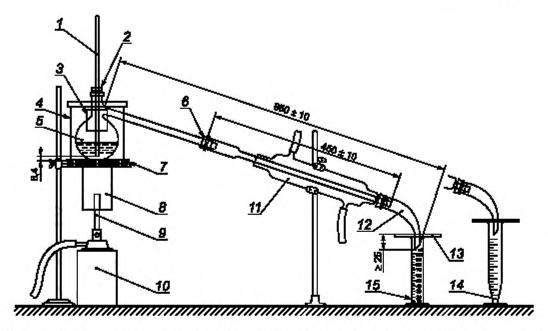



Рисунок 1 — Перегонная волба

5.2 Стандартный холодильник со стеклянной рубашкой номинальной длиной рубашки от 200 до 300 мм и общей длиной трубки (450 ± 10) мм (рисунок 2).

термометр; 2 — пробка, 3 — слюдяное окошко; 4 — защитное устройство; 5 — колба; 6 — притертая пробка; 7 — два листа металлической сетки плотностью 16 меш; 8 — вытяжная труба; 9 — горелка; 10 — подставка; 11 — холодильник с рубашкой водяного охлаждения длиной от 200 до 300 мм; 12 — переходняк; 13 — промокательная бумага; 14 — приемник остродонный; 15 — приемник

Рисунок 2 — Аппарат для перегонки

- 5.3 Стеклянный переходник толщиной стенок 1 мм, с усиленной верхней частью и углом примерно 105°. Внутренний диаметр большего конца составляет около 18 мм, меньшего не менее 5 мм. Нижняя поверхность переходника должна быть в форме гладко убывающей кривой от большего конца к меньшему. Внутренняя линия выходного конца должна быть вертикальной, а выходное отверстие должно быть обрезано или отшлифовано (но не оплавлено) под углом (45 ± 5)° к внутренней линии.
- 5.4 Стальное защитное устройство, обтянутое огнеупорной футеровкой толщиной 3 мм и снабженное прозрачными слюдяными окошками. Форма и размеры показаны на рисунке 3. Устройство используют для защиты колбы от потоков воздуха и уменьшения излучения. Верхняя крышка должна быть выполнена из двух частей огнеупорного изоляционного материала толщиной 6,4 мм.

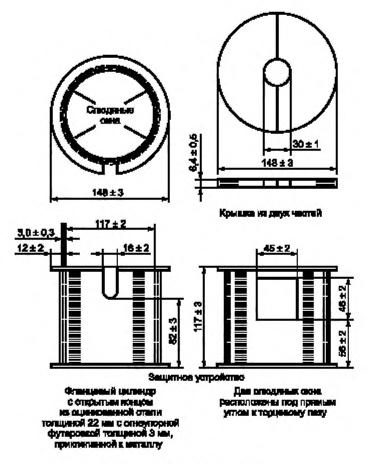


Рисунок 3 — Защитное устройство

5.5 Подставка для защитного устройства и колбы

Подставка представляет собой два листа площадью 15 см³ каждый из хромелевой сетки плотностью 16 меш, помещенные на штатив или кольцо.

5.6 Источник тепла

- 5.6.1 Регулируемая газовая горелка Тиррила или любая другая, аналогичная ей.
- 5.6.2 Электрический нагреватель, оснащенный трансформатором, способный контролировать мощность от 0 до 750 В. Защитное устройство и подставка должны быть огнеупорными, с отверстием диаметром 79 мм и верхней поверхностью, скошенной до 86 мм, для размещения указанной колбы. Когда колбу помещают на огнеупорную подставку, то расстояние между дном колбы и нагревательным элементом должно быть около 3 мм.

5.7 Приемник

Стандартный мерный цилиндр вместимостью 100 см³, соответствующий ASTM E 133, или остродонный приемник вместимостью 100 см³ (рисунок 4).

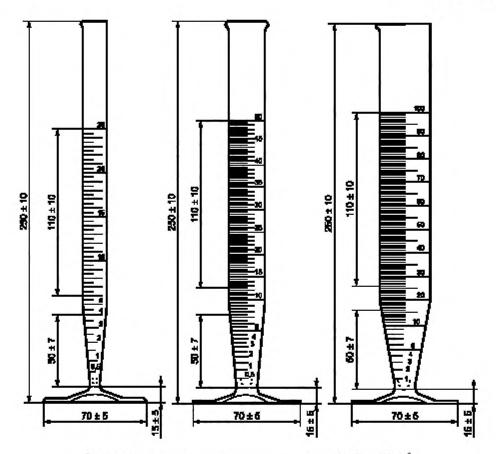


Рисунок 4 — Остродонные приемники вместимостью 25, 50 и 100 см³

Примечание — Когда ожидаются небольшие объемы общего дистиллята и требуется повышенная точность, используют приемники меньшей вместимости с ценой деления 0,1 см³.

5.8 Контейнер для остатка

Бесшовный металлический контейнер диаметром (75 ± 5) мм и высотой (55 ± 5) мм со скользящей крышкой.

5.9 Термометрическое устройство

Термометр ASTM для интенсивной перегонки диапазоном измерения температуры от минус 6 °C до плюс 400 °C (от 20° F до 760 °F) и соответствующий требованиям к термометрам 8C (8F) по ASTM E1, или термометр IP 6C, соответствующий техническим условиям на стандартные термометры IP, или эквивалентное термометрическое устройство, откалиброванное в соответствии с ASTM E220. Для арбитражных испытаний должны использоваться термометры ASTM 8C.

6 Меры предосторожности

6.1 Предупреждение — Ртуть по определению Организации по охране окружающей среды США (ЕРА) и многих других государственных учреждений является опасным веществом, которое может вызвать повреждение центральной нервной системы, почек и печени. Ртуть и ее пары опасны для здоровья и оказывают коррозионное действие на материалы. Следует соблюдать осторожность при работе с ртутью и продуктами, содержащими ртуть. Для дополнительной информации — см. соответствующие

паспорта безопасности материала (MSDS) и вебсайт EPA: http://www.epa.gov/mercury/faq.htm. Пользователи должны знать, что продажа ртути и продуктов, содержащих ртуть, может быть запрещена в государстве по закону.

7 Подготовка пробы

- 7.1 Тщательно перемешивают пробу, при необходимости нагревая ее, для обеспечения однородности до отбора пробы для анализа.
- 7.2 При наличии достаточного количества воды, способного вызвать вспенивание или бульканье, обезвоживают пробу объемом не менее 250 см³ при нагревании в достаточно большой перегонной колбе для предотвращения вспенивания в боковую трубку. После прекращения пенообразования перегонку останавливают. Если было отогнано легкое масло, отделяют и наливают это масло обратно в колбу, когда содержимое колбы достаточно остынет, чтобы предотвратить потерю летучего масла. Тщательно перемешивают содержимое колбы перед анализом. Альтернативная процедура описана в ASTM D 370.

8 Подготовка аппаратуры

- 8.1 Рассчитывают массу 200 см 3 образца по относительной плотности материала при 15,6 °C / 15,6 °C. Переносят образец с точностью до \pm 0,5 г в колбу вместимостью 500 см 3 .
- 8.2 Помещают колбу в защитное устройство, установленное на два листа металлической сетки на штативе или кольце. Подсоединяют трубку конденсатора к боковой трубке колбы с помощью притертой пробки. Устанавливают холодильник так, чтобы ось шарообразной части колбы, проходящая через центр ее горловины, была вертикальна. Устанавливают переходник на конец трубки холодильника так, чтобы расстояние от горловины колбы до выходного отверстия переходника составляло (650 ± 50) мм (см. рисунок 2).
- 8.3 Вставляют термометрическое устройство в притертую пробку в горловине колбы так, чтобы шарик термометрического устройства находился на дне колбы. Поднимают термометрическое устройство приблизительно на 6 мм от дна колбы, используя деления шкалы или отметку на термометрическом устройстве, чтобы установить расстояние 6 мм выше верхней части пробки.
- 8.4 Защищают горелку подходящим защитным устройством или вытяжной трубой. Помещают приемник так, чтобы переходник был вставлен в приемник не менее чем на 25 мм, но не ниже отметки 100 см³. Плотно накрывают приемник соответствующим образом прижатым куском промокательной бумаги или подобным материалом, который должен плотно облегать переходник.
- 8.5 Колба, трубка холодильника, переходник и приемник перед началом перегонки должны быть чистыми и сухими. Помещают бесшовный контейнер для остатка в место без сквозняков.
- 8.6 Включают подачу холодной воды через рубашку холодильника. В случае необходимости используют теплую воду для предотвращения образования твердого конденсата в трубке холодильника.

9 Проведение испытания

9.1 Корректируют температуру перегонки, если лаборатория, в которой ее проводят, находится на высоте 150 м или более над уровнем моря. Скорректированные температуры перегонки в зависимости от высоты над уровнем моря представлены в таблицах 1 и 2. Если известно преобладающее атмосферное давление (мм рт. ст.), корректируют наблюдаемую температуру с поправками, указанными в таблице 3. Не корректируют температуру для выступающего столбика термометра (при его использовании).

Примечание — Таблица 3 охватывает широкий диапазон температур от 160 °C до 360 °C (от 320 °F до 680 °F) и используется для международных спецификаций, кроме спецификаций ASTM/IP.

Таблица 1 — Скорректированные температуры перегонки (°C) для различных значений высоты над уровнем моря

Высота над уровнем моря, м	Температура перегонки, °С				
- 300	192	227	262	318	362
- 150	191	226	261	317	361
0	190	225	260	316	360
150	189	224	259	315	359

Окончание таблицы 1

Высота над уровнем моря, м	Температура лерегонки, "С				
300	189	223	258	314	358
450	188	223	257	313	357
600	187	222	257	312	356
750	186	221	256	311	355
900	186	220	255	311	354
1050	185	220	254	310	353
1200	184	219	254	309	352
1350	184	218	253	308	351
1500	183	218	252	307	351
1650	182	217	251	306	350
1800	182	216	250	306	349
1950	181	216	250	305	348
2100	180	215	249	304	347
2250	180	214	248	303	346
2400	179	214	248	303	346

Таблица 2 — Скорректированные температуры перегонки ("F) для различных значений высоты над уровнем моря

Высота над уровнем моря, м	Температура перегонки, °F				
- 300	377	440	503	604	684
- 150	375	438	502	602	682
0	374	437	500	600	680
150	373	436	499	598	678
300	371	434	497	597	676
450	370	433	495	595	675
600	369	431	494	593	673
750	368	430	493	592	671
900	366	429	491	590	669
1050	365	427	490	589	668
1200	364	426	488	587	666
1350	363	425	487	586	665
1500	362	424	486	584	663
1650	360	422	484	583	661
1800	359	421	483	581	660
1950	358	420	482	580	658
2100	357	419	481	579	657
2250	356	418	479	577	655
2400	355	416	478	576	654

Номинальная температура, °С (°F)	Поправка ^{A)} на 10 мм рт. ст. разницы давлений, "С (°F		
160 (320)	0,514 (0,925)		
175 (347)	0,531 (0,957)		
190 (374)	0,549 (0,989)		
225 (437)	0,591 (1,063)		
250 (482)	0,620 (1,116)		
260 (500)	0,632 (1,138)		
275 (527)	0,650 (1,170)		
300 (572)	0,680 (1,223)		
315,6 (600)	0,698 (1,257)		
325 (617)	0,709 (1,277)		
360 (680)	0,751 (1,351)		

А) Вычитают при атмосферном давлении менее 760 мм рт. ст., прибавляют при атмосферном давлении более 760 мм рт. ст.

- 9.2 Включают и устанавливают нагрев так, чтобы первая капля дистиллята упала с конца боковой трубки колбы в течение от 5 до 15 мин. Перегоняют образец так, чтобы поддерживать следующие скорости каплепадения при счете капель, падающих с кончика переходника.
 - от 50 до 70 капель в минуту до температуры 260 °С (500 °F);
 - от 20 до 70 капель в минуту при температуре от 260 °C до 316 °C (от 500 °F до 600 °F);
- не более 10 мин для завершения перегонки при температуре от 316 °C до 360 °C (от 600 °F до 680 ° F).
- 9.2.1 Записывают объемы дистиллятов в приемнике при корректированных температурах с точностью до $0.5~{\rm cm}^3$. Если надо точно знать объем отогнанного дистиллята, используют приемники ценой деления $0.1~{\rm cm}^3$, погруженные в прозрачную баню, поддерживаемую при температуре $(15.6\pm3.0)~{\rm °C}$.

Примечание — Некоторые разжиженные битумные продукты не дают или дают очень мало дистиллята при температуре до 316 °C (600 °F). В этом случае становится нецелесообразным поддерживать указанные выше скорости перегонки. Для таких случаев цель метода должна быть достигнута при скорости возрастания температуры более 5 °C/мин (9 °F/мин).

9.3 При достижении скорректированной температуры 360 °C (680 °F) выключают нагрев и снимают колбу с термометрическим устройством. Держа колбу в позиции наливания, вынимают термометрическое устройство и сразу выливают содержимое в контейнер для остатка. Общее время от момента выключения нагрева до начала выливания дистиллята не должно превышать 60 с. При выливании боковая трубка колбы должна быть расположена приблизительно горизонтально, чтобы предотвратить возврат конденсата из боковой трубки к остатку.

Примечание — При образовании корки на поверхности остатка при охлаждении захватываются пары, которые будут конденсироваться и вызывать более высокие результаты пенетрации, когда они снова перемешиваются с образцом. Если корка начинает формироваться во время охлаждения, она должна быть аккуратно сдвинута в сторону. Это можно сделать с помощью шпателя при условии минимального воздействия на образец.

- 9.4 Дают дистилляту в холодильнике стечь в приемник и записывают общий собранный объем дистиллята как общий дистиллят до температуры 360 °C (680 °F).
- 9.5 Когда остаток остынет до состояния прекращения дымления, его тщательно перемешивают и затем, когда остаток достигнет температуры (135 ± 5) °C [(275 ± 9) °F], разливают в емкости для определения пенетрации, вязкости или температуры размягчения и проводят испытания в соответствии с требованиями соответствующих стандартов ASTM или IP.

9.6 При необходимости дистилляты или объединенные дистилляты нескольких испытаний могут быть в дальнейшем перегнаны в соответствии с IP 123/ASTM D 86 или в случае дистиллята пека в соответствии с методом C.O.3.

10 Вычисления и отчет

10.1 Битумный остаток

Вычисляют содержание остатка R, % об., с точностью до 0,1 % об. по следующей формуле

$$R = \frac{(200 - TD)}{200} 100,$$
 (1)

где TD — объем общего собранного дистиллята, см3.

10.1.1 Записывают полученное значение как остаток перегонки до температуры 360 °C (680 °F) в процентах по объему по разности.

10.2 Общий дистиллят

Вычисляют содержание общего дистиллята *TD*, % об., с точностью до 0,1 % об. по следующей формуле

 $TD = \left(\frac{TD}{200}\right)100, \qquad (2)$

где TD — объем общего собранного дистиллята, см3.

10.2.1 Записывают полученное значение (% об.) как общий дистиллят до температуры 360 °C (680 °F).

10.3 Фракционный состав

- 10.3.1 Определяют объемную долю (% об.) от исходного образца путем деления на 2 полученного объема фракции (см³). Записывают с точностью до 0,1 % об.:
 - до 190 °C (374 °F);
 - до 225 °C (437 °F);
 - до 260 °C (500 °F);
 - до 316 °C (600 °F).
- 10.3.2 Определяют объемную долю (% об.) от общего дистиллята путем деления полученного объема фракции (см³), на объем фракции (см³), выкипающей до температуры 360 °C (680 °F), и умножения на 100. Записывают с точностью до 0,1 % об. дистиллята от общего дистиллята, выкипающего до температуры 360 °C (680 °F):
 - до 190 °C (374 °F);
 - до 225 °C (437 °F);
 - до 260 °C (500 °F);
 - до 316 °C (600 °F).
- 10.4 При определении пенетрации, вязкости и т. п. результат записывают со ссылкой на использованный и настоящий метод испытаний. Например: Пенетрация (по ASTM D 5 или IP-49) остатков по ASTM L 402/IP 27.

11 Прецизионность и отклонение

11.1 Для оценки приемлемости результатов (с 95%-ной вероятностью) следует использовать следующие критерии.

11.1.1 Повторяемость

Результаты двух параллельных испытаний, проведенных одним и тем же оператором, считают неудовлетворительными, если значения, определенные в процентах по объему, отличаются более чем на 1,0 % об. от исходного образца.

11.1.2 Воспроизводимость

Значения, представленные каждой из двух лабораторий, считают неудовлетворительными, если значения, определенные в процентах по объему, отличаются более чем на следующие значения.

FOCT 32057-2013

Отогнанные фракции, % об., от исходного образца:

- до 175 °C (347 °F) 3,5;
- св. 175 °C (347 °F) 2,0.

Остаток, % об., по разности от исходного образца - 2,0.

11.2 Критерии для оценки отклонения результатов определения остатка после перегонки не были определены.

Приложение ДА (справочное)

Сведения о соответствии ссылочных стандартов межгосударственным стандартам

Таблица ДА.1

Обозначение ссылочного стандарта	Степень соответствия	Обозначение и наименование соответствующего межгосударственного стандарта
ASTM D 86	_	
ASTM D 370	-	
ASTM E 1		
ASTM E 133	-	*
ASTM E 220	_	*
IP 123		<.t.
IP C.O.3	_	•

^{*}Соответствующий межгосударственный стандарт отсутствует. До его принятия рекомендуется использовать перевод на русский язык данного стандарта.

УДК 665.621.8:536.421.2:006.354

MKC 75.140

Ключевые слова: разжиженные битумные продукты, фракционный состав

Редактор Н.Е. Рагузина Технические редакторы В.Н. Прусакова, И.Е. Черепкова Корректор Е.И. Рычкова Компьютерная верстка Д.В. Кардановской

Сдано в набор 21.08.2019. Подписано в печать 17.09.2019. Формат 60 × 84¹/₈. Гарнитура Ариал. Усл. печ. л. 1,86. Уч.-изд. л. 1,55.

Подготовлено на основе электронной версии, предоставленной разработчиком стандарта

ИД «Юриспруденция», 115419, Москва, ул. Орджоникидзе, 11. www.jurisizdat.ru y-book@mail.ru

Создано в единичном исполнении во ФГУП «СТАНДАРТИНФОРМ» для комплектования Федерального информационного фонда стандартов, 117418 Москва, Нахимовский пр-т, д. 31, к. 2. www.gostinfo.ru info@gostinfo.ru