МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ (МГС)

INTERSTATE COUNCIL FOR STANDARDIZATION, METROLOGY AND CERTIFICATION (ISC)

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ ΓΟCT 32055— 2013

НЕФТЕПРОДУКТЫ И МАТЕРИАЛЫ БИТУМНЫЕ

Определение содержания воды с помощью перегонки

Издание официальное

Предисловие

Цели, основные принципы и общие правила проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены»

Сведения о стандарте

- 1 ПОДГОТОВЛЕН Федеральным государственным унитарным предприятием «Всероссийский научно-исследовательский центр стандартизации, информации и сертификации сырья, материалов и веществ» (ФГУП «ВНИЦСМВ») на основе собственного перевода на русский язык англоязычной версии стандарта, указанного в пункте 5
 - 2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии
- 3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 25 марта 2013 г. № 55-П)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004-97	Код страны по МК (ИСО 3166) 004-97	Сокращенное наименование национального органа по стандартизации Минэкономики Республики Армения	
Армения	AM		
Беларусь	BY	Госстандарт Республики Беларусь	
Казахстан	KZ	Госстандарт Республики Казахстан	
Киргизия	KG	Кыргызстандарт	
Молдова	MD	Молдова-Стандарт	
Россия	RU	Росстандарт	
Таджикистан	TJ	Таджикстандарт	
Узбекистан	UZ	Узстандарт	

- 4 Приказом Федерального агентства по техническому регулированию и метрологии от 14 августа 2013 г. № 495-ст межгосударственный стандарт ГОСТ 32055—2013 введен в действие в качестве национального стандарта Российской Федерации с 1 июля 2014 г.
- 5 Настоящий стандарт идентичен стандарту ASTM D 95—10 «Стандартный метод определения содержания воды в нефтепродуктах и битумных материалах дистилляцией» («Standard test method for water in petroleum products and bituminous materials by distillation», IDT).

Наименование настоящего стандарта изменено относительно наименования указанного стандарта для приведения в соответствие с ГОСТ 1.5 (подраздел 3.6).

При применении настоящего стандарта рекомендуется использовать вместо ссылочных международных стандартов (документов) соответствующие им межгосударственные стандарты, сведения о которых приведены в дополнительном приложении ДА

6 ВВЕДЕН ВПЕРВЫЕ

7 ПЕРЕИЗДАНИЕ. Август 2019 г.

Информация о введении в действие (прекращении действия) настоящего стандарта и изменений к нему на территории указанных выше государств публикуется в указателях национальных стандартов, издаваемых в этих государствах, а также в сети Интернет на сайтах соответствующих национальных органов по стандартизации.

В случае пересмотра, изменения или отмены настоящего стандарта соответствующая информация будет опубликована на официальном интернет-сайте Межгосударственного совета по стандартизации, метрологии и сертификации в каталоге «Межгосударственные стандарты»

НЕФТЕПРОДУКТЫ И МАТЕРИАЛЫ БИТУМНЫЕ

Определение содержания воды с помощью перегонки

Petroleum products and bituminous materials. Determination of water content by distillation

Дата введения — 2014—07—01

1 Область применения

1.1 Настоящий стандарт устанавливает метод определения содержания воды в диапазоне от 0 % об. до 25 % об. в нефтепродуктах, смолах и других битумных материалах с помощью перегонки.

Примечание — Если присутствует летучий водорастворимый материал, он может быть определен как вода.

1.2 Конкретные продукты, рассмотренные при разработке настоящего стандарта, приведены в таблице 1. Для битумных эмульсий см. ASTM D 244. Для сырой нефти см. ASTM D 4006 (API MPMS Chapter 10.2).

Примечание — Для некоторых типов нефтяных масел удовлетворительные результаты могут быть получены по ASTM D 1796 (API MPMS Chapter 10.6).

- Значения, указанные в единицах СИ, являются стандартными. Значения в скобках приведены только для информации.
- 1.4 В настоящем стандарте не предусмотрено рассмотрение всех вопросов обеспечения безопасности, связанных с его использованием. Пользователь настоящего стандарта несет ответственность за установление соответствующих правил по технике безопасности и охране здоровья, а также определяет целесообразность применения законодательных ограничений перед его использованием.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты. Для датированных ссылок применяют только указанное издание ссылочного стандарта, для недатированных последнее издание (включая все изменения).

ASTM D 244, Test methods and practices for emulsified asphalts (Методы и методики испытаний эмульгированного битума)

ASTM D 1796, Test method for water and sediment in fuel oils by the centrifuge method (laboratory procedure) [Метод определения содержания воды и осадка в нефтяных маслах методом центрифугирования (лабораторный метод)]

ASTM D 4006, Test method for water in crude oil by distillation (Метод определения содержания воды в сырой нефти дистилляцией)

ASTM D 4057, Practice for manual sampling of petroleum and petroleum products (Методика ручного отбора проб нефти и нефтепродуктов)

ASTM D 4177, Practice for automatic sampling of petroleum and petroleum products (Методика автоматического отбора проб нефти и нефтепродуктов)

ASTM D 5854, Practice for mixing and handling of liquid samples of petroleum and petroleum products (Методика смешения и обращения с жидкими образцами нефти и нефтепродуктов)

ASTM E 123, Specification for apparatus for determination of water by distillation (Технические требования для аппаратов по определению содержания воды дистилляцией)

API MPMS Chapter 8.1, Manual sampling of petroleum and petroleum products (ASTM Practice D 4057) [Ручной отбор проб нефти и нефтепродуктов (ASTM D 4057)]²⁾

API MPMS Chapter 8.2, Automatic sampling of petroleum and petroleum products (ASTM Practice D4177) [Автоматический отбор проб нефти и нефтепродуктов (ASTM D 4177)]

API MPMS Chapter 8.3, Mixing and handling of liquid samples of petroleum and petroleum products (ASTM Practice D 5854) [Смешение и обращение с жидкими образцами нефти и нефтепродуктов (ASTM D 5854)]¹⁾

API MPMS Chapter 10.2, Determination of water in crude oil by the distillation method (ASTM Test Method D 4006) [Определение содержания воды в сырой нефти с помощью перегонки (ASTM D 4006)]¹⁾

API MPMS Chapter 10.6, Test method for water and sediment in fuel oils by the centrifuge method (laboratory procedure) (ASTM Test Method D1796) [Метод определения содержания воды и осадка в нефтяных маслах методом центрифугирования (лабораторный метод) (ASTM D 1796)]¹⁾

3 Термины и определения

В настоящем стандарте применен следующий термин с соответствующим определением:

3.1 битумный материал (bituminous material): В нефтяной технологии очень вязкая или полутвердая жидкость черного или другого темного цвета, состоящая главным образом из конденсированных ароматических, нафтеновых соединений или смеси этих соединений с большой молекулярной массой.

4 Сущность метода

4.1 Материал для испытания нагревают в перегонном аппарате с обратным холодильником с несмешивающимся с водой растворителем, который отгоняют с водой из образца. Сконденсированный растворитель и вода непрерывно разделяются в приемнике или ловушке, вода осаждается в градуированной секции приемника, а растворитель возвращается в перегонный аппарат.

5 Назначение и применение

- 5.1 Информация о содержании воды в нефтепродуктах играет важную роль при переработке, покупке, продаже и транспортировании продукции.
- 5.2 Объем воды, определенный с помощью настоящего метода с точностью до 0,05 % об. или 0,1 % об. в зависимости от объема использованного приемника или ловушки, может быть использован для корректировки объема при приемке/сдаче нефтепродуктов и битумных материалов.
 - 5.3 Допустимое количество воды может быть указано в контрактах.

6 Жидкость — носитель растворителя

 6.1 Тип используемой жидкости — носителя растворителя зависит от испытуемого материала (см. таблицу 1).

6.1.1 Ароматический растворитель

Можно использовать следующие ароматические растворители.

- 6.1.1.1 Технический ксилол (Предупреждение Огнеопасен, пары вредны).
- 6.1.1.2 Смесь 20 % об. технического толуола и 80 % об. технического ксилола (Предупреждение Огнеопасна, пары вредны).
- 6.1.1.3 Безводный лигроин или каменноугольный растворитель, дающий не более 5 % дистиллята при температуре 125 °C (257 °F) и не менее чем 20 % дистиллята при температуре 160 °C (320 °F), относительной плотностью (удельным весом) не менее 0,8545 при температуре 15,56/15,56 °C (60/60 °F) (Предупреждение Чрезвычайно огнеопасен. Опасен при вдыхании. Пары могут вызвать пожар).

Опубликован в качестве Руководства по стандартам измерений нефти. Доступен в Американском институте нефти (API), 220L. St., NW, Washington, DC 20005=4070, http://www.api.org.

Таблица 1 — Тип жидкости — носителя растворителя в зависимости от испытуемого материала

Тип жидкости — носителя растворителя	Испытуемый материал Битум, смола, каменноугольная смола, смола водяного газа, дорожный гудрон, разжиженный битум, мягкий тягучий битум, сырые фенолы, смолы		
Ароматические растворители			
Нефтяной растворитель	Дорожные масла, нефтяные масла, смазочные масла, нефтяной сульфонат		
Летучие растворители	Консистентная смазка		

6.1.2 Нефтяной растворитель

Используют нефтяной растворитель, 5 % которого выкипает при температуре от 90 °C до 100 °C (194 °F и 212 °F) и 90 % перегоняется при температуре ниже 210 °C (410 °F). Процент может быть определен по массе или по объему (Предупреждение — Огнеопасен. Пары вредны).

6.1.3 Летучий растворитель

Применяют следующие летучие растворители.

- 6.1.3.1 Уайт-спирит с интервалом кипения от 100 °C до 120 °C (212 °F до 248 °F) (Предупреждение Огнеопасен. Пары вредны).
- 6.1.3.2 Изооктан чистотой 95 % или выше (Предупреждение Чрезвычайно огнеопасен. Опасен при вдыхании. Пары могут вызвать пожар).

6.2 Растворитель для холостого опыта

Содержание воды в растворителе определяют дистилляцией эквивалентного количества того же растворителя, который используют для испытуемого образца в перегонном аппарате при испытании, как указано в разделе 10. Холостой опыт проводят до ближайшего деления шкалы и используют для корректировки объема воды в приемнике согласно разделу 11.

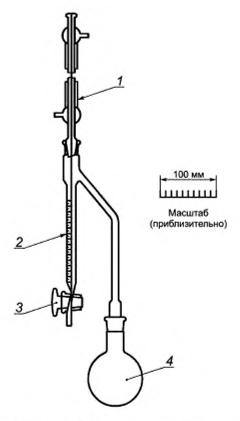
7 Аппаратура

7.1 Общие положения

Аппарат состоит из стеклянного или металлического перегонного куба, нагревателя, обратного холодильника и градуированного стеклянного приемника или ловушки. Перегонный куб, приемник и обратный холодильник могут быть соединены с помощью любого подходящего метода, который обеспечит герметичность соединений. Предпочтительными соединениями являются пришлифованные соединения для стекла и уплотнительные кольца круглого сечения для соединения металла со стеклом. Типичные виды сборок показаны на рисунках 1—3. Перегонные кубы и приемники выбирают такого размера, чтобы охватить диапазон ожидаемых материалов и содержания воды. При сборке аппарата необходимо следить, чтобы соединения были герметичными. Чтобы предотвратить заклинивание соединений, необходимо всегда наносить очень тонким слоем смазку для стеклянных кранов.

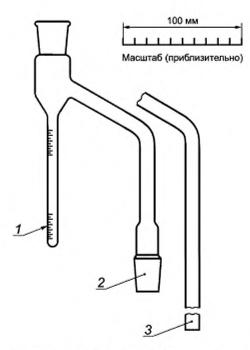
7.2 Перегонный куб

Перегонный куб представляет собой стеклянный или металлический сосуд с короткой горловиной и подходящим соединением для присоединения возвратной трубки приемника. Используют сосуды вместимостью 500, 1000 и 2000 см³.


7.3 Нагреватель

Со стеклянным перегонным кубом может быть использована подходящая кольцевая газовая горелка или электрический колбонагреватель. С металлическим перегонным кубом используют кольцевую газовую горелку с отверстиями на внутренней окружности. Кольцевая газовая горелка должна быть таких размеров, чтобы можно было перемещать ее вверх и вниз по сосуду при испытании материалов, которые могут вспениваться или затвердевать в перегонном кубе.

7.4 Стеклянная посуда


Размеры и описание стеклянной посуды, используемой в настоящем методе испытаний, приведены в ASTM E 123.

П р и м е ч а н и е — Считают, что аппарат соответствует требованиям, если получены точные результаты по стандартному методу добавок, описанному в разделе 9.

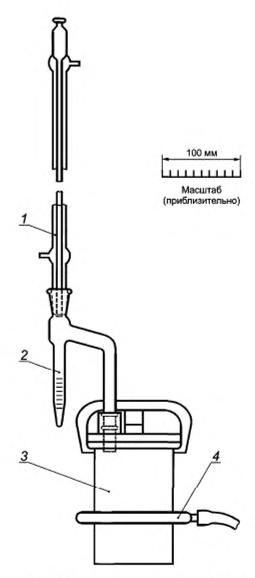

f — холодильник; 2 — приемник; 3 — запорный кран; 4 — стеклянный перегонный куб

Рисунок 1 — Типичная сборка со стеклянным перегонным кубом

1 — интервал градуировки — $0.05~{\rm cm}^3$; 2 — конусное соединение; 3 — простое соединение

Рисунок 2 — Приемник с различными соединениями к стеклянному перегонному кубу вместимостью 2 см³

1 — колодильник; 2 — приемник; 3 — металлический перегонный куб; 4 — кольцевая горелка

Примечание — Приемник должен иметь внутренний диаметр от 15 до 16 мм.

Рисунок 3 — Типичная сборка с металлическим перегонным кубом

8 Отбор проб

- 8.1 Отбор проб включает все стадии получения аликвоты содержания любой трубы, цистерны или другой системы в лабораторный контейнер для испытаний. Для настоящего метода испытаний используют только представительную пробу, полученную по ASTM D 4057 (API MPMS Chapter 8.1) и ASTM D 4177 (API MPMS Chapter 8.2).
- 8.2 Объем испытуемой пробы зависит от ожидаемого содержания воды в образце, так как объем воды не должен превышать вместимость приемника (если не используют приемник с краном, позволяющим сливать избыток воды в градуированный цилиндр).

8.3 В ASTM D 5854 (API MPMS Chapter 8.3) приведена информация по отбору проб и эффективности гомогенизации неизвестных смесей. Настоящий метод испытаний применяют в строгом соответствии с ASTM D 5854 (API MPMS Chapter 8.3).

9 Поверка

- 9.1 Точность делений шкалы на приемнике должна быть сертифицирована или поверена с использованием национальных или международных стандартов, таких как стандарты на поверочное оборудования Национального института стандартов и технологии США (NIST)¹⁾. Поверку проводят с использованием поверенной микробюретки или микропилетки вместимостью 5 см³, с ценой деления 0.01 см³.
- 9.1.1 Для типов приемников А, В, С и D, указанных в таблице 2 (ASTM E 123, таблица 1), должно быть поверено каждое деление шкалы в конической части трубки (т. е. 0,1 см³ в пределах 1,0 см³). После этого должно быть поверено каждое крупное деление (т. е. 2,0, 3,0, 4,0 см³ и вплоть до общего объема приемника).
- 9.1.2 Для приемников типов Е и F, указанных в таблице 2, должно быть поверено каждое крупное деление (0,1; 1,0; 2,0; 4,0 и 5,0 см³ для типа E; 0,05; 0,5; 1,0; 1,5 и 2,0 для типа F).
- 9.2 Все изделия из стекла должны быть поверены перед первым использованием и регулярно в последующем, как описано далее.
- 9.2.1 В аппарат помещают 400 см³ сухого (с максимальным содержанием воды 0,02 % об.) ксилола или растворителя, который используют при анализе неизвестных образцов, и проводят испытание в соответствии с разделом 10. По завершении проверяют содержимое приемника, добавляют объем воды, указанный в качестве первого испытания в таблице 3, непосредственно в колбу для дистилляции и проводят испытание в соответствии с разделом 10.
- 9.2.2 Повторяют испытание по 9.2.1 и добавляют объем, указанный в таблице 3 в качестве второго испытания, непосредственно в колбу. Сборку аппарата считают удовлетворительной, только если по-казания приемника находятся в пределах допусков, указанных в таблице 3.
- 9.3 Показания вне допустимых пределов, возможно, свидетельствуют о неисправности в результате утечки паров, слишком быстрого кипения, неточности в калибровке аппарата или попадании посторонней влаги. Устраняют эти причины неисправности и повторяют поверку.

Таблица 2 — Технические характеристики и размеры приемников

Тип	Верхняя часть градуиро- ванной трубки	Нижняя часть градуиро- ванной трубки	Нижняя часть паровой трубки	Размер аппарата, см ³	Диапазон, см ³	Наименьшее деление шкалы, см ³	Максималь- ная логрешность шкалы
Α	Кони- ческое соедине- ние Кони- ческое соедине- ние	ческое	ое ческое не- соедине-	10	От 0,1 до 1,0 включ. Св. 1,0 до 10,0 включ.	0,1 0,2	0,05 0,1
В				25	От 0,1 до 1,0 включ.	0,1	0,05
С		Простое соедине- ние	25	Св. 1,0 до 25,0 включ.	0,2	0,1	
D			25	От 1,0 до 25,0 включ.	0,2	0.1	
E		соедине-	Кони- ческое совдине- ние	5 5 10	От 0 до 5,0 включ. От 0 до 5,0 включ. От 0 до 10,0	0,1 0,05 0,1	0,05 0,025 0,1
F				2	От 0 до 2,0 включ.	0,05	0,025

Национальный институт стандартов и технологии США 100 Bureau Dr., Stop 1070, Gaithersburg, MD 20899-1070, http://www.nist.gov.

Таблица 3 — Допустимые пределы показаний приемника

В кубических сантиметрах

Вместимость приемника пр	и температуре 20 °C	Объем воды, добавленной в колбу при 20 °C	Допустимые пределы извлеченной воды при 20 °C	
	Обычн	ый приемник		
2	Первое испытание	1,0	1,00 ± 0,05	
2	Второе испытание	1,9	1,90 ± 0,05	
5 (цена деления — 0,05)	Первое испытание	1,0	1,00 ± 0,05	
5 (цена деления — 0,05)	ена деления — 0,05) Второе испытание		4,50 ± 0,05	
5 (цена деления — 0,1) Первое испытание		1,0	1,00 ± 0,10	
5 (цена деления — 0,1) Второе испыта		4,5	4,50 ± 0,10	
10	Первое испытание	5,0	5,00 ± 0,10	
10	Второе испытание	9,0	9,00 ± 0,10	
	Коничес	кий приемник		
10	Первое испытание	1	1,0 ± 0,1	
10	Второе испытание	9	9,0 ± 0,2	
25	Первое испытание	12	12,0 ± 0,2	
25	Второе испытание	24	24,0 ± 0,2	

10 Проведение испытания

Примечание — Точность настоящего метода испытаний будет зависеть от капель воды, прилипающих к поверхностям аппарата и, следовательно, не осаждающихся в приемнике. Чтобы свести к минимуму прилипание капель воды, все части аппарата должны быть химически очищены не менее чем один раз в день для удаления поверхностных пленок и остатков, которые препятствуют свободному отводу воды из аппарата. Рекомендуют более частые очистки, если характер образцов вызывает стойкое загрязнение.

- 10.1 Отмеряют подходящее количество образца с точностью до ± 1 % и переносят его в перегонный куб.
- 10.2 Переносят обычные жидкие пробы в мерный цилиндр подходящего размера. Смывают материал, прилипающий к цилиндру, одной порцией 50 см³ или двумя порциями по 25 см³ жидкости носителя растворителя (см. раздел 6 и таблицу 1). Освобождают цилиндр полностью после передачи каждого образца и промывки.
- 10.3 Переносят предварительно взвешенные твердые или текучие материалы непосредственно в перегонный куб и добавляют 100 см³ выбранной жидкости-носителя. При испытании крупных образцов материала с низким содержанием воды необходим объем жидкости носителя растворителя более 100 см³.
- 10.4 При необходимости для снижения бурления могут быть добавлены стеклянные шарики или другие подобные средства.
- 10.5 Собирают аппарат, как показано на рисунках 1—3, выбирая тип приемника в соответствии с ожидаемым содержанием воды в образце, обеспечивая герметичность соединений. При использовании металлического перегонного куба со съемной крышкой между корпусом и крышкой вставляют прокладку из плотной бумаги, смоченной растворителем. Трубки конденсатора и приемника должны быть химически чистыми, чтобы обеспечить свободный отвод воды в нижнюю часть приемника. Вставляют пробку из хлопковолоконной ткани в верхнюю часть конденсатора для предотвращения образования конденсата из атмосферной влаги. Обеспечивают циркуляцию холодной воды через рубашку холодильника.
- 10.6 Нагревают перегонный куб, регулируя скорость кипения так, чтобы конденсированный дистиллят вытекал из холодильника со скоростью от двух до пяти капель в секунду. При использовании металлического перегонного куба его нагревают кольцевой газовой горелкой, расположенной на

расстоянии около 76 мм (3 дюйма) выше дна перегонного куба и постепенно в процессе перегонки опускают горелку. Продолжают перегонку до тех пор, пока вода не испарится из всех частей аппарата, за исключением приемника, а объем воды в приемнике будет оставаться постоянным в течение 5 мин. Если в трубке конденсатора присутствует устойчивое кольцо воды, осторожно увеличивают скорость перегонки или на несколько минут отключают охлаждение водой.

10.7 После завершения выделения воды приемник и его содержимое охлаждают до комнатной температуры. Удаляют капли воды, прилипшие к стенкам приемника, стеклянным или политетрафторэтиленовым (РТГЕ) стержнем или другим подходящим средством и переносят их в слой. Определяют объем воды в приемнике до ближайшего деления шкалы.

10.8 Холостой опыт проводят, как указано в 6.2.

11 Расчет

11.1 Рассчитывают содержание воды, % об. или % масс., в соответствии с источником взятой пробы по формулам:

Содержание воды =
$$\frac{V_2 - V_0}{V_4}$$
100, (1)

где V_2 — объем воды в приемнике, см³; V_0 — объем воды в холостом опыте, см³; V_1 — объем пробы, см³;

Содержание воды =
$$\frac{V_2 - V_0}{M_s}$$
100, (2)

где V_2 — объем воды в приемнике, см 3 ; V_0 — объем воды в холостом опыте, см 3 ;

М₁ — масса пробы, г.

12 Отчет

12.1 Записывают содержание воды: с точностью до 0,05 % — при использовании приемника вместимостью 2 см³; с точностью до 0.1 % — при использовании приемника вместимостью 10 или 25 см³ и до ближайшего деления — при использовании приемника вместимостью 5 см3 с образцом массой 100 г или объемом 100 см³.

13 Прецизионность и отклонение

13.1 Прецизионность

Критерии, описанные в 13.1.1 и 13.1.2, используют для оценки приемлемости результатов при использовании приемника вместимостью 10 или 25 см3. Прецизионность при использовании приемника вместимостью 2 или 5 см³ не установлена.

Примечание — ASTM D 6300 не был использован при получении данных прецизионности.

13.1.1 Повторяемость

Расхождение между последовательными результатами испытаний, полученными одним и тем же оператором на одном и том же аппарате при постоянных условиях работы на идентичном анализируемом материале в течение длительного времени, при нормальном и правильном проведении метода испытания может превысить значения, приведенные в таблице 4, только в одном случае из двадцати.

13.1.2 Воспроизводимость

Расхождение между двумя единичными и независимыми результатами испытаний, полученными разными операторами в разных лабораториях на идентичном анализируемом материале в течение длительного времени при нормальном и правильном проведении метода испытания, может превысить значения, приведенные в таблице 4, только в одном случае из двадцати.

FOCT 32055-2013

Таблица 4 — Прецизионность

В кубических сантиметрах

Тип	Собранная вода	Расхождение 0,1 0,1 см ³ или 2 % от среднего значения	
Повторяемость	0,0—1,0 1,1—25		
Воспроизводимость	0,0—1,0 1,1—25	0,2 0,2 см ³ или 10 % от среднего значения	

13.2 Отклонение

Настоящий метод не имеет отклонения, поскольку не существует принятого стандартного образца, подходящего для определения отклонения данного метода испытаний.

Приложение ДА (справочное)

Сведения о соответствии ссылочных стандартов межгосударственным стандартам

Таблица ДА.1

Обозначение ссылочного Степень стандарта соответствия		Обозначение и наименование соответствующего межгосударственного стандарта	
ASTM D 244	-		
ASTM D 1796	IDT	ГОСТ 31734—2012 «Топлива нефтяные. Метод определения воды и осадка методом центрифугирования»	
ASTM D 4006	-		
ASTM D 4057	-		
ASTM D 4177	_	*	
ASTM D 5854		•	
ASTM E 123			
MPMS Chapter 8.1	_	•	
MPMS Chapter 8.2	<u> </u>		
MPMS Chapter 8.3		*	
MPMS Chapter 10.2	-		
MPMS Chapter 10.6	_		

Соответствующий межгосударственный стандарт отсутствует. До его принятия рекомендуется использовать перевод на русский язык данного стандарта.

П р и м е ч а н и е — В настоящей таблице использовано следующее условное обозначение степени соответствия стандартов:

⁻ IDT — идентичный стандарт.

УДК 665.621.8:536.421.2:006.354

MKC 75.140

Ключевые слова: нефтепродукты, битумные материалы, содержание воды, перегонка

Редактор Н.Е. Рагузина Технические редакторы В.Н. Прусакова, И.Е. Черепкова Корректор Е.И. Рычкова Компьютерная верстка С.В. Сухарева

Сдано в набор 21.08.2019. Подписано в печать 27.09.2019. Формат $60 \times 84^{1}I_{8}$. Гариитура Ариал. Усл. печ. л. 1,86. Уч.-изд. л. 1,60.

Подготовлено на основе электронной версии, предоставленной разработчиком стандарта

ИД «Юриспруденция», 115419, Москва, ул. Орджоникидзе, 11. www.jurisizdat.ru y-book@mail.ru

Создано в единичном исполнении во ФГУП «СТАНДАРТИНФОРМ» для комплектования Федерального информационного фонда стандартов, 117418 Москва, Нахимовский пр-т, д. 31, к. 2. www.gostinfo.ru info@gostinfo.ru