ФЕДЕРАЛЬНОЕ АГЕНТСТВО

ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

ГОСТ Р ИСО 3951-4 — 2013

Статистические методы

ПРОЦЕДУРЫ ВЫБОРОЧНОГО КОНТРОЛЯ ПО КОЛИЧЕСТВЕННОМУ ПРИЗНАКУ

Часть 4

Процедуры оценки заявленного уровня качества

ISO 3951-4:2011
Sampling procedures for inspection by variables Part 4: Procedures for assessment of declared quality levels
(IDT)

Издание официальное

Предисловие

- 1 ПОДГОТОВЛЕН Открытым акционерным обществом «Научно-исследовательский центр контроля и диагностики технических систем» (АО «НИЦ КД») на основе собственного аутентичного перевода на русский язык международного стандарта, указанного в пункте 4
- 2 ВНЕСЕН Техническим комитетом по стандартизации ТК 125 «Применение статистических методов»
- 3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 17 декабря 2013 г. № 2329-ст
- 4 Настоящий стандарт идентичен международному стандарту ИСО 3951-4:2011 «Процедуры выборочного контроля по количественному признаку. Часть 4. Процедуры оценки заявленного уровня качества» (ISO 3951-4:2011 «Sampling procedures for inspection by variables – Part 4: Procedures for assessment of declared quality levels»).

Наименование настоящего стандарта изменено относительно наименования указанного международного стандарта для приведения в соответствие с ГОСТ Р 1.5.

При применении настоящего стандарта рекомендуется использовать вместо ссылочных международных стандартов соответствующие им национальные стандарты Российской Федерации, сведения о которых приведены в дополнительном приложении ДА

5 ВВЕДЕН ВПЕРВЫЕ

Правила применения настоящего стандарта установлены в ГОСТ Р 1.0–2012 (раздел 8). Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе «Национальные стандарты», а официальный текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (gost.ru)

© Стандартинформ, 2014

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

Введение

Процедуры настоящего стандарта отличаются по области применения от процедур, установленных в других стандартах серии ИСО 3951. Процедуры приемочного контроля, установленные в этих стандартах, предназначены для использования в двусторонних соглашениях и представляют собой простые правила, применяемые при приемке продукции по результатам контроля выборки ограниченного объема, а поэтому в них не используется (явно или косвенно) официально заявленный уровень качества (уровень несоответствий).

При приемочном выборочном контроле не существует четкой разницы между приемлемым и неприемлемым уровнями качества. Процедуры, установленные в стандартах серии ИСО 3951, основаны на предположении, что договаривающиеся стороны назначают предел приемлемого качества (AQL), который представляет собой наихудшее приемлемое среднее процесса при представлении непрерывной серии партий. Правила переключения и схемы выборочного контроля в упомянутых стандартах разработаны так, чтобы поощрять поставщиков к последовательному улучшению среднего процесса по отношению к выбранному AQL. Для сохранения умеренных объемов выборки в представленных процедурах защита от принятия отдельных партий низкого качества несколько ниже, чем предусмотренная планами выборочного контроля, для отдельных партий.

Процедуры установленные в стандартах серии ИСО 3951(части 1, 2, 3 и 5), хорошо подходят для приемочного выборочного контроля, но не должны быть использованы при проведении формальных проверок, таких как анализ со стороны руководства, аудит и т.п., направленных на проверку качества, заявленного для некоторой совокупности. Главная причина состоит в том, что эти процедуры индексированы по уровням качества, что полностью соответствует прагматическим целям приемочного выборочного контроля, ириски сбалансированы соответствующим образом.

Процедуры настоящего стандарта разработаны для удовлетворения возрастающих потребностей применения процедур выборочного контроля при проведении формальных, систематических проверок, таких как анализ или аудит. При выполнении формальной проверки необходимо анализировать риски принятия ошибочных решений и учитывать их при планировании и проведении анализа, аудита, испытаний и т.п.

Настоящий стандарт устанавливает правила, помогающие пользователю учитывать риски ошибочных решений.

Правила, установленные в настоящем стандарте, разработаны так, что существует лишь небольшой риск решения о несоответствии продукции заявленному уровню качества, если ее фактический уровень качества соответствует заявленному.

Для обеспечения небольшого риска соответствия продукции заявленному уровню качества, когда ее фактический уровень качества не соответствует заявленному, необходимо проверить довольно большую выборку. Поэтому, для обеспечения небольшого объема выборки процедуры настоящего стандарта разработаны таким образом, что они допускают несколько более высокий риск решения о соответствии продукции заявленному уровню качества, когда ее фактический уровень качества не соответствует заявленному.

Формулировка результата оценки должна отражать этот дисбаланс между рисками принятия ошибочных решений.

Если результаты выборочного контроля противоречат заявленному уровню качества, это является подтверждением решения о несоответствии продукции заявленному уровню качества.

Если результаты выборочного контроля соответствуют заявленному уровню качества, под этим следует понимать, что «в условиях ограниченного объема выборки нет информации о несоответствии продукции заявленному уровню качества».

Статистические методы ПРОЦЕДУРЫ ВЫБОРОЧНОГО КОНТРОЛЯ ПО КОЛИЧЕСТВЕННОМУ ПРИЗНАКУ Часть 4

Процедуры оценки заявленного уровня качества

Statistical methods. Sampling procedures for inspection by variables. Part 4. Procedures for assessment of declared quality levels

Дата введения- 2014 - 12 - 01

1 Область применения

Настоящий стандарт устанавливает планы и процедуры выборочного контроля, которые рекомендуется использовать для оценки соответствия уровня качества объекта (партии, процесса и т.п.) заявленному значению. Планы выборочного контроля разработаны так, что соответствующие им кривые оперативной характеристики близки, насколько возможно, к кривым оперативной характеристики для соответствующих планов контроля по альтернативному признаку, установленных в ИСО 2859-4. Выбор плана из аналогичных планов контроля по альтернативному признаку и по количественному признаку может привести к увеличению вероятности ошибочного подтверждения заявленного уровня качества. Планы выборочного контроля, установленные в настоящем стандарте, разработаны так, что риск ошибочного решения о несоответствии уровня качества продукции заявленному уровню составляет от 1,4 % до 8,2 %. При этом риск ошибочного решения о соответствии продукции заявленному уровню качества, который связан с предельным отношением качества (см. раздел 4), составляет 10 %. Планы выборочного контроля разработаны в соответствии с тремя уровнями дискриминационной способности планов контроля, а также для неизвестного и известного стандартного отклонения процесса.

В отличие от процедур, установленных в других стандартах серии ИСО 3951, процедуры настоящего стандарта не применимы к приемочной оценке партий. Соотношение рисков ошибочных решений для процедур, установленных в настоящем стандарте, отличается от соотношения рисков для процедур приемочного выборочного контроля.

Настоящий стандарт может быть использован для различных форм контроля качества в ситуациях, когда объективное свидетельство соответствия некоторому заявленному уровню качества обеспечивается посредством контроля выборки. Процедуры применимы к таким объектам как партии, выходная продукция, процессы и т.п., которые позволяют получать случайную выборку, состоящую из отдельных единиц продукции.

Планы выборочного контроля, установленные в настоящем стандарте, применимы к контролю продукции следующих видов, но не ограничиваются ими:

- готовые единицы продукции;
- компоненты и сырье;
- технологические операции;
- материалы в процессе производства;
- поставки при хранении;
- действия технического обслуживания;
- данные или отчеты;
- административные процедуры.

Приведенные в настоящем стандарте процедуры предназначены для использования в ситуации, когда характеристиками качества являются измеримые независимые величины, подчиняющиеся нормальному распределению, а контролируемой величиной является доля несоответствующих единиц продукции в партии.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ Р ИСО 3951-4-2013

ИСО 2859-4:2002 Процедуры выборочного контроля по альтернативному признаку Часть 4. Оценка соответствия заявленным уровням качества (ISO 2859-4:2002 Sampling procedures for inspection by attributes – Part 4: Procedures for assessment of declared quality levels)

ИСО 3534-1 Статистика. Словарь и условные обозначения. Часть 1. Общие статистические термины и термины, используемые в вероятностных задачах (ISO 3534-1 Statistics-Vocabulary and symbols-Part 1:General statistical terms and terms used in probability)

ИСО 3534-2 Статистика. Словарь и условные обозначения. Часть 2. Прикладная статистика(ISO 3534-2 Statistics – Vocabulary and symbols – Part 2: Applied statistics)

ИСО 3951-2:2006 Процедуры выборочного контроля по количественному признаку. Часть 2. Общие требования к одноступенчатым планам выборочного контроля на основе предела приемлемого качества (AQL) при контроле последовательных партий по независимым характеристикам качества (ISO 3951-2:2006 Sampling procedures for inspection by variables—Part 2:General specification for single sampling plans indexed by acceptance quality limit (AQL) for lot-by-lot inspection of independent quality characteristics)

ИСО 9000 Системы менеджмента качества Основные положения и словарь (ISO 9000 Quality management systems-Fundamentals and vocabulary)

3Термины, определения, обозначения и сокращения

3.1Термины и определения

В настоящем стандарте применены термины по ИСО 3534-1, ИСО 3534-2, ИСО 3951-2 и ИСО 9000,а также следующие термины с соответствующими определениями:

- 3.1.1 отношение качества (quality ratio): Отношение фактического уровня качества исследуемого объекта к заявленному.
- 3.1.2 предельное отношение качества (limiting quality ratio), LQR:Значение отношения качества, которое соответствует установленному небольшому (в настоящем стандарте 10 %) риску ошибочного решения о соответствии продукции заявленному уровню качества.

3.2Условные обозначения

- -функция распределения симметричного бета распределения, когда оба параметра равны v:
- B(v, v) —бета функция, когда оба параметра равны $v, \tau.e. B(v, v) = \Gamma(v)\Gamma(v)/\Gamma(2v),$ где $\Gamma(v)$ —гамма функция (см. ниже);
- –заявленный уровень качества (как символ);
- DQL заявленный уровень качества (как аббревиатура);
- Къз –контрольный норматив формы к «s» метода(выборочное стандартное отклонение неизвестно);
- κ_o –контрольный норматив формы k «σ» метода(стандартное отклонение процесса известно);
- –нижняя граница поля допуска (как нижний индекс);
- LQR –предельное отношение качества(как аббревиатура);
- толичество независимых характеристик качества, подчиняющихся нормальному распределению;
- пs —объем выборки для «s» метода;
- пσ объем выборки для «σ» метода;
- ОС оперативная характеристика;
- доля несоответствующих единиц продукции в исследуемой совокупности;
- оценка доли несоответствующих единиц продукции в исследуемой совокупности;
- \hat{p}_{c} —оценка общей доли несоответствующих единиц продукции для нижней и верхней границ поля допуска $\hat{p}_{c} = \hat{p}_{L+} \hat{p}_{U}$;
- р' –контрольный норматив формы р' (для «s» метода и «σ» метода);

4 Принципы

В любой процедуре оценки, основанной на отборе выборки, присутствует неопределенность, вызванная возможными случайностями. Процедуры настоящего стандарта разработаны так, что они приводят к решению о несоответствии фактического уровня качества заявленному только при наличии достаточных доказательств того, что фактическое качество продукции значительно хуже заявленного.

Планы контроля разработаны так, что соответствующие им кривые оперативной характеристики близки (насколько возможно) таковым для соответствующих планов контроля по альтернативному признаку, установленных в ИСО 2859-4. Детали метода обеспечения соответствия планов контроля приведены в приложении А. Планы контроля по альтернативному признаку, установленные в ИСО 2859-4, выбраны так что, когда фактический уровень качества равен или лучше заявленного уровня качества, вероятность решения о несоответствии заявленному уровню качества составляет менее 5 %. В тех случаях, когда действительный уровень качества хуже заявленного уровня качества, существует риск ошибочного решения о соответствии заявленному уровню качества. Вследствие неполного совпадения кривых ОС для планов контроля, установленных в ИСО 2859-4 и настоящем стандарте, соответствующие риски могут отличаться, но не более чем на 5 %.

Риск ошибочного решения зависит от отношения качества, т. е. отношения между фактическим и заявленным уровнями качества. Предельное отношение качества (LQR) задает максимальное значение отношения качества, которое еще является допустимым. Если фактический уровень качества в LQR раз хуже заявленного уровня качества, процедуры настоящего стандарта обеспечивают риск 10 % ошибочного решения о соответствии заявленному уровню качества. (Это соответствует 90 %-ой вероятности решения о соответствии заявленному уровню качества, когда это решение является верным).

Рассматриваются три уровня LQR — I, II и III, описание их приведено в 6.1.Планы выборочного контроля установлены для двух случаев, когда стандартное отклонение процесса неизвестно («s» метод) и известно («с» метод). Детали выполнения планов выборочного контроля по количественному признаку приведены в ИСО 3951-2.

Планы выборочного контроля, установленные в настоящем стандарте, заданы с помощью предельного отношения качества (LQR) и заявленного уровня качества (DQL) и приведены в таблице 1.

5 Заявленный уровень качества

Заявленный уровень качества(DQL) вместе с уровнями LQR используют для обозначения планов контроля, установленных в настоящем стандарте. Значения DQL, приведенные в таблицах, являются предпочтительными значениями DQL. Ряды предпочтительных значений DQL, соответствующие рядам предпочтительных значений AQL для контроля несоответствующих единиц продукции, приведены в ИСО 3951-1.

Необходимо обоснование используемого DQL. Значение DQL не должно быть преднамеренно завышено или занижено.

Если DQL задан для некоторого типа несоответствий, это означает, что поставщик имеет серьезные основания полагать, что качество продукции не хуже этой заданной величины.

ПРЕДОСТЕРЕЖЕНИЕ – В тех случаях, когда DQL оценивают по выборке, состоящей из единственного исследуемого объекта, процедуры настоящего стандарта не должны быть использованы. Верификация оценки по выборке требует, чтобы объем выборки и результаты контроля учитывали неопределенность оценки. Эта неопределенность влияет на оценку рисков неправильных решений о фактическом состоянии исследуемого объекта. Такая

ГОСТ Р ИСО 3951-4-2013

верификация обычно требует больших объемов выборки, чем объемы, используемые в процедурах, установленных в настоящем стандарте.

Таблица 1 – Основная таблица планов выборочного контроля

DQL, %		LQF	₹ уров	ня I			LQF	уров	ня II			LQF	уров!	HR III	
несоответ ствующих единиц продукци и	n _x	k,	n _a	k,	100p'	n _s	k _a	no	k _a	100p°	n _s	k,	na	k _a	100p°
0,010	132	3,286	23	3,277	0,0403			←					←		
0,015	117	3,156	21	3,143	0,0640			←					←		
0,025	101	3,016	20	3,003	0,103 0	179	3,148	33	3,140	0,0713			←		
0,040	86	2,879	19	2,867	0,161 4	158	3,012	31	3,003	0,113 6	258	3,187	46	3,181	0,0650 3
0,065	73	2,728	17	2,710	0,260 4	132	2,867	29	2,858	0,181 7	223	3,051	44	3,045	0,103 5
0,10	60	2,573	16	2,556	0,415 6	112	2,723	27	2,712	0,285 4	189	2,912	40	2,905	0,163 2
0,15	50	2,412	15	2,393	0,662 1	93	2,565	25	2,553	0,458 7	160	2,762	37	2,754	0,261 8
0,25	40	2,237	13	2,211	1,070	76	2,400	23	2,387	0,732 7	134	2,614	34	2,604	0,410 3
0,40	31	2,061	12	2,033	1,685	61	2,230	20	2,212	1,162	110	2,449	31	2,438	0,659 8
0,65	24	1,863	11	1,830	2,747	48	2,043	18	2,021	1,876	89	2,279	28	2,266	1,052
1,0	18	1,659	9	1,611	4,376	37	1,853	16	1,827	2,962	70	2,101	26	2,087	1,667
1,5	13	1,426	8	1,367	7,199	27	1,636	14	1,604	4,802	54	1,904	23	1,886	2,688
2,5	9	1,189	7	11.	11,44	20	1,411	12	- 3	7,626	41	1,702	20	1,680	4,238
4,0	6	0,887	6		19,45	13	1,195	8		11,42	30	1,471	17	1,442	
6,5	4	0,536	3		32,13	9	0,869	8		19,60	21	1,227	14	1,190	
10	3	0,044	2	0,021	48,79	6	0,497	4	0,402	32,11	14	0,935	9	0,877	17,61

Примечание—Планы заданы с помощью заявленного уровня качества (DQL) в процентах несоответствующих единиц продукции и уровней предельного отношения качества (LQR).

6 План выборочного контроля

6.1 Уровни LQR (предельного отношения качества)

6.1.1 Уровень I

Уровень I следует использовать, когда предпочтителен меньший объем выборки. Для планов выборочного контроля уровня I предельное отношение качества изменяется в интервале от 7,6 до 14,1. Например, если заявленный уровень качества равен 1,0 % несоответствующих единиц продукции, а фактический уровень качества в 12,2 раза хуже заявленного уровня качества, то риск ошибочного решения о соответствии продукции заявленному уровню качества равен 10 % (см. таблицу 2).

[←]Необходимо использовать план контроля, указанный левее, который соответствует более высокому значению предельного отношения качества, поскольку для заданного предельного отношения качества соответствующий план контроля в таблице отсутствует.

Таблица 2 -Предельное отношение качества (LQR) и вероятность ошибочного решения о

несоответствии заявленному уровню качества (DQL) для планов уровня I

			«S»Me	тод			«O» M6	тод	
DQL, % не соответствующих эдиниц продукции	n _s	k _s	LQR	Вероятность ошибочного решения о несоответствии DQL, %	n _o	K _a	LQR	Вероятность ошибочного решения о несоответствии DQL, %	100 <i>p</i> ′
0,010	132	3,286	13,6	2,5	23	3,277	13,1	1,7	0,04031
0,015	117	3,156	14,1	2,1	21	3,143	14,0	1,5	0,06405
0,025	101	3,016	13,5	2,4	20	3,003	13,2	1,6	0,1030
0,040	86	2,879	13,2	2,6	19	2,867	12,6	1,7	0,1614
0,065	73	2,728	12,9	2,7	17	2,710	12,6	1,8	0,2604
0,10	60	2,573	13,3	2,7	16	2,556	12,7	1,6	0,4156
0,15	50	2,412	13,7	2,3	15	2,393	13,1	1,3	0,6621
0,25	40	2,237	13,1	2,7	13	2,211	12,7	1,6	1,070
0,40	31	2,061	12,7	3,1	12	2,033	12,0	1,6	1,685
0,65	24	1,863	12,2	3,2	11	1,830	11,5	1,5	2,747
1,0	18	1,659	12,2	3,2	9	1,611	11,8	1,6	4,376
1,5	13	1,426	12,5	2,9	8	1,367	12,0	1,2	7,199
2,5	9	1,189	11,1	3,6	7	1,114	10,6	1,3	11,44
4,0	6	0,887	10,3	3,4	6	0,786	9,9	0,91	19,45
6,5	4	0,536	8,9	3,1	3	0,379	9,9	2,5	32,13
10	3	0,044	7,6	1,6	2	0,021	8,1	3,7	48,79

Пример—Предположим, что для «s» метода исследуется планп_s= 60, k_s = 2,573, соответствующий заявленному уровню качества DQL, равному 0,10 % несоответствующих единиц продукции. Для такого плана, если фактический уровень качества в 13,3 раза (LQR) хуже заявленного уровня качества, т.е. фактический уровень качества составляет 1,33 % несоответствующих единиц продукции, риск ошибочного решения о соответствии продукции DQL равен 10,0 %. Если наоборот, фактический уровень качества равен DQL, т. е. фактический уровень качества соответствует 0,10 % несоответствующих единиц продукции, то риск ошибочного решения о несоответствии продукции DQL составляет 2,7 %.

6.1.2 Уровень II

Уровень ІІ является стандартным уровнем и должен быть использован, если конкретные условия не требуют использования другого уровня. Для планов контроля уровня ІІ значения предельного отношения качества изменяются в пределах от 5,34 до 7,48. Например, если заявленный уровень качества составляет 0,10 % несоответствующих единиц продукции и действительный уровень качества в 7,05 раза хуже заявленного уровня качества, то риск ошибочного решения о соответствии заявленному уровню качества для «s» метода равен 10 % (см. таблицу 3).

ГОСТ Р ИСО 3951-4-2013

Таблица 3 – Предельное отношение качества (LQR) и вероятность ошибочного решения о несоответствии заявленному уровню качества (DQL) для планов уровня II

DQL, %			«S»MeT	од			«σ» мет	год	-
несоответств ующих единиц продукции	n _s	K _s	LQR	Вероятность ошибочного решения о несоответствии DQL, %	n _a	K ₀	LQR	Вероятность ошибочного решения о нессответствии DQL, %	100 <i>p</i> °
0,025	179	3,148	7,22	3,4	33	3,140	7,07	2,5	0,07138
0,040	158	3,012	7,06	3,4	31	3,003	6,95	2,6	0,1136
0,065	132	2,867	6,97	3,7	29	2,858	6,76	2,7	0,1817
0,10	112	2,723	7,05	3,6	27	2,712	6,84	2,5	0,2854
0,15	93	2,565	7,48	3,0	25	2,553	7,21	1,9	0,4587
0,25	76	2,400	7,10	3,5	23	2,387	6,80	2,2	0,7327
0,40	61	2,230	6,95	3,8	20	2,212	6,77	2,5	1,162
0,65	48	2,043	6,76	4,0	18	2,021	6,59	2,5	1,876
1,0	37	1,853	6,78	3,9	16	1,827	6,60	2,3	2,962
1,5	27	1,636	7,14	3,4	14	1,604	6,90	1,7	4,802
2,5	20	1,411	6,48	3,9	12	1,370	6,35	2,0	7,626
4,0	13	1,195	6,04	5,9	8	1,127	6,25	3,9	11,42
6,5	9	0,869	5,66	4,6	8	0,801	5,60	2,2	19,60
10	6	0,497	5,34	3,2	4	0,402	5,94	3,9	32,11

Пример-Предположим, что для «s» метода использован планп» = 112, k» = 2,723,соответствующийзаявленному уровню качества DQL равному 0,10 %несоответствующих единиц продукции. Если фактический уровень качества (LQR) в 7,05 раза хуже заявленного уровня качества, т.е., если фактический уровень качества составляет 0,705% несоответствующих единиц продукции, то риск ошибочного решения о соответствии уровня качества продукции DQL составляет 10,0 %.

Если, наоборот фактический уровень качества равен DQL, т.е., если фактический уровень качества составляет 0,10 % несоответствующих единиц продукции, то риск ошибочного решения о несоответствии уровня качества продукции DQL равен 3,6 %.

6.1.3 Уровень III

Уровень III предназначен для ситуаций, когда предпочтительно меньшее значение LQR за счет большего объема выборки. Для планов контроля уровня III значения предельного отношения качества изменяются в интервале от 4,72 до 5,97. Например, если заявленный уровень качества равен 0,10 % несоответствующих единиц продукции, а фактический уровень качества в 5,30 раз хуже заявленного уровня качества, т.е. равен 0,530 %, то для «с» метода риск ошибочного решения о соответствии продукции заявленному уровню качества равен 10 % (см. таблицу 4).

Таблица	4	-Предельное	отношение	качества	(LQR)	И	вероятность	ошибочного	решения	0
несоответс	CTB	ии заявленному	уровню каче	ества DQL	для пла	HO	в уровня III			

DQL, %			«s»метс	Д			«O» Me	год	
несоответству -ющих единиц продукции	n,	K _a	LQR	Вероятность ошибочного решения о несоответствии DQL, %	nα	k _o	LQR	Вероятность ошибочного решения о несоответствии DQL, %	100 <i>p</i> °
0,040	258	3,187	5,63	2,8	46	3,181	5,54	2,1	0,06503
0,065	223	3,051	5,57	2,9	44	3,045	5,43	2,1	0,1035
0,10	189	2,912	5,41	3,4	40	2,905	5,30	2,5	0,1632
0,15	160	2,762	5,61	2,9	37	2,754	5,49	2,0	0,2618
0,25	134	2,614	5,82	2,5	34	2.604	5,71	1,7	0,4103
0,40	110	2,449	5,57	3,0	31	2,438	5,45	2,0	0,6598
0,65	89	2,279	5,49	3,1	28	2,266	5,37	2,1	1,052
1,0	70	2,101	5,30	3,6	26	2,087	5,11	2,2	1,667
1,5	54	1,904	5,45	3,1	23	1,886	5,27	1,7	2,688
2,5	41	1,702	5,61	2,7	20	1,680	5,45	1,4	4,238
4,0	30	1,471	5,97	1,9	17	1,442	5,86	0,9	6,857
6,5	21	1,227	5,01	3,3	14	1,190	4,96	1,8	10,85
10	14	0,935	4,72	3,3	9	0,877	5,02	2,8	17,61

Пример-Предположим, что для «в» метода использован планп, = 40, k, = 2,905, соответствующий заявленному уровню качества DQL равному0,10 % несоответствующих единиц продукции. Если фактический уровень качества в 5,30 раза хуже заявленного уровня качества, т.е. фактический уровень качества составляет 0,530% несоответствующих единиц продукции, то риск ошибочного решения о соответствии продукции DQL составляет 10 %.

Если, наоборот фактический уровень качества равен DQL, т.е. составляет 0,10 %, несоответствующих единиц продукции, то риск ошибочного решения о несоответствии продукции DQL составляет 2,5 %.

6.2Выбор плана контроля для «s» метода

Для выбора одноступенчатого плана контроля по «s» методу на основе заданного DQL и уровня LQR используют таблицу 1.

Пример-Например, если стандартное отклонение процесса неизвестно и выбраны уровень LQRIIи DQL равный0,65 % несоответствующих единиц продукции, в соответствии с таблицей 1 объем выборки равен 48, и контрольный норматив формы k равен 2,043 (что эквивалентно контрольному нормативу формы p* равному 0,01876). В соответствии с таблицей 3 LQR = 6,76.

Если заявленный уровень качества не указан в таблице, то для выбора плана необходимо использовать ближайшее приведенное выше в таблице 4 значениеDQL.

Примечание – Это приводит к несколько завышенному значению отношения качества и значению вероятности ошибочного решения о несоответствии заявленному уровню качества несколько ниже, чем значение, приведенное в таблицах 2 – 4 (см. 8.2).

6.3Выбор плана выборочного контроля для «о» метода

Для выбора одноступенчатого плана выборочного контроля по «σ» методу на основе заданного DQL и уровня LQR используют таблицу 1.

Пример—Например, если стандартное отклонение процесса известно и выбраны уровеньLQRIIи DQL равный0,65 % несоответствующих единиц продукции, в соответствии стаблицей 1объем выборки равен 18, контрольный норматив формы k равен 2,021, которыедают LQR = 6,59 (см. таблицу 3).

Если заявленный уровень качества не указан в таблице, то для выбора плана необходимо использовать ближайшее приведенное выше в таблице значение DQL.

Примечание – Это приводит к несколько завышенному значению отношения качества и значению вероятности ошибочного решения о несоответствии заявленному уровню качества несколько ниже, чем значение, указанное в таблицах 2 – 4 (см. 8.2).

7 Действия в соответствии с планом выборочного контроля

7.1 Отбор выборки

Выборка должна быть отобрана методом отбора простой случайной выборки. Если объем выборки превышает объем исследуемой совокупности, необходимо проводить сплошной контроль совокупности.

7.2 Правила принятия решения о несоответствии заявленному уровню качества («s» метод)

7.2.1 Общие положения

Параметры плана выборочного контроля (n_s, k_s) или (n_s, p') определяют по таблице 1.

Если объем выборки равен объему исследуемой совокупности или более его, для принятия решения DQL сопоставляют со значением фактического уровня качества, полученного в результате сплошного контроля единиц продукции совокупности.

В противном случае отбирают случайную выборку объема n_s . Для каждой единицы продукции в выборке определяют значение характеристики качества x, рассчитывают выборочное среднее \overline{x} и выборочное стандартное отклонение s.

7.2.2 Единственная граница поля допуска

В случае единственной верхней границы поля допуска Uрассчитывают статистику качества $Q = (U - \overline{X})/s$.

В случае единственной нижней границы поля допуска L рассчитывают статистику качества $Q = (\overline{x} - L)/s$.

Если $Q \ge k_s$, то решение о соответствии продукции заявленному уровню качества (DQL) не может быть принято. Если $Q < k_s$, то может быть принято решение о соответствии продукции заявленному уровню качества (DQL).

Пример-Должен быть использован уровень IcDQL равным0,25 % и верхней границей поля допуска U=11,5. Характеристика качества подчиняется нормальному распределению с неизвестным стандартным отклонением процесса. В соответствии с таблицей 1 объем выборки и контрольный норматив формы k равны соответственно $n_x=40$ и $k_x=2,237$. Предположим, что по случайной выборке из 40 единиц продукции получены выборочное среднее $\overline{X}=10,62$ и выборочное стандартное отклонение s=0,442. Статистика качества Q=(11,5-10,62)/0,442=1,991. Так как

Q <k_s, фактический уровень качества продукции соответствует заявленному.
Пример для случая единственной границы поля допуска с известным стандартным отклонением процесса приведен в В.2.

7.2.3Объединенный контроль при наличии двух границ поля допуска

В случае объединенного контроля при наличии двух границ поля допуска U и L вычисляют

$$\begin{split} \widehat{p}_{\mathbf{U}} &= B_{\frac{n-2}{2}} \left[\frac{1}{2} \left(\mathbf{1} - \frac{U - \overline{x}}{s} \frac{\sqrt{n}}{n-1} \right) \right] = B_{\frac{n-2}{2}} \left[\frac{1}{2} \left(\mathbf{1} - \frac{\sqrt{n}Q_{\mathbf{U}}}{n-1} \right) \right]. \\ \widehat{p}_{\mathbf{L}} &= B_{\frac{n-2}{2}} \left[\frac{1}{2} \left(\mathbf{1} - \frac{\overline{x} - L}{s} \frac{\sqrt{n}}{n-1} \right) \right] = B_{\frac{n-2}{2}} \left[\frac{1}{2} \left(\mathbf{1} - \frac{\sqrt{n}Q_{\mathbf{U}}}{n-1} \right) \right]. \\ \widehat{p}_{\mathbf{c}} &= \widehat{p}_{\mathbf{L}} + \widehat{p}_{\mathbf{U}}, \\ B(v, v) &= \frac{\Gamma(v)\Gamma(v)}{s} \end{split}$$

$$B_{V}(\alpha) = \int_{0}^{\alpha} \frac{t^{V-1}(1-t)^{V-1}}{B(v,v)} dt \int_{0}^{\infty} \Gamma(v) dt = \int_{0}^{\infty} t^{V-1} \exp(-t) dt.$$

Примечание 1-Для использования нормального приближения при вычислении $\tilde{\mathcal{P}}_{t1}$ и $\tilde{\mathcal{P}}_{t}$ см. К.3 ИСО 3951-2:2006.

Примечание 2- $B_{\nu}(a) = 0$, если a < 0, $B_{\nu}(a) = 1$, если a > 1.

Если $\hat{p}_r \leq p^*$, фактический уровень качества продукции соответствует заявленному уровню качества: если $\hat{p}_c > p^*$, фактический уровень качества продукции не соответствует заявленному уровню качества.

Пример – Должны быть использованы уровень II, DQL равный1,0 % с двумя границами поля допуска L = 40,00 и U = 40,80. Характеристика качества подчиняется нормальному распределению с неизвестным стандартным отклонением процесса. В соответствии с таблицей 1 объем выборки и контрольный норматив формы р равны, соответственно, п. = 37 и р = 0,02962. Предположим, что по случайной выборке из объема37 единиц продукции получены выборочное среднее $\overline{\chi}$ = 40,328 и

выборочное стандартное отклонение s = 0.154.

Верхняя и нижняя статистики качества имеют вид, соответственно: $Q_V = (40,800 - 40,332)/0.154 = 3,039.$

 $Q_L = (40.328 - 40.000)/0.154 = 2.130.$

Оценки долей несоответствующих единиц продукции для верхней и нижней границ имеют вид:

$$\begin{split} \widehat{p}_{U} &= B_{(n-2)}/_{2} \left[\frac{1}{2} \left\{ 1 - \sqrt{n} Q_{U} \middle/ (n-1) \right\} \right] = B_{17,5} \left[\frac{1}{2} \left\{ 1 - \sqrt{37} \times 3.039 \middle/ _{36} \right\} \right] = B_{17,5} \{0,2433\} = 0,00058. \\ \widehat{p}_{L} &= B_{(n-2)}/_{2} \left[\frac{1}{2} \left\{ 1 - \sqrt{n} Q_{L} \middle/ (n-1) \right\} \right] = B_{17,5} \left[\frac{1}{2} \left\{ 1 - \sqrt{37} \times 2.130 \middle/ _{36} \right\} \right] = B_{17,5} \{0,3201\} = 0,01436 \end{split}$$

Таким образом, $\hat{p}_c = \hat{p}_L + \hat{p}_U = 0.00058 + 0.01436 = 0.01494$. Поскольку $\hat{p}_c \le p^*$, фактический уровень качества продукции соответствует заявленному уровню качества.

Пример объединенного контроля при наличии двух границ поля допуска в случае неизвестного стандартного отклонения процесса приведен в В.1.

7.2.4 Индивидуальный контроль при наличии двух границ поля допуска

В случае применения индивидуального контроля для обеих границ поля допуска необходимо к каждой границе поля допуска применять свое значение DQL, например D_0 для верхней границы поля допуска и DL для нижней границы поля допуска. Если (nu, ku) и (nu,kl) -планы индивидуального контроля для верхней и нижней границ поля допуска соответственно, $\overline{x}_{\mathbb{I}}$, $s_{\mathbb{I}}$ и $\overline{x}_{\mathbb{I}}$, $s_{\mathbb{L}}$ -выборочные средние и стандартные отклонения по выборкам объемали и ль соответственно, вычисляют $Q_U = (U - \overline{x}_{U})/s_U$ и $Q_L = (\overline{x}_L - L)/s_L$. Если $Q_U \ge k_U$ и $Q_L \ge k_L$, фактический уровень качества продукции соответствует заявленному уровню качества, в противном случае фактическое качество продукции противоречит хотя бы одному из заявленных уровней качества.

Пример-Контроль в случае двух границ поля допуска выполняют с применением индивидуального контроля: для верхней границы (U = 3,125)-с уровнем II uDQL равным 0,25 %, а нижней границы(L = 3,100) - с уровнем III и DQL равным 0,25 %. В соответствии с таблицей 1 при контроле по форме k следует применять планы (nu= 48, ku = 2,043) и (nt = 134, kt = 2,614) для верхней и нижней границ поля допуска, соответственно. Предположим, что по случайной выборке объема 48 единиц продукции получено выборочное среднее $\overline{\chi}_{ij}$ = 3,1173 и выборочное стандартное отклонение s_{ij} = 0,00291, а по выборке объема 134 единицы продукции получены выборочное среднее $x_{\underline{l}}$ = 3,1169 и выборочное стандартное отклонение s₁ = 0,00307. Верхняя и нижняя статистики качества имеют вид: $Q_U = (3,125 - 3,1173)/0,00291 = 2,646$ и $Q_L = (3,1169 - 3,100)/0,00307 = 5,505$ соответственно. Поскольку Qu>ku u Qt>kl, фактическое качество продукции не противоречит заявленным уровням качества.

Пример индивидуального контроля при наличии двух границ поля допуска с неизвестным стандартным отклонением процесса приведен в В.З.

Сложный контроль при наличии двух границ поля допуска

Сложный контроль включает применение объединенного контроля для двух границ поля допуска и индивидуального контроля для одной из границ поля допуска. При контроле используют DQL для общей доли несоответствующих единиц продукции вне обеих границ поля допуска и DQL для доли несоответствующих единиц продукции вне одной из границ поля допуска. Предположим без потери общности, что проводится индивидуальный контроль для верхней границы поля допуска и (n_c, p_c) и (n_U, p_U) – планы формы p^* объединенного контроля и индивидуального контроля для верхней границы поля допуска соответственно. Отбирают случайную выборку объема пс и определяют выборочное среднее и выборочное стандартное отклонение s_c . Отбирают вторую случайную выборку объема n_U и определяют выборочное среднее $\overline{\chi}$ и стандартное отклонение s.

Вычисляют

$$\begin{split} \widehat{p}_{\mathbf{C}} &= \widehat{p}_{\mathrm{cM}} + \widehat{p}_{\mathrm{cL}} = B_{\frac{n_{\mathrm{c}}-2}{2}} \left[\frac{1}{2} \left(1 - \frac{U - \overline{x}_{\mathrm{c}}}{s_{\mathrm{c}}} \frac{\sqrt{n_{\mathrm{c}}}}{n_{\mathrm{c}} - 1} \right) \right] + B_{\frac{n_{\mathrm{c}}-2}{2}} \left[\frac{1}{2} \left(1 - \frac{\overline{x}_{\mathrm{c}} - L}{s_{\mathrm{c}}} \frac{\sqrt{n_{\mathrm{c}}}}{n_{\mathrm{c}} - 1} \right) \right]. \\ \widehat{p}_{U} &= B_{\frac{n_{\mathrm{U}}-2}{2}} \left[\frac{1}{2} \left(1 - \frac{U - \overline{x}}{s} \frac{\sqrt{n_{\mathrm{U}}}}{n_{\mathrm{U}} - 1} \right) \right]. \end{split}$$

Если $\hat{p}_{c} \leq p_{c}^{*}$ и $\hat{p}_{\Pi} \leq p_{U}^{*}$ фактическое качество продукции не противоречит заявленному уровню качества; в противном случае фактическое качество продукции противоречит хотя бы одному из заявленных уровней качества.

Примечание—Если при проведении сложного контроля необходимо провести индивидуальный контроль для нижней границы поля допуска, то решение о соответствии фактического качества продукции заявленным уровням качества принимают при выполнении неравенств $\vec{x}_c \le \vec{p}_c^*$ и $\vec{r}_L \le \vec{p}_L^*$, в противном случае фактическое качество продукции противоречит хотя бы одному из заявленных уровней качества.

Пример-Сложный контроль в условиях примера 7.2.4. Проводят сложный контроль для двух границ поля допуска U=3,125 и L=3,100. УровеныU=1,025 и U=3,125 и U=3,100. УровеныU=1,025 и U=1,025 и U=1,02

Оценка общей доли несоответствующих единиц продукции процесса

$$\begin{split} \widehat{p}_c &= \widehat{p}_{c,U} + \widehat{p}_{c,L} = \\ &= B_{\frac{[(n),c-2)}{2}} \left[\frac{1}{2} \left(1 - \frac{U - \overline{x}_c}{s_c} \frac{\sqrt{n_c}}{n_c - 1} \right) \right] + B_{\frac{[(n),c-2)}{2}} \left[\frac{1}{2} \left(1 - \frac{\overline{x}_c - L}{s_c} \frac{\sqrt{n_c}}{n_c - 1} \right) \right] = \\ &= B_{23} \left[\frac{1}{2} \left(1 - \frac{2,646\sqrt{48}}{47} \right) \right] + B_{23} \left[\frac{1}{2} \left(1 - \frac{2,371\sqrt{48}}{47} \right) \right] = \\ &= B_{23} (0,3050) + B_{23} (0,3252) = 0,00307 + 0,00743 = 0,0105. \end{split}$$

Оценка доли несоответствующих единиц продукции для нижней границы поля допуска:

$$\hat{p}_{L} = B_{\frac{1}{2}(n_{L}^{2}-2)} \left[\frac{1}{2} \left(1 - Q_{L} \frac{\sqrt{n_{L}}}{n_{L}-1} \right) \right]_{=}$$

$$= B_{66} \left[\frac{1}{2} \left(1 - 2,371 \frac{\sqrt{134}}{133} \right) \right] = B_{66}(0,3968) = 0,0084.$$

Несмотря на то, что $\hat{\mathcal{P}}_{\mathcal{C}}$ меньше $\mathcal{P}_{\mathcal{C}}^*, \hat{\mathcal{P}}_{\mathcal{L}}$ больше $\mathcal{P}_{\mathcal{L}}^*$ и таким образом фактический уровень качества продукции противоречит двум заявленным уровням качества.

Пример сложного контроля при наличии двух границ поля допуска с неизвестным стандартным отклонением процесса приведен в В.4.

7.2.6 «s» метод для нескольких независимых характеристик качества

Для m независимых характеристик качества равной значимости для качества продукции, подчиняющихся нормальным распределениям с неизвестными стандартными отклонениями и единственным DQL, определяют план выборочного контроля «s» метода формы $\rho^*(n_s, \rho^*)$ также как в случае единственной характеристики качества. Отбирают случайную выборку объема n_s и измеряют m характеристик качества на каждой выборочной единице. Вычисляют оценки $\hat{P}_1, \hat{P}_2, \dots, \hat{P}_m$ доли несоответствующих единиц продукции в соответствии с 7.2.3. Затем вычисляют оценку общей доли несоответствующих единиц продукции

$$\hat{p} = 1 - (1 - \hat{p}_1)(1 - \hat{p}_2) \dots (1 - \hat{p}_m).$$

Если $\widehat{\mathcal{P}} \leq p^*$, фактический уровень качества продукции не противоречит заявленному уровню качества. Если $\widehat{\mathcal{P}} > p^*$, фактический уровень качества продукции противоречит заявленному уровню качества

Пример-Для контроля использованы две независимые характеристики качества x и y, подчиняющиеся нормальному распределению с DQL равным 4 % и уровнем II.В соответствии с таблицей 1 приемлемому плану контроля соответствует объем выборки 13 и контрольный норматив формы р'равный 0,1142. Отбирают случайную выборку объема 13 и определяютх иудля каждой единицы выборки. Вычисляют выборочные средние \overline{x} и \overline{y} , стандартные отклонения s_x и s_r . Предположим значения \hat{p}_x и \hat{p}_y равны \hat{p}_x = 0,0477 и \hat{p}_y = 0,0477. Оценка общей доли несоответствующих единиц продукции \hat{p} = 1 – (1 – \hat{p}_x)(1 – \hat{p}_y)= 1 – 0,9523·0,9782 = 0,0685. Поскольку \hat{p} меньше p, фактический уровень качества продукции не противоречит заявленному.

7.3Правила решения о несоответствии продукции заявленному уровню качества, «σ» метод

7.3.1Общие положения

Определяют применимый план выборочного контроля (n_{σ}, k_{σ}) или (n_{σ}, p^*) по таблице 1.

Если объем выборки равен или превышает объем исследуемой совокупности¹⁾, то DQL должен быть проверен на основе сопоставления его с фактическим уровнем качества, определенным по результатам сплошного контроля всей совокупности.

Отбирают случайную выборку объема $n_{\overline{v}}$. Для каждого элемента выборки измеряют характеристику качества x. Вычисляют выборочные среднее \overline{x} и стандартное отклонение s.

Примечание—Целью вычисления выборочного стандартного отклонения при известном стандартном отклонении процесса является проверка правильности выбора стандартного отклонения процесса. В случае сомнений следует использовать «s» метод.

7.3.2Единственная граница поля допуска

Для единственной верхней границы поля допуска U вычисляют статистику качества $Q = (U - \overline{X})/\sigma$.

Для единственной нижней границы поля допуска L вычисляют статистику качества $Q = (\overline{X} - L)/\sigma$.

Если Q≥k_o, принимают решение о соответствии фактического уровня качества продукции заявленному уровню качества. Если Q<k_o,принимают решение о несоответствии фактического уровня качества продукции заявленному уровню качества.

Пример-Для проверки применяют уровень I, DQL равный 0,25 % с верхней границей поля допуска U = 11,5. Характеристика качества подчиняется нормальному распределению с известным стандартным отклонением процесса σ = 0,453. В соответствии с таблицей 1 объем выборки и контрольный норматив формы k равны соответственно n_o = 13 и k_o = 2,211. Предположим, что для случайной выборки объема 13, получены выборочные среднее и стандартное отклонение

 \overline{X} = 10,62 и s = 0,439 соответственно. Значение s = 0,439 не дает сомнений в правильности предположения, что стандартное отклонение процесса составляет 0,453, следовательно, может быть использован « σ » метод. [Проверка соответствия выборочного стандартного отклонения теоретическому может быть выполнена на основе критерия проверки гипотезы « σ ² = (0,453)²» с использованием процедур, установленных в ИСО 2854:1976.]Статистика качества Q = (11,5 – 10,62)/0,453 = 1,943. Поскольку Q < k σ , фактический уровень качества продукции противоречит заявленному уровню качества.

7.3.3 Объединенный контроль при наличии двух границ поля допуска

В случае объединенного контроля при наличии двух границ поля допуска U и L вычисляют:

$$\widehat{p}_{U} = \Phi\left(\frac{\overline{x} - U}{\sigma} \sqrt{\frac{n_{\sigma}}{n_{\sigma} - 1}}\right) = \Phi\left(-Q_{U} \sqrt{\frac{n_{\sigma}}{n_{\sigma} - 1}}\right)$$

¹⁾партии, всей совокупности продукции и т.п.

$$\widehat{p}_{L} = \Phi\left(\frac{L - \overline{x}}{\sigma} \sqrt{\frac{n_{\sigma}}{n_{\sigma} - 1}}\right) = \Phi\left(-Q_{L} \sqrt{\frac{n_{\sigma}}{n_{\sigma} - 1}}\right),$$

$$\widehat{p}_{C} = \widehat{p}_{U} + \widehat{p}_{L},$$

и где Φ(.) – функция нормированного нормального распределения.

Если $\hat{\mathcal{P}}_{\mathbb{C}} \leq p^*$, принимают решение о соответствии фактического уровня качества продукции заявленному уровню качества, если $\hat{\mathcal{P}}_{\mathbb{C}} > p^*$, принимают решение о несоответствии фактического уровня качества.

Пример — Для проверки используют уровень II и DQL равный 1,0 % с двумя границами поля допуска L = 40,00 и U = 40,80. Характеристика качества подчиняется нормальному распределению со стандартным отклонением, относительно которого предполагают, что оно стабильно и равно 0,138. В соответствии с таблицей 1 п₂ = 16 и р¹ = 0,02962. Предположим, что по случайной выборке

объема 16 единиц продукции получены выборочные среднее \overline{X} = 40,328 и стандартное отклонение s = 0,150. Значение s = 0,150 не вызывает сомнений в выборе σ = 0,138. Верхняя и нижняя статистики качества имеют вид Q_U = (40,800 - 40,328)/0,138 = 3,420 и Q_L = (40,328 - 40,000)/0,138 = 2,377 соответственно. Соответствующие оценки долей, несоответствующих единиц продукции вне этих границ

$$\hat{p}_U = \Phi\left(-Q_U \sqrt{\frac{n_g}{n_g - 1}}\right) = \Phi\left(-3,420 \sqrt{\frac{16}{15}}\right) = \Phi(-3,532) = 0,000206,$$

$$\hat{p}_L = \Phi\left(-Q_L \sqrt{\frac{n_g}{n_g - 1}}\right) = \Phi\left(-2,337 \sqrt{\frac{16}{15}}\right) = \Phi(-2,414) = 0,007889.$$

Сумма этих оценок $\hat{p}_c - \hat{p}_U + \hat{p}_L = 0,000206 + 0,007889 = 0,008095$. Поскольку $\hat{p}_c \le p^*$, фактический уровень качества продукции не противоречит заявленному уровню качества.

7.3.4 Индивидуальный контроль при наличии двух границ поля допуска

В случае индивидуального контроля при наличии двух границ поля допуска для каждой границы применяют свое значение DQL, D_U -для верхней границы поля допуска, D_L -для нижней границы поля допуска. Планы контроля формы k в этом случае имеют вид: (n_U, k_U) и (n_L, k_L) соответственно. По выборкам объемов n_U и n_L вычисляют $\overline{\mathcal{X}}$ [[и $\overline{\mathcal{X}}$], а затем $Q_U = (U - \overline{\mathcal{X}})$])/ σ и $Q_L = (\overline{\mathcal{X}}_L - L)/\sigma$. Если $Q_U \ge k_U$ и $Q_L \ge k_L$, фактический уровень качества продукции не противоречит заявленному уровню качества, в противном случае уровень качества продукции не соответствует хотя бы одному из заявленных уровней качества.

Пример-Использован индивидуальный контроль для обеих границ поля допуска с уровнем II, DQL равным 0,65 % для верхней границы поля допуска U = 3,125 и с уровнем III, DQL равным0,25 % для нижней границы поля допуска L = 3,100. Характеристика качества подчиняется нормальному распределению с известным стандартным отклонением процесса 0,00310. В соответствии с таблицей 1 следует применять планы формы k «σ» метода (n_U = 18, k_U = 2,021) для верхней границы поля допуска и (n_L = 34, k_L = 2,604) для нижней границы поля допуска. Предположим, что по случайной

выборке объема 18, получены выборочные среднее $\overline{\chi}_U = 3,1173~u$ стандартное отклонение $s_v = 0,00291,$

а по выборке объема 34- выборочные среднее $x_L=3,1169$ и стандартное отклонение $s_L=0,00307$. Ни одно из этих стандартных отклонений не вызывает сомнений в выбранном значении σ , таким образом может быть использован « σ » метод. Верхняя и нижняя статистики качества имеют вид: $Q_U=(3,125-3,1173)/0,00310=2,484$ и $Q_L=(3,1169-3,100)/0,00310=5,452$ соответственно. Поскольку $Q_U>k_U$ и $Q_L>k_L$, фактический уровень качества продукции противоречит заявленному уровню качества.

7.3.5 Сложный контроль при наличии двух границ поля допуска

Сложный контроль включает применение объединенного контроля для двух границ поля допуска и индивидуального контроля для одной из границ поля допуска. При контроле используют один DQL для общей доли несоответствующих единиц продукции вне обеих границ поля допуска и другой DQLдля доли несоответствующих единиц продукции вне одной из границ поля допуска. Предположим, без потери общности, что проводится индивидуальный контроль для верхней границы

поля допуска и (n_c, \mathcal{P}_c^*) и (n_d, \mathcal{P}_U^*) – планы формы p^* объединенного контроля и индивидуального контроля для верхней границы поля допуска соответственно.

Отбирают случайную выборку объема n_c , по которой определяют выборочные среднее $\overline{\mathcal{X}}_{\mathcal{C}}$ и стандартное отклонение s_c . Отбирают случайную выборку объема n_u , по которой определяют среднее $\overline{\mathcal{X}}$ и стандартное отклонение s. Если s_c и s не противоречат выбранному значению σ , может быть использован « σ » метод.

Вычисляют

.Если $\hat{\mathcal{P}}_{\mathbf{C}} \leq \mathcal{P}_{\mathbf{C}}^{2}$ и $\hat{\mathcal{P}}_{\mathrm{II}} \leq \mathcal{P}_{\mathrm{II}}^{*}$ -фактический уровень качества продукции не противоречит заявленному уровню качества; в противном случае фактический уровень качества продукции противоречит хотя бы одному заявленному уровню качества.

Примечание—Если при проведении сложного контроля необходимо провести индивидуальный контроль для нижней границы поля допуска, то решение о соответствии фактического качества продукции заявленным уровням качества принимают при выполнении неравенств $\hat{x}^2 \in \mathcal{P}_{\mathfrak{C}}^*$ и $\hat{y}_{\mathfrak{C}} \leq \hat{y}_{\mathfrak{C}}^*$ в противном случае фактическое качество продукции противоречит хотя бы одному из заявленных уровней качества.

Пример—Сложный контроль в условиях примера 7.3.4. Проводят сложный контроль при наличии двух границ поля допуска U=3,125 и L=3,100. Уровень контроля IIc DQL равным 0,65 % применяют к объединенному контролю, а уровень III с DQL равным 0,25 %, применяют к индивидуальному контролю для нижней границы поля допуска. В соответствии с таблицей 1 планы формы р'для объединенного и индивидуального контроля имеют вид ($n_c=18$, $p_c^*=0,01876$) и ($n_L=34$, $p_L^*=0,004103$) соответственно. Предположим, что по случайной выборкеобъема18, получены выборочные среднее $\overline{\chi}_{\parallel}=3,1173$ и стандартное отклонение $s_u=0,00291$, а по выборке объема 34 получены выборочные среднее и стандартное отклонение $\overline{\chi}_{\parallel}=3,1169$ и $s_L=0,00307$. Ни одно из выборочных стандартных отклонений не противоречит выбранному значению σ . Верхняя и нижняя статистики качества для объединенного контроля имеют вид соответственно:

 $Q_{c,u} = (3,125-3,1173) / 0,00310 = 2,484 u Q_{c,L} = (3,1173-3,100)/0,00310 = 5,581.$

Оценка общей доли несоответствующих единиц продукции:

$$\hat{p}_{\mathbf{C}} = \hat{p}_{c,U} + \hat{p}_{c,L}$$

= 0,005294 + 0,000000 = 0,005294.

Оценка доли несоответствующих единиц продукции для нижней границы поля допуска:

=Φ(-5,534)≈0,000000.

Поскольку $\widehat{\mathcal{P}}_{\mathtt{C}} < \mathcal{V}_{\mathtt{c}}^{\star}$ и $\widehat{\mathcal{P}}_{\mathtt{L}} < \mathcal{P}_{\mathtt{L}}^{\star}$. фактический уровень качества продукции не противоречит заявленным уровням качества.

7.3.6 «о» метод для нескольких независимых характеристик качества

Для m независимых и нормально распределенных характеристик качества равной значимости для качества продукции с известным стандартным отклонением процесса и единственным DQL, определяют план выборочного контроля « σ » метода формы p^* (n_σ , p^*) также, как в случае единственной характеристики качества. Отбирают случайную выборку объема n_σ и измеряют m характеристик качества на каждой выборочной единицы. Вычисляют оценки \widehat{p}_1 , \widehat{p}_2 — \widehat{p}_m доли несоответствующих единиц продукции в соответствии с 7.3.3. Затем вычисляют оценку общей доли несоответствующих единиц продукции

$$\widehat{p} = 1 - (1 - \widehat{p}_1)(1 - \widehat{p}_2) \dots (1 - \widehat{p}_m).$$

Если $\hat{p} \leq p^*$, фактический уровень качества продукции не противоречит заявленному уровню качества, если $\hat{p} > p^*$, фактический уровень качества продукции противоречит объявленному уровню качества.

Пример-Для контроля использованы две независимые характеристики качества х и у, подчиняющиеся нормальному распределению с DQL, равным 4 % несоответствующих единиц продукции, с известными стандартными отклонениями σ_x и σ_y и уровнем II.В соответствии с таблицей 1 приемлемому плану контроля соответствует объем выборки 8 и контрольный

норматив формы р'равный 0,1142. Отбирают случайную выборку объема 8 и определяютх и удля каждой единицы выборки. Вычисляют выборочные средние \overline{x} и \overline{y} , стандартные отклонения s_x и s_y . Предположим, что выборочные стандартные отклонения не противоречат значению σ . Предположим значения \widehat{p}_x и \widehat{p}_y равны $\widehat{p}_x = 0,0477$ и $\widehat{p}_y = 0,0218$. Оценка общей доли несоответствующих единиц продукции $\widehat{p} = 1 - (1 - \widehat{p}_x)(1 - \widehat{p}_y) = 1 - 0,9523\cdot0,9782 = 0,0685$. Поскольку \widehat{p} меньше p, фактический уровень качества продукции не противоречит заявленному.

7.4Распоряжение несоответствующими единицами продукции

Любые несоответствующие единицы продукции, обнаруженные в выборке не должны возвращаться в партию до тех пор, пока они не приведены в соответствующее состояние и не выполнены необходимые административные действия.

8 Дополнительная информация

8.1 Приближенные кривые вероятности отклонения

Кривые, представленные на рисунке 1, соответствуют приближенной вероятности того, что по результатам контроля будет принято решение о несоответствии продукции заявленному уровню качества. Кривые отражают приближенную вероятность несоответствия как функцию отношения качества.

Кривые, представленные на рисунке 1, относятся к ситуациям, когда заявленный уровень качества является одним из предпочтительных уровней качества. Для непредпочтительных значений DQL рисунок 1 не может быть применен.

8.2 Разрешающая способность плана контроля

Таблицы 5 –10 содержат дополнительную информацию о вероятности справедливого решения о несоответствии заявленным уровням качества для различных значений отношения качества.

Для каждого конкретного плана контроля в таблицах 2 – 4 приведены значения предельного отношения качества (LQR), которые соответствуют риску ошибочного решения о несоответствии заявленному уровню качества. Это значение LQR вместе с информацией, представленной в таблицах 5 – 7, может быть использовано для оценки разрешающей способности каждого плана контроля.

Таблицы 2 – 4 показывают вероятность того, что по результатам контроля будет ошибочно принято решение о несоответствии продукции заявленному уровню качества, когда фактический уровень равен DQL.

Примечание—Значения, приведенные в таблицах 2—10, определены на основе предположения о том, что объем выборки является малой долей общего количества исследуемой продукции. Эти таблицы действительны, когда объем выборки меньше или равен 1/10 выпуска продукции. Если объем выборки составляет большую долю выпуска исследуемой продукции, фактическая разрешающая способность выше, чем указанная в таблицах 2—10. В частности предельное действительное отношение качества будет меньше указанного в таблицах 2—4, и кроме того, действительная вероятность ошибочного решения о несоответствии DQL также будет меньше указанной в таблицах 2—4.

Значения в таблицах 2 – 10 относятся к ситуациям, когда используемый DQL, является одним из предпочтительных значений DQL. Если используемый DQL не является одним из предпочтительных DQL, то для выбора плана следует использовать ближайший, расположенный выше предпочтительный DQL. Это приводит к изменению баланса рисков. С одной стороны риск ошибочного решения о несоответствии заявленномуDQL будет меньше риска, указанного в таблицах 2 – 4. С другой стороны фактический LQR будет выше приведенного в таблице значения LQRдля предпочтительного DQL.

Фактическое значение LQR (R_{LQ:a}) определяют по формуле:

$$R_{LQ,s} = R_{LQ,p} \cdot \frac{Q_{DL,p}}{Q_{DL,np}}$$

где $R_{\text{LQ,p}}$ -предпочтительное предельное отношение качества;

Q_{DL,p} –предпочтительный заявленный уровень качества;

Qосло-непредпочтительный заявленный уровень качества.

Уровень качества, соответствующий риску ошибочного решения о несоответствии фактическому (непредпочтительному) DQL, остается таким же, как указанный в плане выборочного контроля, и определяется, как произведение предпочтительного DQL на значение LQR, указанное в таблице. Таблицы 5 – 10 также могут быть применены к непредпочтительным DQL с учетом того, что действительный уровень качества равен произведению отношения качества, указанного в таблицах 2 – 4, и используемого предпочтительного DQL (см. пример ниже).

Пример—Необходимо проверить соответствие качества продукцииDQL, составляющему 0,125 % несоответствующих единиц продукции, для уровня II LQRи неизвестного стандартного отклонения процесса. Поскольку это непредпочтительный DQL, а ближайший расположенный выше предпочтительный DQL составляет 0,15 % (см. таблицу 1), должен быть использован план контроля с n = 93, $k_s = 2,565$.

В соответствии с таблицей 3 риск ошибочного решения о несоответствии (непредпочтительному) DQL, равному 0,125 % несоответствующих единиц продукции, не превосходит 3 %. Кроме того, риск ошибочного решения о несоответствии непредпочтительному DQL, когда фактический уровень качества равен произведению 7,48 на 0,15 %, т.е. 1,222 %, составляет 8,98 %. Для непредпочтительного DQL действительноеLQR равно 7,48 м(0,15/0,125) = 8,48. Это риск ошибочного решения о несоответствии непредпочтительномуDQL, когда фактический уровень качества в 8,48 раз выше (8,48 м0,125 % = 1,122 %).

В соответствии с таблицей7 для отношения качества 5,0 и предпочтительного DQL равного 0,15 % (соответствующего фактическому уровню качества 5,0×0,15 % = 0,75 %) вероятность несоответствия непредпочтительному DQL (0,15 %) равна 71,8 %. Таблицу 7 можно аналогично использовать для определения вероятности несоответствия непредпочтительному DQL для семи других значений отношения качества.

Таблица 5 – Вероятность (%)решения о несоответствии DQL при различных значениях отношения качества LQR для планов уровня I, «s» метод

Отнош			Заяв	ленныя	уровень	качест	ва (DQ	L),% н	есоотв	етствую	ощих е	диниц	продук	ции		
ение качест ва	0,010	0,015	0,025	0,040	0,065	0,10	0,15	0,25	0,40	0,65	1,0	1,5	2,5	4,0	6,5	10
1,0	2,5	2,1	2,4	2,6	2,7	2.7	2,3	2,7	3.1	3,2	3,2	2,9	3,6	3,4	3,1	1,6
1,5	6,6	5,8	6.3	6,8	7,0	6.8	6,0	6,7	7.4	7,6	7,5	6,6	8,0	7,5	7,0	4,2
3,0	24,4	22,5	23,8	24,9	25.4	24,4	22,4	23,9	25,1	25,6	25,0	22,6	25,6	24.8	24,9	20.0
5,0	47,7	45,2	47.1	48,4	49.2	47,6	45,0	47.0	48,3	49,2	48,4	45,2	49,7	49.8	52,8	52,7
7,5	68,1	65.8	67,8	68,9	69,8	68,2	65,9	68,0	69,1	70,4	69,9	67,3	72,2	74,1	80,3	89,2
10,0	80,4	78.7	80,4	81,3	82,1	80,9	79,2	81,0	82,0	83,2	83.1	81,5	86,0	88,68	94,9	_
15,0	92,2	91,4	92,4	92,9	93.5	92,9	92,2	93.3	93,9	94,8	95,1	94,8	97,2	98,9	8999,998	-
20.0	96,7	96,3	96,9	97,2	97,5	97,2	97,0	97.6	97,9	98,4	98,6	98,7	99,6	99,98	_	-

Пример - Предположим, что используется план, соответствующий заявленному уровню качества в 0,04 % несоответствующих единиц продукции. Для отношения качества 10 (фактический уровень качества в10 раз больше заявленного уровня качества, т.е. равен 0,4 % несоответствующих единиц продукции) вероятность того, что на основе плана контроля будет принято решение о несоответствии заявленному уровню качества, равна 81,3 %.

Таблица 6 – Вероятность (%)решения о несоответствии DQL при различных значениях отношения качества LQR для планов уровня I. «о» метод

Отнош	77.77		Заяц	зленный	уровень	качест	aa (DC	(L) % H	ессотв	етству	ющих е	диниц п	родук	ции		
ение качест ва	0,010	0,015	0,025	0,040	0,065	0,10	0,15	0,25	0,40	0,65	1,0	1,5	2,5	4,0	6,5	10
1.0	1.7	1,5	1,6	1,7	1,8	1,6	1,3	1,6	1,6	1,5	1,6	1.2	1,3	0.9	2,5	3.7
1,5	5,2	4.7	5,0	5,3	5,5	5,0	4,1	4,8	4,8	4.7	4,7	3,6	3,9	3,0	5,6	7,5
3,0	22,9	20,9	22,1	23,1	23,4	22,2	19,8	21,2	21.9	21,9	20.9	17,6	19,5	17,0	20,3	23,8
5,0	47,4	44,2	46,4	48,1	48,1	46,8	43,9	45,6	47.1	48,0	46,0	41,9	46,2	44,6	44.8	51,2
7.5	68,8	65,6	68,0	69,8	69,7	69,0	66,7	68,1	70.1	71.7	69,7	66,8	72.6	73,9	72,6	83,7
10,0	81,5	78,9	81,0	82,6	82,5	82,1	80,6	81,7	83,6	85,3	83,9	82,5	87,8	90,4	90,7	
15,0	93,1	91,7	93,0	93,9	93,9	93,9	93,4	94,0	95,1	96,2	95,8	95,8	98,2	99,5	99,997	
20,0	97,2	96,5	97,2	97,7	97,7	97,8	97,6	97,9	98,5	99,0	99,0	99,1	99,8	99,997		

Пример Предположим, что используется план, соответствующий заявленному уровню качества 0,10 % несоответствующих единиц продукции. Для отношения качества 15 (фактический уровень качества в 15 раз больше заявленного уровня качества, т.е. равен 1,5 % несоответствующих единиц продукции) вероятность того, что на основе этого плана контроля будет принято решение о несоответствии заявленному уровню качества, равна 93,9 %.

Таблица 7 – Вероятность (%)решения о несоответствии DQL при различных значениях отношения качества LQR для планов уровня II. «s»метод

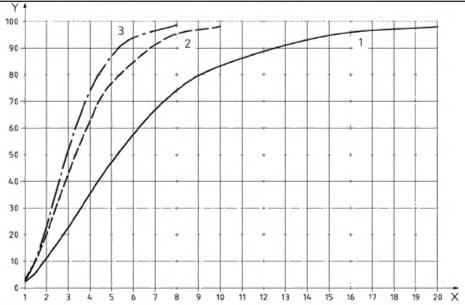
Отнош		1 1	Заявле	нный ур	овень к	ачества (DQL),%	несоотв	етствую	цих един	иц прод	укции		iv.
качеств	0,025	0.040	0,065	0,10	0,15	0,25	0.40	0,65	1.0	1,5	2,5	4,0	6,5	10
1,0	3,4	3,4	3,7	3,6	3,0	3,5	3,8	4,0	3,9	3,4	3,9	5,9	4,6	3,2
1,5	10,8	10,9	11,6	11,2	9,6	10,8	11,3	11.8	11,4	9,9	11,3	14,8	12,6	9,8
2,0	21,0	21,3	22,3	21,6	18,9	20,8	21,6	22,2	21,6	18,9	21,3	26,0	23,6	19,9
3,0	43,0	43,7	44,7	43,7	39,8	42,6	43,6	44.6	43,7	39,6	43,8	49.1	48,0	45,2
4,0	61,2	62,2	63,1	62,1	58,1	61.1	62,1	63,3	62,5	58,4	63,3	68,1	69,0	69,2
5,0	74,3	75,3	76,0	75,2	71,8	74,5	75,5	76,7	76,1	72,7	77,6	81,4	83,7	86,1
7,5	91,1	91,8	92,1	91,8	90,1	91,7	92,3	93.1	93,1	91.6	94,5	96,2	98,1	99,6
10,0	96,8	97,2	97,4	97,3	96,6	97.3	97,6	98.1	98.1	97,7	98,9	99,5	99,9	100

Пример Предположим, что используется план, соответствующий заявленному уровню качества в 0,10 % несоответствующих единиц продукции. Для отношения качества 7,5 (фактический уровень качества в 7,5 раз больше заявленного уровня качества, т.е. равен 0,75 % несоответствующих единиц продукции) вероятность, что на основе плана контроля будет принято решение о несоответствии заявленному уровню качества, равна 91,3 %.

Таблица 8 – Вероятность (%) ошибочного решения о несоответствии DQL при различных значениях отношения качества LQR для планов уровня II, «о» метод

Отноше-		Заявлен	ный ур	овень	качест	гва (DQ	L),% F	есоот	ветств	зующи	х едини	ц прод	дукции	
ние качества	0,025	0,040	0,065	0,10	0,15	0,25	0,40	0,65	1,0	1,5	2,5	4,0	6,5	10
1,0	2,5	2,6	2,7	2,5	1,9	2,2	2,5	2,5	2,3	1,7	2,0	3,9	2,2	3,9
1,5	9,3	9,5	9,8	9,2	7,5	8,5	9,0	9,1	8,5	6,7	7,8	11,3	8,1	10,2
2,0	19,4	19,7	20,4	19,4	16,5	18,3	18,9	19,2	18,2	15,0	17,1	21.6	17,9	19,0
3,0	42,1	42,8	44,0	42,6	38,4	41,4	42,0	42,7	41,5	36,6	40,5	44,6	43,4	40,3
4,0	61,3	62,1	63,4	62,2	58,1	61,4	61,9	62,9	62,0	57,3	62,0	64,6	67,2	61,7
5,0	74,9	75,6	76,9	76,0	72,7	75,7	76,0	77,2	76,7	73,1	77,7	79.0	83,7	78,9
7,5	91,7	92,2	93,0	92,7	91,2	92,9	93,1	93,9	93,9	92,8	95,3	95,6	98,5	98,4
10,0	97,2	97,5	97,8	97,7	97,2	98,0	98,0	98,4	98,5	98,3	99,2	99,3	99,96	100

Пример-Предположим, что используется план, соответствующий заявленному уровню качества 0,15 % несоответствующих единиц продукции. Для отношения качества 5 (фактический уровень качества в 5 раз больше заявленного уровня качества, т.е. равен 0,75 % несоответствующих единиц продукции) вероятность того, что на основе этого плана контроля будет принято решение о несоответствии заявленному уровню качества, равна 72,7 %.


Таблица 9 – Вероятность (%) ошибочного решения о несоответствии DQL при различных значениях отношения качества LQR для планов уровня III. «s» метод

отношен	OH KANE	CIBA LU	ах для	DIGHUB	уровня	m, «s»	метод						
Отноше-		Заявле	енный у	ровень	качест	a (DQL	.),% не	соответ	ствуюц	их еди	ниц про	дукции	1
ние качества	0,040	0,065	0,10	0,15	0.25	0,40	0,65	1,0	1,5	2,5	4,0	6,5	10
1,0	2,8	2,9	3,4	2,9	2,5	3,0	3,1	3,6	3,1	2,7	1,9	3,3	3,3
1,5	11,3	11,6	12,8	11,4	10,2	11,5	11,8	13,0	11,6	10,2	7,7	12,0	12,1
2,0	24,3	24,7	26,7	24,3	22,2	24,3	24,8	26,7	24,3	21,9	17,5	25,2	25,8
3,0	52,2	52,7	55,0	52,0	49,1	52,0	52,7	55,1	52,1	49,0	42,5	54,7	56,8
4,0	72,8	73,3	75,1	72,7	70,1	72,8	73,6	75,6	73,4	70,9	65,1	77,1	80,1
5,0	85,2	85,6	86,9	85,2	83,4	85,5	86,1	87,6	86,3	84,7	80,8	89,9	92,5
6,0	92,1	92,4	93,2	92,2	91,0	92,5	93,0	94,0	93,3	92,5	90,2	96,0	97,7
8,0	97,8	97.9	98,2	97,9	97,5	98,0	98,3	98,6	98,5	98,4	97,8	99,5	99,9

Пример-Предположим, используется план, соответствующий заявленному уровню качества 0,40% несоответствующих единиц продукции. Для отношения качества 5 (фактический уровень качества в 5 раза больше заявленного уровня качества, т. е. равен 2,0 % несоответствующих единиц продукции) вероятность того, что на основе этого плана контроля будет принято решение о несоответствии заявленному уровню качества, равна 85,5%. Таблица 10 –Вероятность (%) ошибочного решения о несоответствии DQL при различных значениях отношения качества LQR для планов уровня III, «σ» метод

Отноше-	5	Заявле	энный у	ровень	качест	ва (DQl	.),% не	соответ	гствуюц	цих еди	ниц про	дукции	
ние качества	0,040	0,065	0,10	0,15	0,25	0,40	0,65	1,0	1,5	2,5	4,0	6,5	10
1,0	2,1	2,1	2,5	2,0	1,7	2,0	2,1	2,2	1,7	1,4	0,9	1,8	2,8
1,5	9,9	9,9	11,1	9,7	8,4	9,5	9,6	10,2	8,7	7,3	5,1	8,6	10,4
2,0	22,9	23,1	25,0	22,5	20,1	22,1	22,5	23,9	21,1	18,5	13,8	21,0	22,7
3,0	51,7	52,5	54,7	51,5	48,1	51,2	51,9	54,6	51,0	47,3	39,6	52,2	52,1
4,0	73,1	74,0	75,8	73,2	70,4	73,3	74,0	76,8	74,2	71,2	64,3	76,8	75,8
5,0	85,8	86,6	87,7	86,1	84,2	86,3	86,9	89,1	87,6	85,9	81,3	90,4	89,8
6,0	92,6	93,2	93,9	92,9	91,8	93,2	93,7	95,1	94,4	93,5	91,0	96,5	96,4
8,0	98,0	98,3	98,5	98,2	97,8	98,4	98,6	99,1	98,9	98,8	98,2	99,7	99,7

Пример-Предположим, используется план, соответствующий заявленному уровню качества 0,25% несоответствующих единиц продукции. Для отношения качества 4 (фактический уровень качества в 4 раза больше заявленного уровня качества, т. е. равен 1,0 % несоответствующих единиц продукции) вероятность того, что на основе этого плана контроля будет принято решение о несоответствии заявленному уровню качества, равна 70,4%.

- Х -отношение качества;
- Y -вероятность несоответствия DQL, в процентах;
- -уровень I;
- 2 -уровень II;
- 3 -уровень III.

Рисунок 1 -- Кривые, приближенной вероятности ошибочного решения о несоответствии DQL для различных значений отношения качества

Приложение A (справочное)

Метод обеспечения соответствия планов контроля по количественному и альтернативному признакам

А.1 Замечания

 $P_{\rm a}$ (p; n,Ac) – вероятность приемки при контроле по альтернативному признаку с уровнем качества процесса p.

 $P_{\rm u}$ $(p; n_{\rm s}, k_{\rm s})$ — вероятности приемки при контроле по количественному признаку с уровнем качества процесса p и неизвестным стандартным отклонением процесса.

 $P_k(p; n_o, k_o)$ –вероятность приемки при контроле по количественному признаку с уровнем качества процесса p и известным стандартным отклонением процесса.

А.2 Цель

Цель обеспечения соответствия кривой ОС каждого плана контроля по количественному признаку кривой ОС одноступенчатого контроля по альтернативному признаку состоит в том, чтобы в случае, когда характеристика качества подчиняется нормальному распределению, основаниями для выбора того или иного плана были причины экономического или административного характера.

Существует много критериев, которые могут быть использованы для обеспечения такого соответствия. В настоящем стандарте в качестве такого критерия использован принцип минимизации интеграла абсолютного значения разности значений ОС с весовым коэффициентом в виде суммы ОС. Использование суммы оперативных характеристик в качестве весового коэффициента позволяет повысить значимость различий между значениями ОС при малых значениях р, поскольку, чем меньше значение р, тем больше среднее время до переключения на усиленный контроль (и переход на другую ОС).

Целевая функция, которую необходимо минимизировать для неизвестного стандартного отклонения

$$\int_{J} \mathbf{0}^{t} \mathbf{1} = \left[\left[P_{j} \mathbf{a} \left(p; n, \mathbf{Ac} \right) + P_{j} \mathbf{u} \left(p; n_{j} \mathbf{s}, k_{j} \mathbf{s} \right) \right] P_{j} \mathbf{a} \right] \quad (p; n, \mathbf{Ac}) - P_{j} \mathbf{u} \left(p; n_{j} \mathbf{s}, k_{j} \mathbf{s} \right) \right] dp = \int_{0}^{1} \left[P_{0}^{2} \left(p; n, \mathbf{Ac} \right) - P_{0}^{2} \left(p; n_{s}, k_{s} \right) \right] dp$$

Аналогично целевая функция, которую необходимо минимизировать для известного стандартного отклонения процесса

$$\lceil {_1}0^{\dagger}1 \stackrel{?}{=} \llbracket \{P_1\mathbf{a} \; (p;n,\mathbf{Ac}) + P_1\mathbf{k} \; (p;n_1\boldsymbol{\sigma},k_1\boldsymbol{\sigma}) \; \} | P_1\mathbf{a} \; \rrbracket \; (p;n,\mathbf{Ac}) - P_1\mathbf{k} \; (p;n_1\boldsymbol{\sigma},k_1\boldsymbol{\sigma}) | d\boldsymbol{\sigma} = 0 \; \text{and} \; \boldsymbol{\sigma} = 0 \; \text{and} \;$$

Метод может быть интерпретирован как минимизация квадрата разности ОС, соответствующих контролю по альтернативному и количественному признакам.

Приложение В (справочное)

Примеры использования процедур

В.1 Пример 1.Объединенный контроль при наличии двух границ поля допуска с неизвестным стандартным отклонением процесса

Отдел контроля качества завода-изготовителя выразил озабоченность по поводу одного из размеров детали, которому соответствует общая доля несоответствующих единиц продукции вне двух границ поля допуска, приблизительно равная 1,5 %. Принято решение о приобретении нового режущего инструмента, о котором заявлено, что он способен снизить эту долю до 0,1 %. После установки инструмента была проведена проверка соответствия DQL равному0,1 %. Стандартное отклонение процесса для нового инструмента неизвестно, но для детали известны верхняя и нижняя границы поля допуска, 42,7 мм и 43,0 мм соответственно. Погрешность измерений несущественна.

Принято решение использовать процедуры, установленные в настоящем стандарте, с заявленным уровнем качества DQL равным 0,1 %. Кроме того установлено требование, что вероятность положительного решения в случае, если доля несоответствующих единиц продукции не снизилась, должна быть мала. Поэтому был выбран уровень LQR III, обеспечивающий хорошую распознаваемость уровней качества. В соответствии с таблицей 4 для уровня LQR III, заявленного уровня качества DQL равного 0,1 % и неизвестного стандартного отклонения процесса следует применять план выборочного контроля с объемом выборкил_я = 189 и контрольным параметром формы р равным 0,1632 %. Этот план был предложен для внутреннего анализа.

Была отобрана случайная выборка объема $n_s = 189$ и измерены размеры каждой детали в выборке. Выборочное среднее и стандартное отклонение составили соответственно $\overline{x} = 42,781$ и s = 0.0269.В соответствии с процедурами, установленными в 7.2.3

$$\begin{split} Q_{\mathrm{U}} &= \frac{U - \overline{x}}{s} = \frac{43,0 - 42,781}{0},0269 = 8,141\\ Q_{\mathrm{L}} &= \frac{\overline{x} - L}{s} = \frac{42,781 - 42,7}{0},0269 = 3,011\\ \hat{\mathcal{P}}_{\mathrm{U}} &= B_{\frac{n-2}{2}} \left[\frac{1}{2} \left(1 - \frac{\sqrt{n}Q_{\mathrm{U}}}{n-1} \right) \right] = B_{93},5 \left[0,2023 \right] = 0,000000\\ \hat{\mathcal{P}}_{\mathrm{L}} &= B_{\frac{n-2}{2}} \left[\frac{1}{2} \left(1 - \frac{\sqrt{n}Q_{\mathrm{L}}}{n-1} \right) \right] = B_{93},5 \left[0,3899 \right] = 0,001165\\ \hat{\mathcal{P}}_{\mathrm{C}} &= \hat{\mathcal{P}}_{\mathrm{U}} + \hat{\mathcal{P}}_{\mathrm{L}} = 0,001165, \text{ r.e. } 0,1165 \%. \end{split}$$

Поскольку $\hat{\mathcal{P}}_{\mathfrak{C}} < p$, может быть принято решение, что фактический уровень качества деталей не противоречит DQL равному 0,1 %, несмотря на то, что $\hat{\mathcal{P}}_{\mathfrak{C}} > 0,1$ %.

В соответствии с таблицей 4 данному плану соответствует риск ошибочного решения о несоответствии заявленному уровню качества (0,1 % несоответствующих единиц продукции),равный 3,4 % и риск ошибочного решения о соответствии заявленному уровню качества, когда фактический уровень качества продукции составляет 0,541 %, [т.е., когда фактический уровень качества в 5,41 (LQR) раз хуже заявленного уровня качества].Дополнительная информация о дискриминационной способности данного плана выборочного контроля приведена в таблице 9.

В.2 Пример 2. Единственная граница поля допуска с известным стандартным отклонением процесса

Высшее руководство ведущих банков объявило, что не больше, 4 % случаев время обслуживания может превышать 5 мин. Менеджер отделения банка обеспокоен, что один из его операционистов, находящийся на испытательном сроке, оказывает услугу клиенту слишком медленно. Экспериментально установлено, что распределение натуральных логарифмов времени обслуживания клиента может быть аппроксимировано нормальным распределением со стандартным отклонением 0,50 лог-минут. Менеджер хочет получить объективные свидетельства некомпетентности этого операциониста и инициирует исследование времени обслуживания им клиентов и определить, что доля времени обслуживания, превышающего 5 минут составляет не более 4 %.

В этом примере требуется низкий риск ошибочного решения о несоответствии заявленному уровню качества, но может быть использован более высокий риск ошибочного решения о том, что действия операциониста соответствуют установленным требованиям. Соответственно, менеджер

ГОСТ Р ИСО 3951-4-2013

принимает решение выбрать план с уровнем III. В соответствии с таблицей 4 для известного стандартного отклонения процесса:

$$n_0 = 17, k_0 = 1,442.$$

Результаты наблюдений времени обслуживания клиента (в минутах) для выборки объема n_{Φ} = 17 составили:

1,083	1,283	1,583	1,367	2,333	2,883	2,117	3,083	1,967
2,517	5,750	2,317	2,950	3,983	6,400	1,517	2,883	

Натуральные логарифмы этих значений подчиняются распределению близкому к нормальному распределению:

riopinarione	only padilpor	COTIONIO.						
0,07973	0,24920	0,45932	0,31262	0,84715	1,05883	0,75000	1,12590	0,67651
0,92307	1,74920	0,84027	1,08181	1,38204	1,85630	0,41673	1,05883	

Выборочные среднее и стандартное отклонение логарифмов времени обслуживания имеют вид:

 \bar{x} = 0.87456.

s = 0.49624.

Значение выборочного стандартного отклонения очень близко к предполагаемому значению стандартного отклонения процесса, таким образом, нет оснований для сомнений в правильности этого предположения.

Для натуральных логарифмов времени обслуживания верхняя граница поля допуска равна

 $U = \ln 5 = 1,60944$.

Верхняя статистика качества

 $Q = (U - \overline{x})/\sigma = (1,60944 - 0,87456)/0,50 = 1,46976.$

Поскольку Q>k_a, фактический уровень качества не противоречит заявленному, т.е. нет доказательства того, что доля обслуживаний, когда время обслуживания превышает 5 минут, больше 4 %.

Примечание—Этот вывод сделан несмотря на то, что 2 из 17наблюдений превышают 5 минут. В соответствии с планами настоящего стандарта для принятия решения о несоответствии DQL требуются более существенные доказательства. Для этого объем выборки 17 является достаточно небольшим.

В соответствии с таблицей 4 вероятность ошибочного решения о несоответствии заявленному уровню качества (4,0 %несоответствующих единиц продукции) составляет 0,9 % ошибочного решения о соответствии DQL, когда фактический уровень качества составляет 23,44 % несоответствующих единиц продукции [т.е. фактический уровень качества в 5,86 раза (LQR) хуже заявленного уровня качества]. Дополнительная информация о дискриминационной способности этого плана выборочного контроля приведена в таблице 10.

В.3 Пример З.Индивидуальный контроль при наличии двух границ поля допуска для неизвестного стандартного отклонения процесса

На заводе бутылочного розлива имеются проблемы, связанные с процессом заполнения бутылок, вызванные изменчивостью высоты бутылок. Границы поля допуска высоты бутылок составляют 24,0 ± 0,2 см. Нарушение этого требования имеет различные последствия. Если бутылка слишком высокая, наконечник при разливе может повредить бутылку и сам получить повреждение. Если бутылка слишком низкая, наконечник при розливе будет находиться на некотором расстоянии от бутылки, и бутылка может быть недостаточно заполнена. Необходимо, чтобы на розлив поступало не более 0,1 % бутылок выше 24,2 см и не более 0,4 % бутылок ниже 23,8 см. Поставщик бутылок заявляет о выполнении этих требований. Руководство принимает решение о проверке выполнения этих требований на следующей большой партии бутылок.

Руководство завода стремится поддерживать хорошие отношения с поставщиком бутылок, и поэтому требует, чтобы вероятность ошибочного решения о несоответствии высоты бутылок заявленному уровню качества была низка. Может быть использован план контроля в соответствии с настоящим стандартом.

Выбран уровень II.В соответствии с таблицей 3 для верхней границы поля допуска выбран план ($n_{s,u}$ = 112, $k_{s,u}$ = 2,723), а для нижней границы поля допуска – план ($n_{s,t}$ = 61, $k_{s,t}$ = 2,230). На основе отобранных случайных выборок получены выборочное среднее и стандартное отклонение для верхней(\overline{X}_{II} = 23,881, s_{U} = 0,0655)и нижней границ (\overline{X}_{II} = 23,947, s_{t} = 0,0626) поля допуска. Следовательно,

 $Q_U = (U - \overline{x}_U)/s_U = (24.2 - 23.881)/0.0655 = 4.870.$

 $Q_L = (\overline{x}_L - L)/s_L = (23,947 - 23,8)/0,0626 = 2,348.$

Поскольку $Q_U > k_{s,U}$ и $Q_L > k_{s,L}$, принято решение о соответствии фактического уровня качества бутылок заявленному поставщиком уровню качества.

В.4 Пример 4.Сложный контроль при наличии двух границ поля допуска для неизвестного стандартного отклонения процесса

Данный пример представляет собой модификацию предыдущего примера с более жесткими ограничениями. Предположим, что руководство требует, чтобы на розлив было подано не более 0,1 % бутылок выше 24,2 см и не более 0,4 %бутылок выше 24,2 см или ниже 23,8 см. Для контроля использована форма p^* , позволяющая выполнить необходимые проверки.

Выбран уровень І І. В соответствии с таблицей 3 выбран план ($n_{s,0}$ = 112, p_0 = 0,002854) для верхней границы поля допуска и план ($n_{s,0}$ = 61, $\mathcal{P}_{\mathcal{C}}^{\bullet}$ = 0,01162) для двух границ поля допуска. По случайным выборкам получены выборочные среднее и стандартное отклонение ($\overline{x}_{\mathbf{I},\mathbf{I}}$ = 23,881, s_0 = 0,0655) –для верхней границы поля допуска и ($\overline{x}_{\mathcal{C}}$ = 23,922, s_0 = 0,0639) –для объединенного контроля для обеих границ поля допуска.

Таким образом

$$\begin{split} \widehat{p}_{\mathsf{U}} &= B_{\underbrace{n_{s,\mathsf{U}} - 2}_{2}} \left[\frac{1}{2} \left(1 - \frac{U - \overline{x}_{\mathsf{U}}}{s_{\mathsf{U}}} \frac{\sqrt{n_{\mathsf{s},\mathsf{U}}}}{n_{\mathsf{s},\mathsf{U}} - 1} \right) \right] = B_{\mathsf{55}} \left[\frac{1}{2} \left(1 - \frac{24,2 - 23,881}{0},0655 \, \frac{\sqrt{112}}{111} \right) \right]_{=} \\ &= B_{\mathsf{55}}(0,267830) \approx 0,0000000. \\ \widehat{p}_{\mathsf{c}} &= \widehat{p}_{\mathsf{c},\mathsf{U}} + \widehat{p}_{\mathsf{c},\mathsf{L}} = \\ &= B_{\underbrace{1(n_{\mathsf{c},\mathsf{c}}^{-} - 2)}_{2}} \left[\frac{1}{2} \left(1 - \frac{U - \overline{x}_{\mathsf{c}}}{s_{\mathsf{c}}} \frac{\sqrt{n_{\mathsf{s},\mathsf{c}}}}{n_{\mathsf{s},\mathsf{c}} - 1} \right) \right] + B_{\underbrace{n_{\mathsf{c}} - 2}_{2}} \left[\frac{1}{2} \left(1 - \frac{\overline{x}_{\mathsf{c}} - L}{s_{\mathsf{c}}} \frac{\sqrt{n_{\mathsf{s},\mathsf{c}}}}{n_{\mathsf{s},\mathsf{c}} - 1} \right) \right]_{=} \\ &= B_{\mathsf{29,s}} \left[\frac{1}{2} \left(1 - \frac{24,2 - 23,922\sqrt{61}}{0,0639} \right) \right] + B_{\mathsf{29,s}} \left[\frac{1}{2} \left(1 - \frac{23,922 - 23,8\sqrt{61}}{0,0639} \right) \right] \\ &= B_{\mathsf{29,5}}(0,216843) + B_{\mathsf{29,5}}(0,375737) = 0,0000001 + 0,026722 = 0,026723. \end{split}$$

Таким образом, $\hat{\mathcal{P}}_{\overline{\mathbf{U}}} < \mathcal{P}_{\overline{\mathbf{U}}}^*$, но $\hat{\mathcal{P}}_{\overline{\mathbf{C}}} > \mathcal{P}_{\overline{\mathbf{C}}}^*$. Следовательно, поставщик бутылок не выполнил установленных требований и доля бутылок, несоответствующих установленным требованиям, слишком велика.

Приложение ДА (справочное)

Сведения о соответствии ссылочных международных стандартов ссылочным национальным стандартам Российской Федерации (и действующим в этом качестве межгосударственным стандартам)

ТаблицаДА.1

Обозначение ссылочного международного стандарта	Степень соответствия	Обозначение и наименование соответствующего национального стандарта
ИСО 2859-4:2002	IDT	ГОСТ Р ИСО 2859-4 – 2006 Статистические методы. Процедуры выборочного контроля по альтернативному признаку. Часть 4. Оценка соответствия заявленному уровню качества
ИСО 3534-1:2006	-	•
ИСО 3534-2:2006	~	Carrie Ca
ИСО 3951-2:2006	IDT	ГОСТ Р ИСО 3951-2 – 2009 Статистические методы. Процедуры выборочного контроля по количественному признаку. Часть 2. Общие требования к одноступенчатым планам на основе AQL при контроле последовательных партий по независимым характеристикам качества
ИСО9000:2005	IDT	ГОСТ ISO 9000-2011 Системы менеджмента качества. Основные положения и словарь

^{*} Соответствующий национальный стандарт отсутствует. До его утверждения рекомендуется использовать перевод на русский язык данного международного стандарта. Перевод данного международного стандарта находится в Федеральном информационном фонде технических регламентов и стандартов.

П р и м е ч а н и е — В настоящей таблице использованы следующие условные обозначения степени соответствия стандартов:

IDT- идентичные стандарты;

МОО-модифицированные стандарты;

NEQ-неэквивалентные стандарты.

Библиография

 ISO 2854:1976, Statistical interpretation of data — Techniques of estimation and tests relating to means and variances¹⁾

23

¹⁾ Стандарт ИСО 2854:1976соответствует национальному стандарту ГОСТ Р 50779.21-96 «Статистические методы. Правила определения и методы расчета статистических характеристик по выборочным данным. Часть 1. Нормальное распределение».

УДК 658.562.012.7:65.012.122:006.352

OKC 03.120.30

Ключевые слова: планы выборочного контроля, процедуры выборочного контроля, уровень качества, соответствие продукции уровню качества, отношение качества, предельное отношение качества, выборочный контроль, характеристика продукции, оперативная характеристика, верхняя граница поля допуска, нижняя граница поля допуска, заявленный уровень качества

Подписано в печать 01.09.2014. Формат 60х84¹/в.
Усл. печ. л. 3,26. Тираж 65 экз. Зак. 2991.
Подготовлено на основе электронной версии, предоставленной разработчиком стандарта

ФГУП «СТАНДАРТИНФОРМ» 123995 Москва, Гранатный пер., 4. www.gostinfo.ru info@gostinfo.ru