ФЕДЕРАЛЬНОЕ АГЕНТСТВО

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

ΓΟCT P 55448— 2013

КОРМА, КОМБИКОРМА, КОМБИКОРМОВОЕ СЫРЬЕ

Определение содержания охратоксина A методом высокоэффективной жидкостной хроматографии с флуориметрическим детектированием

Издание официальное

Предисловие

- РАЗРАБОТАН Открытым акционерным обществом «Всероссийский научно-исследовательский институт комбикормовой промышленности» (ОАО «ВНИИКП») и Обществом с ограниченной ответственностью «ЛЮМЭКС-МАРКЕТИНГ» (ООО «ЛЮМЭКС-МАРКЕТИНГ»)
- 2 ВНЕСЕН Техническим комитетом по стандартизации ТК 004 «Комбикорма, белково-витаминноминеральные концентраты, премиксы»
- 3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 27 июня 2013 г. № 198-ст
 - 4 ВВЕДЕН ВПЕРВЫЕ
 - 5 ПЕРЕИЗДАНИЕ. Июнь 2020 г.

Правила применения настоящего стандарта установлены в статье 26 Федерального закона от 29 июня 2015 г. № 162-ФЗ «О стандартизации в Российской Федерации». Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе «Национальные стандарты», а официальный текст изменений и поправок — в ежемесячном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

КОРМА, КОМБИКОРМА, КОМБИКОРМОВОЕ СЫРЬЕ

Определение содержания охратоксина A методом высокоэффективной жидкостной хроматографии с флуориметрическим детектированием

Feedstuffs, compound feeds, feed raw materials.

Determination of ochratoxin A content using high-performance liquid chromatography with fluorimetric detection

Дата введения -2014-07-01

1 Область применения

Настоящий стандарт распространяется на корма, комбикорма, комбикормовое сырье и устанавливает метод определения содержания охратоксина А с применением высокоэффективной жидкостной хроматографии (ВЭЖХ) с флуориметрическим детектированием в диапазоне измеряемых значений массовой доли от 0,0025 до 1,0 мг/кг.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ 12.1.004 Система стандартов безопасности труда. Пожарная безопасность. Общие требования

ГОСТ 12.1.005 Система стандартов безопасности труда. Общие санитарно-гигиенические требования к воздуху рабочей зоны

ГОСТ 12.1.007 Система стандартов безопасности труда. Вредные вещества. Классификация и общие требования безопасности

ГОСТ 12.1.019 Система стандартов безопасности труда. Электробезопасность. Общие требования и номенклатура видов защиты

ГОСТ 12.2.007.0 Система стандартов безопасности труда. Изделия электротехнические. Общие требования безопасности

ГОСТ 12.4.009 Система стандартов безопасности труда. Пожарная техника для защиты объектов. Основные виды. Размещение и обслуживание

ГОСТ 12.4.021 Система стандартов безопасности труда. Системы вентиляционные. Общие требования

ГОСТ 61 Реактивы. Кислота уксусная. Технические условия

ГОСТ 1770 (ИСО 1042—83, ИСО 4788—80) Посуда мерная лабораторная стеклянная. Цилиндры, мензурки, колбы, пробирки. Общие технические условия

ГОСТ 4025 Мясорубки бытовые. Технические условия

ГОСТ 4166 Реактивы. Натрий сернокислый. Технические условия

ГОСТ 5556 Вата медицинская гигроскопическая. Технические условия

ГОСТ 5848 Реактивы. Кислота муравьиная. Технические условия

ГОСТ 6709 Вода дистиллированная. Технические условия

ГОСТ 13586.3 Зерно. Правила приемки и методы отбора проб

FOCT P 55448-2013

ГОСТ 13979.0 Жмыхи, шроты и горчичный порошок. Правила приемки и методы отбора проб

ГОСТ 16317—87 Приборы холодильные электрические бытовые. Общие технические условия

ГОСТ 17681-82 Мука животного происхождения. Методы испытаний

ГОСТ 20015—88 Хлороформ. Технические условия

ГОСТ 20469-95 Электромясорубки бытовые. Технические условия

ГОСТ 25336—82 Посуда и оборудование лабораторные стеклянные. Типы. Основные параметры и размеры

ГОСТ 27668-88 Мука и отруби. Приемка и методы отбора проб

ГОСТ 28311 Дозаторы медицинские лабораторные. Общие технические требования и методы испытаний

ГОСТ 29227 (ИСО 835-1—81) Посуда лабораторная стеклянная. Пипетки градуированные. Часть 1. Общие требования

ГОСТ ISO 6498 Корма, комбикорма. Подготовка проб для испытаний

ГОСТ ISO 24333 Зерно и продукты его переработки. Отбор проб

ГОСТ Р ИСО 5725-1 Точность (правильность и прецизионность) методов и результатов измерений. Часть 1. Основные положения и определения

ГОСТ Р ИСО 5725-6—2002 Точность (правильность и прецизионность) методов и результатов измерений. Часть 6. Использование значений точности на практике

ГОСТ Р ИСО 6497 Корма для животных. Отбор проб

ГОСТ Р 51568 (ИСО 3310-1—90) Сита лабораторные из металлической проволочной сетки. Технические условия

ГОСТ Р 53228 Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания

ГОСТ Р 57221 Дрожжи кормовые. Методы испытаний

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя «Национальные стандарты» за текущий год. Если заменен ссылочный стандарт, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого стандарта с учетом всех внесенных в данную версию изменений. Если заменен ссылочный стандарт, на который дана датированная ссылка, то рекомендуется использовать версию зтого стандарта с указанным выше годом утверждения (принятия). Если после утверждения настоящего стандарта в ссылочный стандарт, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение рекомендуется применять без учета данного изменения. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту ссылку.

3 Сущность метода

Сущность метода заключается в экстракции охратоксина A из анализируемой пробы подкисленным хлороформом, очистке полученного экстракта на колонке с силикагелем и определении массовой доли охратоксина A с применением ВЭЖХ с флуориметрическим детектированием.

4 Требования безопасности

- 4.1 При выполнении испытаний соблюдают требования техники безопасности при работе с химическими реактивами по ГОСТ 12.1.007, требования электробезопасности при работе с электроприборами по ГОСТ 12.2.007.0, ГОСТ 12.1.019, а также требования, изложенные в технической документации на используемые приборы.
 - 4.2 Работу с химическими реактивами проводят в вытяжном шкафу.
- 4.3 Помещение должно быть оснащено вентиляционными системами по ГОСТ 12.4.021, соответствовать требованиям пожаробезопасности по ГОСТ 12.1.004 и иметь средства пожаротушения по ГОСТ 12.4.009.
- 4.4 Содержание вредных веществ в воздухе не должно превышать допустимых значений по ГОСТ 12.1.005.

5 Средства измерений, стандартные образцы, вспомогательные устройства, материалы и реактивы

Средства измерений и стандартные образцы

Хроматограф жидкостный с программным обеспечением флуориметрическим или спектрофлуориметрическим детектором, обеспечивающим возбуждение флуоресценции в спектральной области (330 ± 20) нм и регистрацию интенсивности флуоресценции лри длине волны (465 ± 20) нм. Применяемый детектор должен обеспечить предел обнаружения охратоксина А в подвижной фазе не более 5 нг/см³.

Весы неавтоматического действия с пределом допускаемой абсолютной погрешности не более ±0.01 г по ГОСТ Р 53228.

Пипетки градуированные 1(2, 3, 5)-1(1a,2,2a)-2-2(5) по ГОСТ 29227.

Дозаторы пипеточные одноканальные переменного объема от 100 до 1000 мм³ с метрологическими характеристиками по ГОСТ 28311.

Колбы мерные 2(2а)-25(50, 200)-2 по ГОСТ 1770.

Колбы мерные вместимостью 200 см³.

Цилиндры мерные 1(2)-25(50, 250) по ГОСТ 1770.

Стандартный образец состава раствора охратоксина A в ацетонитриле массовой концентрации 50 мкг/см³ и допускаемой погрешностью ± 2,5 мкг/см³.

Примечания

- 1 Средства измерения должны быть поверены в установленные сроки.
- Допускается использовать другие средства измерения и стандартные образцы с аналогичными или более высокими метрологическими характеристиками.

5.2 Вспомогательные устройства и материалы

Колонка хроматографическая, заполненная обращенно-фазовым сорбентом зернением 5 мкм, имеющая эффективность не менее 5000 теоретических тарелок на метр по пику охратоксина A.

Предколонка, заполненная тем же обращенно-фазовым сорбентом.

Колонка хроматографическая стеклянная с пришлифованной пробкой длиной 200 мм и внутренним диаметром 10 мм.

Устройство для удаления растворителя, например, роторный (ротационный) испаритель.

Насос лабораторный вакуумный, мембранный или водоструйный, обеспечивающий разрежение от 2,5 до 10 кПа по ГОСТ 25336.

Баня водяная с регулятором нагрева.

Устройство для перемешивания проб, обеспечивающее частоту вращения до 120 мин-1.

Мельница лабораторная электрическая, обеспечивающая измельчение пробы до прохода через сито с отверстиями диаметром 1,0 мм.

Мясорубка или электромясорубка с диаметром отверстий в пластинке 4,0 мм по ГОСТ 4025 или ГОСТ 20469.

Сито с размером ячеек 1,0 мм по ГОСТ Р 51568.

Шкаф сушильный, обеспечивающий нагревание до 200 °C.

Холодильник бытовой по ГОСТ 16317.

Воронки лабораторные В-25(36, 75)-50(80, 110) по ГОСТ 25336.

Колбы плоскодонные П-1-50(100, 250)-29/32 ТХС или П-2-50(100, 250)-22(34) ТХС по ГОСТ 25336.

Колбы остродонные для упаривания O-50-14/23 ТХС по ГОСТ 25336.

Стаканы H-1-50 XC по ГОСТ 25336.

Пробирка для микропроб однократного применения (пробирка Эппендорфа) вместимостью $1.5~{
m cm}^3.$

Емкости стеклянные вместимостью 50, 250, 1000 см³ с пришлифованными стеклянными или полиэтиленовыми пробками.

Фильтры бумажные «красная лента».

Часы песочные или таймер.

Вата медицинская по ГОСТ 5556.

FOCT P 55448-2013

П р и м е ч а н и е — Допускается использовать другие вспомогательные средства с более высокими техническими характеристиками.

5.3 Реактивы

Вода дистиллированная по ГОСТ 6709.

Ацетонитрил для жидкостной хроматографии, ос. ч.

Гексан для жидкостной хроматографии, ч.

Хлороформ по ГОСТ 20015, ч. д. а.

Кислота уксусная по ГОСТ 61, ледяная, х. ч.

Кислота муравьиная по ГОСТ 5848, ч.

Натрий сернокислый по ГОСТ 4166, безводный, х. ч.

Силикагель для колоночной хроматографии с размером частиц 100-200 мкм.

Стандартный образец охратоксина А в ацетонитриле массовой концентрации 50 мкг/см3.

Примечание — Допускается использование реактивов аналогичной или более высокой квалификации, изготовленных по другой нормативной или технической документации, в том числе импортных.

6 Отбор проб

Отбор проб — по ГОСТ Р ИСО 6497, ГОСТ ISO 24333, ГОСТ 13586.3, ГОСТ 13979.0, ГОСТ 17681, ГОСТ 27668, ГОСТ Р 57221.

7 Подготовка к проведению испытаний

7.1 Условия проведения испытаний

При подготовке и проведении испытаний должны быть соблюдены следующие условия:

- атмосферное давление......(97 ± 10) кПа.

7.2 Подготовка проб

Подготовка проб — по ГОСТ ISO 6498 со следующим дополнением. Из подготовленной лабораторной пробы выделяют пробу массой не менее 100 г. Измельчают ее в лабораторной мельнице до прохода через сито с размером ячеек 1,0 мм и отбирают анализируемую пробу массой (5,00 ± 0,01) г.

Консервированные и влажные корма гомогенизируют, для чего лабораторную пробу пропускают через мясорубку с размером ячеек в пластинке 4.0 мм, тщательно перемешивают, выделяют пробу массой не менее 100 г и отбирают анализируемую пробу массой (5.00 ± 0.01) г.

7.3 Подготовка лабораторной посуды

Посуду для приготовления и хранения подвижной фазы моют только серной кислотой (без применения других моющих средств), тщательно промывают водопроводной водой и ополаскивают дистиллированной водой.

Остальную стеклянную посуду моют горячей водой с моющим средством, тщательно ополаскивают дистиллированной водой и сушат в сушильном шкафу при температуре 105 °C.

7.4 Приготовление растворов для испытаний

7.4.1 При приготовлении и хранении растворов не допускается использование резиновых и корковых пробок.

Приготовленные растворы хранят в условиях, исключающих испарение их компонентов.

7.4.2 Приготовление подвижной фазы (смесь ацетонитрила, воды и уксусной кислоты в объемном соотношении 43 : 56 : 1)

В стеклянную емкость вместимостью 1000 см 3 с плотно закрывающейся пришлифованной или полиэтиленовой пробкой помещают 215 см 3 ацетонитрила, 280 см 3 дистиллированной воды и 5 см 3

ледяной уксусной кислоты. Смесь тщательно перемешивают и хранят не более 1 мес при комнатной температуре.

7.4.3 Приготовление раствора уксусной кислоты объемной доли 1 %

В мерную колбу вместимостью 200 см³ помещают 2 см³ ледяной уксусной кислоты и доводят объем в колбе до метки дистиллированной водой. Тщательно перемешивают и хранят в стеклянной емкости с плотно закрывающейся пришлифованной или полиэтиленовой пробкой не более 1 мес.

7.4.4 Приготовление смеси хлороформа и муравьиной кислоты в объемном соотношении 100:2

В плоскодонную колбу вместимостью 250 см³ помещают 200 см³ хлороформа и 4 см³ муравьиной кислоты. Добавляют 10 г безводного сернокислого натрия. Смесь тщательно перемешивают, фильтруют через фильтр «красная лента» и хранят в стеклянной емкости с пришлифованной или полиэтиленовой пробкой не более 1 мес.

7.4.5 Приготовление растворов охратоксина А

- 7.4.5.1 Все растворы охратоксина А хранят в холодильнике при температуре не выше 6 °С.
- 7.4.5.2 Приготовление исходного раствора охратоксина А номинального значения массовой концентрации 1 мкг/см³

Пипеткой отбирают 1 см³ стандартного образца состава раствора охратоксина A в ацетонитриле массовой концентрации 50 мкг/см³, помещают в мерную колбу вместимостью 50 см³ и доводят объем до метки ацетонитрилом.

Срок хранения приготовленного раствора — не более 6 мес.

7.4.5.3 Приготовление раствора охратоксина А в ацетонитриле номинального значения массовой концентрации 100 нг/см³

В мерную колбу вместимостью 50 см³ помещают 5 см³ раствора охратоксина А номинального значения массовой концентрации 1 мкг/см³ по 7.4.5.2, что соответствует 1000 нг/см³, и доводят объем до метки ацетонитрилом.

Срок хранения полученного раствора — не более 3 мес.

7.4.5.4 Приготовление градуировочных растворов охратоксина А в подвижной фазе

Для приготовления градуировочных растворов охратоксина А номинальных значений массовой концентрации 100, 40 и 10 нг/см³ берут мерные колбы вместимостью 50, 25 и 50 см³ соответственно и помещают в них по 5,0; 1,0 и 0,5 см³ исходного раствора охратоксина А в ацетонитриле (см. 7.4.5.2). Объем в колбе доводят до метки подвижной фазой (см. 7.4.2).

Срок хранения градуировочных растворов — не более одной недели.

7.4.5.5 Приготовление проверочного раствора охратоксина А в подвижной фазе номинального значения массовой концентрации 20 нг/см³

В мерную колбу вместимостью 25 см³ помещают 0,5 см³ исходного раствора охратоксина A (см. 7.4.5.2) и доводят объем до метки подвижной фазой (см. 7.4.2).

Примечание — При необходимости допускается приготовление аналогичным способом растворов охратоксина А другой массовой концентрации в диапазоне линейности градуировочной зависимости (см. 7.6).

7.5 Подготовка хроматографа к работе

Подготовку хроматографа к работе проводят в соответствии с руководством по эксплуатации жидкостного хроматографа и/или флуориметрического (спектрофлуориметрического) детектора.

Устанавливают рабочие длины волн возбуждения и регистрации (см. 5.2) и скорость подачи подвижной фазы в зависимости от типоразмеров колонки, руководствуясь указаниями ее изготовителя, например для колонки, указанной в 5.2, рекомендуемая объемная скорость подвижной фазы составляет 200 мм³/мин. Рекомендуемый объем петли крана-дозатора 10 или 20 мм³. При наличии термостата колонок устанавливают температуру 25 °C.

7.6 Градуировка хроматографа

В качестве образцов для градуировки хроматографа используют растворы охратоксина А в подвижной фазе (см. 7.4.5.4).

Диапазон линейности градуировочной характеристики составляет от 10 до 100 нг/см³.

При соблюдении условий по 7.5 регистрируют не менее двух хроматограмм каждого раствора, проверяют правильность автоматической разметки и, если необходимо, корректируют ее, удаляют лишние пики. Далее проводят процедуру градуировки согласно руководству пользователя программным обеспечением и определяют время удерживания и параметры градуировочной характеристики для охратоксина A.

Градуировку считают приемлемой, если вычисляемый программой коэффициент корреляции не ниже 0,99, а относительное среднеквадратическое отклонение не превышает 5 %. Если хотя бы одно из указанных условий не выполняется, регистрацию хроматограмм повторяют.

Внеочередную градуировку системы проводят при неудовлетворительных результатах контроля ее стабильности (см. 7.7), а также при замене стандартного образца состава раствора охратоксина А или изменении эффективности хроматографической системы, или чувствительности детектора (например, после проведения ремонта или длительного простоя хроматографической системы).

7.7 Контроль стабильности градуировочной характеристики

Контроль стабильности градуировочной характеристики проводят ежедневно перед началом работы.

Массовую концентрацию охратоксина А для проведения контроля выбирают, исходя из предполагаемого его содержания в анализируемых пробах (рекомендуется проверочный раствор охратоксина А массовой концентрации 20 нг/см³).

Регистрируют не менее двух хроматограмм проверочного раствора (см. 7.4.5.5) и идентифицируют лик охратоксина A, внося при необходимости программную коррекцию времени удерживания.

Проверяют сходимость времен удерживания и значений массовой концентрации охратоксина А по формулам (1) и (2) соответственно

$$\frac{|t_1 - t_2|}{\bar{t}} \le 0.05$$
, (1)

где

 t_1 и t_2 — время удерживания пика охратоксина А на первой и второй хроматограммах соответственно, мин;

T — среднеарифметическое значение t_1 и t_2 , мин.

$$\frac{|C_{K1} - C_{K2}|}{\overline{C}_{K}} \le 0.07,$$
 (2)

где C_{K1} и C_{K2} — массовые концентрации охратоксина A в проверочном растворе охратоксина A по первой и второй хроматограммам соответственно, нг/см³;

 $\overline{C_{k}}$ — среднее арифметическое значение $C_{k,1}$ и $C_{k,2}$, нг/см³.

Градуировочная зависимость признается стабильной, если выполняется условие

$$\frac{|\overline{C}_K - C|}{C} \le 0,1,$$
 (3)

где

 $\overline{C}_{\!\scriptscriptstyle K}$ — среднеарифметическое значений $C_{\!\scriptscriptstyle K1}$ и $C_{\!\scriptscriptstyle K2}$, нг/см³,

С — массовая концентрация охратоксина А в проверочном растворе, используемом для контроля стабильности градуировочной характеристики, нг/см³.

Если данное условие не выполняется, то процедуру контроля повторяют и при получении неудовлетворительного результата градуировку системы проводят заново.

7.8 Подготовка стеклянной хроматографической колонки

Стеклянную хроматографическую колонку готовят непосредственно перед проведением испытания.

В стакан вместимостью 50 см³ помещают (1,0 ± 0,1) г силикагеля, добавляют 10—15 см³ хлороформа и тщательно перемешивают. Полученную суспензию выдерживают в стакане в течение 4—5 мин. На дно колонки помещают кусочек ваты и затем в несколько приемов через воронку диаметром 25 или 36 мм наливают суспензию силикагеля.

После оседания силикагеля в колонке на него сверху насыпают слоем около 2 г безводного сульфата натрия. В процессе работы с колонкой нельзя допускать высыхания сорбента, для чего необходимо поддерживать над осушителем слой растворителя. В состоянии ожидания колонка должна быть заполнена хлороформом до пробки, закрыта стеклянной пришлифованной пробкой, а конец колонки должен быть погружен в стакан с хлороформом.

Подготовленную колонку используют один раз.

7.9 Проведение испытания холостой пробы

Испытание холостой пробы проводят перед испытанием анализируемых проб.

В плоскодонную колбу вместимостью 50 см³ помещают 30 см³ хлороформа и 2,5 см³ раствора уксусной кислоты (см. 7.4.3), тщательно перемешивают и осторожно из нижнего слоя отбирают 20 см³ хлороформа в остродонную колбу для упаривания вместимостью 50 см³, не допуская попадания в нее воды.

Упаривают досуха в вакууме при температуре водяной бани 40 °C—45 °C. Продолжают выполнять все операции по 8.2, получая таким образом концентрат холостой пробы. Проводят хроматографическое исследование полученного концентрата по 8.3. Если на хроматограмме присутствуют пики, по параметрам удерживания близкие к лику охратоксина А, то находят и устраняют причины загрязнения холостой пробы (реактивы или посуда).

Примечание — Наиболее распространенной причиной неудовлетворительного результата контроля холостой пробы является недостаточная чистота хлороформа, который может быть загрязнен примесями, имеющими близкие к охратоксину А параметры удерживания. Такой хлороформ необходимо заменить или подвергнуть тщательной перегонке, собирая среднюю фракцию с температурой кипения 60 °C—62 °C.

7.10 Учет потерь охратоксина А в процессе подготовки пробы к испытанию

В плоскодонную колбу вместимостью 50 см³ помещают 30 см³ хлороформа и 2,5 см³ уксусной кислоты (см. 7.4.3), вносят 0,25 см³ раствора охратоксина А в ацетонитриле массовой концентрации 100 нг/см³ (см. 7.4.5.3). Тщательно перемешивают и осторожно отбирают 20 см³ хлороформа в остродонную колбу для упаривания вместимостью 50 см³, не допуская попадания в нее воды. Упаривают досуха в вакууме при температуре водяной бани 40 °C—45 °C.

Далее продолжают выполнять все операции по 8.2.

По полученной хроматограмме определяют массовую концентрацию охратоксина А в конечном концентрате, пользуясь программным обеспечением по заложенной в метод градуировочной зависимости.

Затем вычисляют коэффициент прохождения охратоксина А. η, по формуле

$$\eta = \frac{m}{m_K}$$
(4)

где m — масса охратоксина A в анализируемой пробе по формуле (5), нг;

т_к — масса охратоксина А, нг, в 0,25 см³ раствора охратоксина А в ацетонитриле массовой концентрации 100 нг/см³, 25 нг.

Масса охратоксина А, введенного в качестве добавки, нг (рекомендуется 25 нг). Массу охратоксина А в анализируемой пробе, m, нг, вычисляют по формуле

$$m = 0.75 C_X$$
, (5)

где 0,75 — коэффициент пересчета;

 C_{χ} — измеренное значение массовой концентрации охратоксина A в конечном концентрате анализируемой пробы, нг/см³.

Определение коэффициента прохождения производится на этапе освоения методики и должно быть проведено не менее двух раз. При удовлетворительном проведении подготовки пробы каждое из полученных значений должно быть в интервале 0,7—1,0, причем расхождение между двумя последовательными значениями, полученными оператором, не должно превышать 0,1. В противном случае необ-

FOCT P 55448-2013

ходимо найти причины неудовлетворительного проведения подготовки исследуемой пробы и повторить процедуру до получения результатов, удовлетворяющих указанному условию.

При удовлетворительных результатах определяют среднее арифметическое значение полученных коэффициентов прохождения и используют его при вычислении результатов испытания по формуле (7).

В дальнейшем проводят периодическую проверку коэффициента прохождения охратоксина А. Если расхождение между найденным и ранее установленным значениями превышает 0,15, то выясняют причины, устраняют их и заново определяют коэффициент.

Примечания

- Контроль прохождения охратоксина А выполняет каждый из операторов, работающих с данной методикой.
- Причиной неудовлетворительного результата может быть повышенная скорость прохождения элюента через колонку.
- 3 Рекомендуется уточнить коэффициент прохождения охратоксина А либо путем анализа «чистой» пробы (охратоксин А в пробе не обнаруживается), в которую внесена добавка охратоксина А, либо с использованием стандартных образцов состава продукции.

8 Проведение испытаний

8.1 Экстракция охратоксина А из пробы

(5,00 ± 0,01) г измельченной анализируемой пробы помещают в плоскодонную колбу вместимостью 100 см³. Добавляют 30 см³ хлороформа и 2,5 см³ раствора уксусной кислоты (см. 7.4.3), интенсивно перемешивают 30 мин. Пропускают полученный экстракт через бумажный складчатый фильтр «красная лента», отбирая 20 см³ фильтрата для упаривания.

Если не удается отобрать 20 см³ фильтрата, то отбирают максимально возможный объем, измеряют его и используют полученное значение в формуле (6).

Переносят полученный фильтрат в остродонную колбу вместимостью 50 см³ и упаривают досуха в вакууме при температуре водяной бани 40 °C—45 °C.

8.2 Очистка фильтрата

Сухой остаток, полученный по 8.1, растворяют в 1 см³ хлороформа, получая таким образом концентрат анализируемой пробы.

Подготавливают стеклянную колонку по 7.8. Дают хлороформу стечь до уровня сульфата натрия и наносят на колонку концентрат анализируемой пробы. Остродонную колбу из-под фильтрата ополаскивают 2 раза по 1 см³ хлороформа, который также наносят на колонку. После этого промывают колонку 10 см³ гексана, элюат отбрасывают.

Далее через колонку пропускают 30 см³ смеси хлороформа с муравьиной кислотой (см. 7.4.4), элюируя охратоксин A со скоростью прокапывания не более чем одна капля в секунду. Весь элюат собирают в остродонную колбу и упаривают досуха в вакууме при температуре водяной бани 40 °C—45 °C.

Сухой остаток растворяют в 0,5 см³ подвижной фазы (см. 7.4,2) и перемешивают 1 мин. Затем добавляют 3 см³ гексана и снова интенсивно перемешивают. После расслоения двух несмешивающихся между собой фаз аккуратно, при помощи градуированной пипетки вместимостью 1 см³ или одноканального пипеточного дозатора, переносят приблизительно 0,3 см³ нижнего слоя в пробирку для микропроб однократного применения вместимостью 1,5 см³ (пробирка Эплендорфа). Полученный концентрат используют для хроматографических измерений по 8.3 в день проведения испытаний.

8.3 Проведение хроматографических измерений

Регистрируют не менее двух хроматограмм концентрата анализируемой пробы, полученного по 8.2, в тех же условиях, при которых была проведена градуировка системы. Идентификацию охратоксина А проводят по совпадению времени удерживания охратоксина А в экстракте пробы с его временем удерживания, полученном при контроле стабильности градуировочной характеристики, установив ширину окна идентификации 5 %.

Пример хроматограммы приведен на рисунке А.1 (приложение А).

При наличии на хроматограмме концентрата пробы пика, идентифицированного как пик охратоксина А, делают вывод о присутствии охратоксина А в анализируемой пробе, определяют его содержание по каждой зарегистрированной хроматограмме и проверяют расхождение полученных значений между собой, используя формулу (2).

Если условие формулы (2) выполняется, то в качестве результата измерений массовой концентрации охратоксина А в концентрате анализируемой пробы принимают среднеарифметическое значение полученных массовых концентраций. Если условие формулы (2) не выполняется, то находят и устраняют причины нестабильности, после чего ввод концентрата анализируемой пробы повторяют.

При необходимости подтверждения правильности идентификации пика охратоксина А рекомендуется добавить стандартный градуировочный раствор охратоксина А к концентрату анализируемой пробы. О достоверности идентификации можно судить по увеличению высоты предполагаемого пика охратоксина А. Количество добавляемого раствора охратоксина А определяют исходя из того, что массовая доля охратоксина А в пробе должна увеличиться на 50 %—150 % по сравнению с исходным значением.

Если массовая концентрация охратоксина A в конечном концентрате, C_{χ} , превышает 100 нг/см³, то его необходимо разбавить подвижной фазой (см. 7.4.2). Коэффициент разбавления, Q, вычисляют по формуле

$$Q = \frac{V_p}{V_o},$$
 (6)

где $V_{\rm p}$ — объем разбавленного концентрата анализируемой пробы, см³;

 $V_{\rm a}$ — объем аликвотной порции концентрата анализируемой пробы, взятый для разбавления, см 3 .

9 Обработка результатов измерений

Массовую долю охратоксина А в анализируемой пробе, Х, мг/кг, вычисляют по формуле

$$X = \frac{V_1 \cdot V_2 \cdot C_X}{V_3 \cdot m \cdot \eta} \cdot Q \cdot 10^{-3}, \qquad (7)$$

где V_1 — объем хлороформа, взятого для экстракции, см 3 (30 см 3),

 V_2 — объем конечного концентрата анализируемой пробы, см³ (0,5 см³);

С_x — массовая концентрация охратоксина А в конечном концентрате пробы (см. 8.3), нг/см³;

 V_3 — объем экстракта, взятого для испытания (см. 8.1), см³ (20 см³);

т - масса анализируемой пробы, г;

п — коэффициент прохождения охратоксина А по формуле (4);

Q — коэффициент разбавления концентрата пробы по формуле (6);

10⁻³ — коэффициент согласования размерности единиц массы.

Результат измерения представляют в виде ($X \pm \Delta$), мг/кг, где Δ — абсолютная погрешность измерений при доверительной вероятности P = 0.95, которую вычисляют по формуле

$$\Delta = 0.01 \cdot X \cdot \delta, \quad (8)$$

где 0,01 — коэффициент пересчета;

X — массовая доля охратоксина А в анализируемой пробе, мг/кг;

 δ — относительная погрешность измерения при доверительной вероятности P = 0,95. % (см. таблицу 1).

Наименьшие разряды числовых значений результатов измерений принимают такими же, как и наименьшие разряды числовых значений границ, в которых находится абсолютная погрешность измерений, выраженная числом, содержащим не более двух значащих цифр.

В некоторых случаях (выборочно в каждой серии испытаний или при эпизодическом определении охратоксина А) за результат измерения принимают среднеарифметическое значение результатов двух параллельных определений, полученных в условиях повторяемости в соответствии с разделом 10.

10 Контроль точности результатов испытаний

Контроль точности результатов испытаний предусматривает проведение выборочного контроля стабильности результатов испытаний с учетом условий повторяемости (сходимости) и воспроизводимости по ГОСТ Р ИСО 5725-1.

Расхождение между результатами двух параллельных определений, X_1 и X_2 , мг/кг, полученными в одной лаборатории в условиях повторяемости (сходимости), должно соответствовать условию

$$|X_1 - X_2| \le 0.01 \cdot \overline{X} \cdot r$$
, (9)

где X_1 и X_2 — результаты параллельных определений, мг/кг;

0,01 — коэффициент пересчета;

 \overline{X} — среднее арифметическое значение результатов двух параллельных определений, мг/кг;

г — значение предела повторяемости (см. таблицу 1), %.

Если это условие не соблюдается, испытание повторяют на удвоенном количестве проб. При повторном неудовлетворительном испытании находят и устраняют причины, приводящие к неудовлетворительным результатам.

Расхождение между результатами испытаний, полученными в двух лабораториях, $X_{1 \text{na}6}$ и $X_{2 \text{na}6}$, мг/кг, на идентичных образцах разными операторами с использованием различного оборудования должно соответствовать условию

$$|X_{1006} - X_{2006}| \le 0.01 \cdot \overline{X} \cdot R_t$$
 (10)

где 0,01 — коэффициент пересчета;

 \overline{X}_{ns6} — среднеарифметическое значение результатов испытаний в двух лабораториях, мг/кг;

R — предел воспроизводимости (см. таблицу 1), %.

При выполнении этого условия приемлемы оба результата измерений и в качестве окончательного может быть использовано их среднее арифметическое значение. Если это условие не соблюдается, могут быть использованы методы оценки приемлемости результатов измерений согласно ГОСТ Р ИСО 5725-6—2002 (раздел 5).

Таблица 1 — Метрологические характеристики метода

Диалазон измерений, мг/кг	Границы относи- тельной погреш- ности измерений ± 5, %	Предел повторяемости (отно- сительное значение допуска- емого расхождения между результатами двух параплель- ных определений) г. %	Предел воспроизводимости (относительное значение до- пускаемого расхождения между двумя результатами, получен- ными в разных лабораториях) R, %
От 0,0025 до 0,05 включ.	30	31	48
Свыше 0,05 » 1,0 »	24	22	36

Приложение А (справочное)

Пример хроматограммы определения охратоксина А в премиксе

А.1 Пример хроматограммы определения охратоксина А в премиксе приведен на рисунке А.1

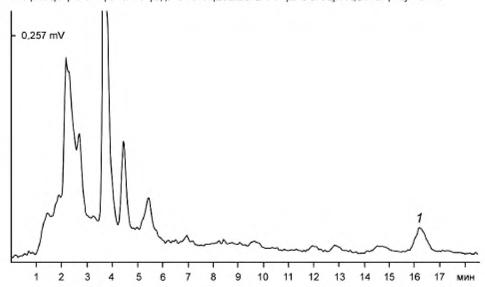


Рисунок А.1 — Пример хроматограммы определения содержания охратоксина А в премиксе с использованием флуориметрического детектора «Флюорат-02-2М» (пик 1 соответствует массовой доле охратоксина А, равной 0,004 мг/кг).

УДК 636.085.3:006.354 OKC 65.120

Ключевые слова: корм, комбикорм, комбикормовое сырье, метод, охратоксин A, высокоэффективная жидкостная хроматография, флуориметрический детектор, метрологические характеристики

Редактор Е.В. Якоелева Технический редактор В.Н. Прусакова Корректор О.В. Лазарева Компьютерная верстка М.В. Лебедевой

Сдано в набор 23.06.2020.

Подписано в печать 26.10.2020. Формат 60×84%. Гарнитура Ариал.

Усл. печ. л. 1 86. Подготовлено на основе электронной версии, предоставленной разработчиком стандарта

Создано в единичном исполнении во ФГУП «СТАНДАРТИНФОРМ» для комплектования Федерального информационного фонда стандартов, 117418 Москва, Нахимовский пр-т. д. 31, к. 2. www.gostinfo.ru info@gastinfo.ru

Уч.-изд. л. 1,68.