ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОСТ Р ИСО 898-2— 2013

МЕХАНИЧЕСКИЕ СВОЙСТВА КРЕПЕЖНЫХ ИЗДЕЛИЙ ИЗ УГЛЕРОДИСТЫХ И ЛЕГИРОВАННЫХ СТАЛЕЙ

Часть 2 Гайки установленных классов прочности с крупным и мелким шагом резьбы

ISO 898-2:2012

Mechanical properties of fasteners made of carbon steel and alloy steel

– Part 2: Nuts with specified property classes –

Coarse thread and fine pitch thread

(IDT)

Издание официальное

Предисловие

- 1 ПОДГОТОВЛЕН Федеральным государственным унитарным предприятием «Всероссийский научно-исследовательский институт стандартизации и сертификации в машиностроении» («ВНИИНМАШ») на основе собственного аутентичного перевода на русский язык международного стандарта, указанного в пункте 4
 - 2 ВНЕСЕН Техническим комитетом по стандартизации ТК 229 «Крепежные изделия»
- 3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 8 ноября 2013 г. № 1455-ст.
- 4 Настоящий стандарт идентичен международному стандарту ИСО 898-2:2012 «Механические свойства крепежных изделий из углеродистых сталей и легированных сталей Часть 2: Гайки установленных классов прочности Крупная резьба и резьба с мелким шагом» (ISO 898-2:2012 «Mechanical properties of fasteners made of carbon steel and alloy steel Part 2: Nuts with specified property classes Coarse thread and fine pitch thread»).

При применении настоящего стандарта рекомендуется использовать вместо ссылочных международных стандартов соответствующие им национальные стандарты Российской Федерации и межгосударственные стандарты, сведения о которых приведены в дополнительном приложении ДА

5 B3AMEH ΓΟCT P 52628–2006 (ИСО 898-2:1992, ИСО 898-6:1994)

Правила применения настоящего стандарта установлены в ГОСТ Р 1.0—2012 (раздел 8). Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе «Национальные стандарты», а официальный текст изменений и поправок — в ежемесячном формационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (доst.ru)

© Стандартинформ, 2014

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

МЕХАНИЧЕСКИЕ СВОЙСТВА КРЕПЕЖНЫХ ИЗДЕЛИЙ ИЗ УГЛЕРОДИСТЫХ И ЛЕГИРОВАННЫХ СТАЛЕЙ

Часть 2

Гайки установленных классов прочности с крупным и мелким шагом резьбы

Mechanical properties of fasteners made of carbon steel and alloy steel
Part 2: Nuts with specified property classes with
coarse thread and fine pitch thread

Дата введения - 2015-01-01

1 Область применения

Настоящий стандарт устанавливает механические и физические свойства гаек с крупным и мелким шагом резьбы из углеродистых и легированных сталей при испытании в условиях с температурой окружающей среды от 10 °C до 35 °C.

Гайки оцениваются на соответствие требованиям настоящего стандарта только в указанном температурном диапазоне. Изделия могут не сохранять установленных механических и физических свойств при более высоких и более низких температурах.

Примечания

- 1 Гайки, соответствующие требованиям настоящего стандарта, применяют в диапазоне температур от минус 50 °C до плюс 150 °C. При определении возможных вариантов применения за пределами указанного диапазона и до максимальной температуры плюс 300 °C пользователям следует консультироваться с металловедами.
- 2 Информация по выбору и применению сталей для использования при более высоких или более низких температурах приведена, например, в EN 10269, ASTM F2281 и в ASTM A320/A320M.

Настоящий стандарт распространяется на гайки:

- а) из углеродистых или легированных сталей;
- b) с крупной резьбой M5 ≤ D ≤ M39 и с мелким шагом резьбы

 $M8 \times 1 \le D \le M39 \times 3$;

- с) с треугольной метрической резьбой по ИСО 68-1;
- d) с сочетаниями диаметр/шаг по ИСО 261 и ИСО 262;
- е) установленных классов прочности, включающих пробную нагрузку;
- f) различных типов: низкие гайки, нормальные гайки и высокие гайки;
- g) с минимальной высотой т ≥ 0,45D;
- h) с минимальным наружным диаметром или размером под ключ s ≥ 1,45D (см. Приложение A)
- і) сопрягаемые с болтами, винтами и шпильками классов прочности по ИСО 898-1.

Горячее оцинкование гаек по ИСО 10684.

Настоящий стандарт не устанавливает требований к следующим свойствам:

- стопорящая способность (см. ИСО 2320);
- соотношение крутящего момента к усилию предварительной затяжки (см. методы испытаний по ИСО 16047)
 - свариваемость;
 - коррозионная стойкость.

2 Нормативные ссылки

Следующие нормативные документы обязательны при применении настоящего стандарта. Для датированных ссылок применять только указанные ниже стандарты. Для недатированных ссылок применять последнее издание ссылочных документов (включая все изменения).

ИСО 6157-2 Изделия крепежные. Дефекты поверхности. Часть 2. Гайки (ISO 6157-2, Fasteners – Surface discontinuities – Part 2: Nuts)

ИСО 6506-1 Материалы металлические. Определение твердости по Бринеллю. Часть 1. Метод испытания (ISO 6506-1, Metallic materials — Brinell hardness test — Part 1: Test method)

ГОСТ Р ИСО 898-2-2013

ИСО 6507-1 Материалы металлические. Испытание на твердость по Виккерсу. Часть 1. Метод испытаний (ISO 6507-1, Metallic materials — Vickers hardness test — Part 1: Test method)

ИСО 6508-1 Материалы металлические. Испытание на твердость по Роквеллу. Часть 1. Метод испытаний (шкалы A, B, C, D, E, F, G, H, K, N, T) (ISO 6508-1, Metallic materials — Rockwell hardness test — Part 1: Test method (scales A, B, C, D, E, F, G, H, K, N, T)

ИСО 6892-1, Материалы металлические. Испытания на растяжение. Часть 1. Испытание при комнатной температуре (ISO 6892-1, Metallic materials — Tensile testing — Part 1: Method of test at room temperature)

ИСО 7500-1, Материалы металлические. Верификация машин для статических испытаний в условиях одноосного нагружения. Часть 1. Машины для испытания на растяжение/сжатие. Верификация и калибровка силоизмерительных систем (ISO 7500-1, Metallic materials — Verification of static uniaxial testing machines — Part 1: Tension/compression testing machines — Verification and calibration of the force-measuring system)

ИСО 16426 Изделия крепежные. Система обеспечения качества (ISO 16426, Fasteners — Quality assurance system)

3 Обозначения

При пользовании настоящим стандартом необходимо применять следующие обозначения:

D – номинальный диаметр резьбы гайки, в миллиметрах

d_h – диаметр отверстия зажима, в миллиметрах

F – нагрузка, в Ньютонах;

h – толщина зажима, в миллиметрах;

т – высота гайки, в миллиметрах;

Р - шаг резьбы, в миллиметрах

s – размер под ключ, в миллиметрах;

4 Система обозначений

4.1 Обозначение типов гайки

Настоящий стандарт устанавливает требования для трех типов гаек в соответствии с их высотой:

- тип 2: высокая гайка с минимальной высотой $m_{\text{ими}} \approx 0.9D$ или $m_{\text{ими}} > 0.9D$, см. таблицу A.1;
- тип 1: нормальная гайка с минимальной высотой m_{мин} ≥ 0,8D, см. таблицу А.1;
- тип 0: низкая гайка с минимальной высотой 0,45D ≤ m_{мин} < 0,8D.

4.2 Обозначение классов прочности

4.2.1 Общие положения

Маркировка гаек различных классов прочности и обозначения на ярлыках (этикетках), установленные в разделе 10, должны применяться только для гаек, соответствующих всем требованиям настоящего стандарта.

4.2.2 Нормальные гайки (тип 1) и высокие гайки (тип 2)

Обозначение классов прочности нормальных гаек (тип 1) и высоких гаек

(тип 2) состоит из одного числа. Оно соответствует числу слева от обозначения максимального класса прочности соответствующего максимального класса прочности болтов, винтов и шпилек, с которыми они могут быть сопряжены.

4.2.3 Низкие гайки (тип 0)

Обозначение классов прочности низких гаек (тип 0) состоит из двух цифр, установленных в следующей последовательности:

- а) первая цифра нуль, означает, что нагрузочная способность гайки ниже нагрузочной способности нормальной гайки или высокой гайки в соответствии с 4.2.2 и, следовательно, при нагрузке выше допускаемой может произойти срез резьбы;
- b) вторая цифра соответствует 1/100 номинального напряжения от пробной нагрузки в закаленной испытательной оправке, в мегапаскалях (МПа).

4.3 Диапазоны номинальных диаметров в зависимости от типа гайки и класса прочности

Диапазоны номинальных диаметров в зависимости от типа гайки и класса прочности представлены в таблице 1. Таблица 1 – Диапазоны номинальных диаметров в зависимости от типа гайки и класса

прочности

	Диапазо	оны номинальных диаметр	ов, D
Класс прочности	Нормальная гайка (тип 1)	Высокая гайка (тип 2)	Низкая гайка (тип 0)
04		-	$M5 \le D \le M39$ $M8 \times 1 \le D \le M39 \times 3$
05		-	$M5 \le D \le M39$ $M8 \times 1 \le D \le M39 \times 3$
5	M5 ≤ D ≤ M39 M8 x 1 ≤ D ≤ M39 x 3	-	-
6	$M5 \le D \le M39$ $M8 \times 1 \le D \le M39 \times 3$	-	
8	M5 ≤ D ≤ M39 M8 x 1 ≤ D ≤ M39 x 3	$M5 < D \le M39$ $M8 \times 1 \le D \le M39 \times 3$	-
9	_	$M5 \le D \le M39$	——————————————————————————————————————
10	$M5 \le D \le M39$ $M8 \times 1 \le D \le M16 \times 1,5$	$M5 \le D \le M39$ $M8 \times 1 \le D \le M39 \times 3$	-
12	M5 ≤ D ≤ M16	$M5 \le D \le M39$ $M8 \times 1 \le D \le M16 \times 1,5$	-

5 Конструирование соединения болта и гайки

Пояснения основных принципов конструирования соединений гаек и нагружаемых болтов приведены в приложении А.

Нормальные гайки (тип 1) и высокие гайки (тип 2) должны быть сопряжены с крепежными изделиями с наружной резьбой в соответствии с таблицей 2. Тем не менее, гайки более высоких классов прочности могут заменять гайки более низких классов прочности.

Таблица 2 — Сочетание классов прочности нормальных гаек (тип 1) и высоких гаек (тип 2) с болтами

Класс прочности гайки	Максимальный класс прочности сопрягаемого болта, винта и шпильки
5	5.8
6	6.8
8	8.8
9	9.8
10	10.9
12	12.9/ <u>12.9</u>

Снижение напряжения среза резьбы происходит на гайках с основным отклонением выше нуля для поля допуска 6Н (таким, как у гаек, подвергнутых горячему оцинкованию: 6АZ, 6АХ). Низкие гайки (тип 0) имеют пониженную нагрузочную способность по сравнению с нормальными или высокими гайками и не предназначены для обеспечения сопротивления срезу резьбы.

Низкие гайки, применяемые в качестве контргаек, должны быть в сборке с нормальными или высокими гайками. В сборке с контргайкой в первую очередь затягивают низкую гайку с деталями соединения, а затем нормальную или высокую гайку затягивают на низкую гайку.

6 Материалы

В таблице 3 приведены материалы и термическая обработка для различных классов прочности гаек.

Гайки с крупной резьбой и класса прочности 05, 8 [нормальные гайки (тип 1) с D > M16], 10 и 12 должны быть закалены и отпущены.

Гайки с мелким шагом резьбы и класса прочности 05, 6 (с D > M16), 8 [нормальные гайки (тип 1)], 10 и 12 должны быть закалены и отпущены.

Химический состав должен удовлетворять условиям соответствующих стандартов.

ГОСТ Р ИСО 898-2-2013

Таблица 3 - Стали

Резьба	Кла	сс прочности	Материал и термическая обработка гаек		граничения остав (аналі		
_			oopaoonia raak	С, не более	Мп, не менее	Р. не более	S, не боле
	04°		Углеродистая сталь ^о	0,58	0,25	0.060	0,150
	05 ^d		Углеродистая сталь, 3/0°	0,58	0,30	0,048	0,058
	5 ^u		Углеродистая сталь	0,58	_	0,060	0,150
	6°		Углеродистая сталь ^о	0,58	_	0,060	0,150
6a	8	Высокая гайка (тип 2)	Углеродистая сталь ^а	0,58	0,25	0,060	0,150
Крупная резьба	8	Нормальная гайка (тип 1) D ≤ M16	Углеродистая сталь ^а	0,58	0,25	0,060	0,150
Крупн	8°	Нормальная гайка (тип 1) D > M16	Углеродистая сталь, 3/0°	0,58	0,30	0,048	0,058
	9		Углеродистая сталь ^а	0,58	0,25	0,060	0,150
. Kp	10°		Углеродистая сталь, 3/0°	0,58	0,30	0,048	0,058
	12°		Углеродистая сталь, 3/0°	0,58	0,45	0.048	0,058
	04"		Углеродистая сталь	0,58	0,25	0,060	0,150
_	05°		Углеродистая сталь, 3/О°	0,58	0,30	0,048	0.058
ē	5 °		Углеродистая сталь°	0,58	_	0,060	0,150
E	6°	D≤M16	Углеродистая сталь°	0,58	_	0,060	0,150
жим	6 ^b	D > M16	Углеродистая сталь, 3/0°	0,58	0,30	0,048	0,058
сме	8	Высокая гайка (тип 2)	Углеродистая сталь ^а	0,58	0,25	0,060	0,150
Резьба с мелким шагом	8°	Нормальная гайка (тип 1)	Углеродистая сталь, 3/0°	0,58	0,30	0,048	0,058
Pe	10°		Углеродистая сталь, QT⁰	0,58	0,30	0,048	0,058
	12 ^c		Углеродистая сталь, 3/0°	0,58	0,45	0,048	0,058

^{3/}О – закаленные и отпущенные гайки

^{«--»-}ограничения не установлены.

В спорных случаях применяется анализ продукции.

в Гайки этих классов прочности могут быть изготовлены из автоматной стали по согласованию между заказчиком и изготовителем. В этом случае допускается содержание серы, фосфора и свинца не более: S-0,34%; P-0,11%; Pb-0,35%.

⁶ Легирующие элементы могут быть добавлены при условии выполнения требований к механическим свойствам, изложенных в разделе 7.

Может быть закаленной и отпущенной на усмотрение изготовителя.
 Материал этих классов прочности должен иметь достаточную прокаливаемость, чтобы непосредственно после закалки перед отпуском получалась структура, состоящая приблизительно на 90 % из мартенсита в области резьбы гайки, как показано на рисунке 3.

Примечание -Необходимо учитывать национальные правила по ограничению или запрещению определенных химических элементов в странах или регионах.

7 Механические свойства

При испытании методами, описанными в разделе 9, гайки установленных классов прочности при температуре окружающей среды должны соответствовать требованиям по пробной нагрузке (см. таблицы 4 и 5) и по твердости (см. таблицы 6 и 7), независимо от вида испытаний – проводимых в процессе производства или при окончательном контроле.

Для гаек без закалки и отпуска дополнительно учитывают 9.2.4.2.

Таблица 4 – Значения пробной нагрузки для гаек с крупной резьбой

Резьба.	Шаг,				Пробная н	агрузка ^а , <i>Е</i>	4		
D D	шаг, Р				Класс п	рочности			
D	F	04	05	5	6	8	9	10	12
M5	0,8	5400	7100	8250	9500	12140	13000	14800	16300
M6	1	7640	10000	11700	13500	17200	18400	20900	23100
M7	1	11000	14500	16800	19400	24700	26400	30100	33200
M8	1,25	13900	18300	21600	24900	31800	34400	38100	42500
M10	1,5	22000	29000	34200	39400	50500	54500	60300	67300
M12	1,75	32000	42200	51400	59000	74200	80100	88500	100 300
M14	2	43700	57500	70200	80500	101200	109300	120800	136900
M16	2	59700	78500	95800	109900	138200	149200	164900	186800
M18	2,5	73000	96000	121000	138200	176600	176600	203500	230400
M20	2,5	93100	122500	154400	176400	225400	225400	259700	294000
M22	2,5	115100	151500	190900	218200	278800	278800	321200	363600
M24	3	134100	176500	222400	254200	324800	324800	374200	423600
M27	3	174400	229500	289200	330500	422300	422300	486500	550800
M30	3,5	213200	280500	353400	403 900	516100	516100	594700	673200
M33	3,5	263700	347000	437200	499700	638 500	638500	735600	832800
M36	4	310500	408500	514700	588200	751600	751600	866000	980400
M39	4	370900	488000	614900	702700	897900	897900	1035000	1171000

^а При применении низких гаек необходимо учитывать, что разрушающая нагрузка ниже пробной нагрузки гаек с полной нагрузочной способностью (см. Приложение А)

Таблица 5 – Значения пробной нагрузки для гаек с мелким шагом резьбы

Резьба, D x P				бная нагрузк ласс прочнос			
DXP	04	05	5	6	8	10	12
M8 x 1	14 900	19 600	27 000	30 200	37 400	43 100	47 000
M10 x 1,25	23 300	30 600	44 200	47 100	58 400	67 300	73 400
M10 x 1	24 500	32 200	44 500	49 700	61 600	71 000	77 400
M12 x 1,5	33 500	44 000	60 800	68 700	84 100	97 800	105 700
M12 x 1,25	35 000	46 000	63 500	71 800	88 000	102 200	110 500
M14 x 1,5	47 500	62 500	86 300	97 500	119 400	138 800	150 000
M16 x 1,5	63 500	83 500	115 200	130 300	159 500	185 400	200 400
M18 x 2	77 500	102 000	146 900	177 500	210 100	220 300	_
M18 x 1,5	81 700	107 500	154 800	187 000	221 500	232 200	_
M20 x 2	98 000	129 000	185 800	224 500	265 700	278 600	_
M20 x 1,5	103 400	136 000	195 800	236 600	280 200	293 800	_
M22 x 2	120 800	159 000	229 000	276 700	327 500	343 400	_
M22 x 1,5	126 500	166 500	239 800	289 700	343 000	359 600	_
M24 x 2	145 900	192 000	276 500	334 100	395 500	414 700	_
M27 x 2	188 500	248 000	351 100	431 500	510 900	535 700	_
M30 x 2	236 000	310 500	447 100	540 300	639 600	670 700	_
M33 x 2	289 200	380 500	547 900	662 100	783 800	821 900	_
M36 x 3	328 700	432 500	622 800	804 400	942 800	934 200	_
M39 x 3	391 400	515 000	741 600	957 900	1 123 000	1 112 000	

^а При применении низких гаек необходимо учитывать, что разрушающая нагрузка ниже пробной нагрузки гаек с полной нагрузочной способностью (см. Приложение А).

Таблица 6 – Характеристики твердости для гаек с крупной резьбой

			не более	253	2		более	926	222		не более	96	92
	12		не менее	295°	272		не менее	280°	259		не менее	29°	26
	10		не более	636	200		ваиод вн	966	000		не более	26	Ď,
	Q.		не менее	272	414		не менее	950	403		не менее	90	87
			өөиод өн	505	700		өашод өн	200	107		әаиод ән	00	3
	6		не менее	887	188		не менее	92.7	- 1.0		не менее		1
			не более	302	363		не более	287	336°		не более	30	38°
Класс прочности	8	иккерсу, НУ	не менее	200	233"	Твердость по Бринеллю, НВ	не менее	190	221"	вердость по Роквеллу, НRC	не менее	1	ı
Knacci		Гвердость по Виккерсу, НУ	не более	300	205	даость по Бр	не более	787	107	дость по Ро	не более	20	2
	9	Tac	на женее	150	170	The	на менее	143	162	dae I	не менее		1
			вашод вн	ωε	200		өөиод эн	280	107		әәиод ән	00	3
	\$		эанам эн	130	951		ээнэм эн	124	139		ээнэм эн		ı
	2		не более	636	200		не более	900	200		не более	96	80
	90		на менее	020	212		не менее	250	400		не менее	90	70
			не более	CUE	707		не более	780	107		не балее	00	2
	9·0		арном он	88,	000		ээнэж эн	944	0.2		ээнэм эн		1
Pessega, D				M5 s.D.s M16	M16 < D ≤ M39			M5 s D s M16	M16 < D ≤ M39			M5 s.D s M16	M16 < D s M39

Дефекты поверхности по МСО 6157-2. Испытание твердости по Виккерсу является решающим методом для приемки (см. 9.2.4).

" Минимальное значение для высоких гаек (тип 2): 180 HV (171 НВ). В Максимальное значение для высоких гаек (тип 2): 302 HV (287 НВ; 30 НВС). "Минимальное значение для высоких гаек (тип 2): 272 HV (259 НВ; 26 НВС).

Таблица 7 – Характеристики твердости для гаек с мелким шагом резьбы

Pessoga, D							Knac	Кляос прочности						
	0	0.4	0	0.5	4/	10	9		8		10	0	12	
							Твердость	Гвердость по Виккерсу, НУ	VH.					
	не менее	не более	не менее	не более	воном он	веиод ек	өөнөм өн	не более	не менее	не более	вонем вн	не более	не менее	не более
M8 x 1 s D s M16 x 1,5		1 2 2			175		188		250"	323	582		295	353
M16 x 1,5 < D ≤ M39 x 3	188	302	272	353	190	305	233	302	295	353	260	353	1	1
							Твердость	Гвердость по Бринеллю, НВ	o, HB					
	не менве	не более	не менее	не более	венем ен	вешод ен	өөнөм өн	не более	не менее	не более	венем ен	не более	не менее	не более
M8 x 1 ≤ D ≤ M16 x 1,5					166		179		238"	336°	280		280	336
M16 x 1,5 < D ≤ M39 x 3	179	287	259	336	181	287	221	287	280	336	247	336	1	ı
							Твердость	Гвердость по Роквеллу, НВС	, HRC					
	не менее	не более	не менее	не более	не менее	не более	не менее	не более	не	916	не менев	не более	and seasons	de Sones
									менее	более			пемелее	HE CONGE
M8 x 1 s D s M16 x 1,5					1		_		22.2°	986	, 6Z		29	36
M16 x 1,5 < D ≤ M39 x 3	į.	30	8	36	1	30	1	30	29.2	96	24	36	1	1
Дефекты поверхности по ИСО 6157-2	W TO M CO 61	57-2												

Испытание твердости по Виккерсу является эталонным методом для приемки (см. 9.2.4).
"Минимальное значение для высоких гаек (тип 2): 195 НV (185 НВ).
b Максимальное значение для высоких гаек (тип 2): 302 НV (287 НВ; 30 НВС).
"Минимальное значение для высоких гаек (тип 2): 250 НV (238 НВ; 22.2 НВС).

8 Контроль

8.1 Производственный контроль

Настоящий стандарт не устанавливает, какие испытания должен проводить изготовитель на каждой производственной партии. Ответственностью изготовителя является выбор подходящих методов, таких как производственный контроль или приемочный контроль, чтобы гарантировать соответствие производственной партии всем предъявляемым требованиям. Дополнительную информацию см. ИСО 16426.

В спорных случаях применяют методы испытаний согласно разделу 9.

8.2 Контроль со стороны поставщика

Поставщик испытывает гайки, используя по своему выбору подходящие методы испытаний (периодическая оценка производителя, проверка результатов испытаний от производителей, испытание гаек и т.д.), которые соответствуют механическим и физическим свойствам, установленным в таблицах 3, 4, 5, 6 и 7.

В спорных случаях применяют методы испытаний согласно разделу 9.

8.3 Контроль со стороны заказчика

Заказчик может испытывать поставленные гайки методами испытаний, установленными в разделе 9.

В спорных случаях применяют методы испытаний согласно разделу 9, если не указано иное.

9 Методы испытаний

9.1 Испытание пробной нагрузкой

9.1.1 Общие положения

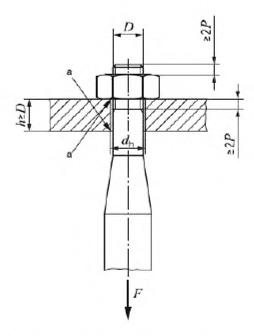
Испытание пробной нагрузкой предусматривает две основные операции:

- а) приложение установленной пробной нагрузки с помощью испытательной оправки (см. рисунки 1 и 2) и
 - b) проверка повреждений резьбы гайки, вызванных пробной нагрузкой, если таковые имеются.

Примечание — При испытании пробной нагрузкой самостопорящихся гаек см. дополнительные испытательные процедуры по ИСО 2320.

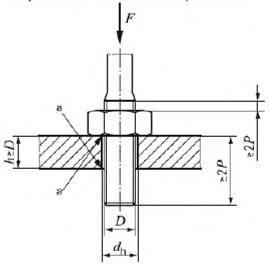
9.1.2 Применимость

Это испытание применяют для гаек с номинальным диаметром M5 \leq D \leq M39 и для всех классов прочности.


9.1.3 Оборудование

Оборудование для испытания на растяжение должно соответствовать ИСО 7500-1, класса 1 или выше. Необходимо избегать воздействия боковых сил на гайку, например, путем использования самоцентрирующихся зажимов.

9.1.4 Испытательное устройство


Зажимы и испытательная оправка должны удовлетворять следующим требованиям:

- а) твердость зажима: 45 HRC минимум;
- b) толщина, h, зажима: 1D минимум;
- с) диаметр отверстия, d_b, зажима согласно таблице 8;
- d) оправка закаленная и отпущенная: твердость 45 HRC до 50 HRC;
- е) поле допуска наружной резьбы испытательной оправки: в испытательной оправке должна быть резьба с полем допуска 5h6g, за исключением допуска наружного диаметра резьбы, который должен составлять четверть поля допуска 6g со стороны минимума материала. Размеры резьбы испытательной оправки представлены в таблицах В.1 и В.2

^{а)} Кромки притуплены

Рисунок 1 – Испытание на осевое растяжение

^{а)} Кромки притуплены

Рисунок 2 - Испытание на осевое сжатие

Таблица 8 – Диаметр отверстия для зажима

В миллиметрах

Номинальный		метр тия, <i>d</i> _h ª	Номинальный		метр стия, <i>d</i> _h ^a	Номинальный диаметр, D		метр тия, d _h ª
диаметр, <i>D</i>	не менее	не более	диаметр, <i>D</i>	не менее	не более	44 1000	не менее	не более
M5	5,030	5,115	M14	14,050	14,160	M27	27,065	27,195
M6	6,030	6,115	M16	16,050	16,160	M30	30,065	30,195
M7	7,040	7,130	M18	18,050	18,160	M33	33,080	33,240
M8	8,040	8,130	M20	20,065	20,195	M36	36,080	36,240
M10	10,040	10,130	M22	22,065	22,195	M39	39,080	39,240
M12	12,050	12,160	M24	24,065	24,195	_	_	_
$ad_h = D$ с полек	допуска	D11 (см.	ИСО 286-2).					

9.1.5 Процедура испытания

Гайки испытывают следующим образом.

Собирают гайку с испытательной оправкой, как показано на рисунке 1 или рисунке 2.

Испытание на осевое растяжение или испытание на осевое сжатие выполняют в соответствии с ИСО 6892-1. Скорость испытаний, определяемая при свободном ходе траверсы, не должна превышать 3 мм/мин.

Пробную нагрузку, установленную в таблице 4 для гаек с крупной резьбой и в таблице 5 для мелкого шага резьбы прикладывают и выдерживают в течение

15 сек, затем снимают нагрузку.

Превышение значения пробной нагрузки следует минимизировать.

Гайка должна отвинчиваться вручную с испытательной оправки. Допускается при отвинчивании гайки применять гаечный ключ для проворачивания гайки на половину оборота.

Резьбу испытательной оправки необходимо проверять после каждого испытания гайки. Если резьба испытательной оправки была повреждена в ходе испытания, результат испытания считают недействительным и проводят новое испытание с соответствующей оправкой.

9.1.6 Результаты испытаний

Необходимо отметить факт – гайка разрушена или срезана резьба.

Необходимо отметить факт — гайка отвинчивается только вручную или с помощью гаечного ключа проворачиванием гайки максимум на половину оборота.

9.1.7 Требования

Гайка должна выдерживать пробную нагрузку, установленную в таблицах 4 или 5 без повреждений в виде среза резьбы или разрушения гайки.

Гайка должна отвинчиваться вручную после снятия пробной нагрузки (и, если необходимо, после проворачивания гайки максимум на половину оборота с помощью гаечного ключа).

В спорных случаях испытание на осевое растяжение в соответствии с рисунком 1 является решающим методом при приемке.

9.2 Испытание на твердость

9.2.1 Применимость

Это испытание применяют для гаек всех размеров и всех классов прочности.

9.2.2 Методы испытаний

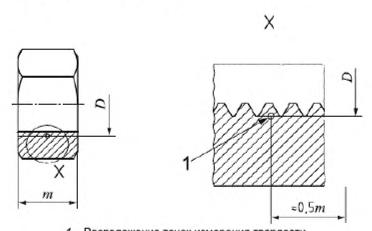
Твердость может быть определена испытаниями на твердость по Виккерсу, Бринеллю или Роквеллу.

Испытание на твердость по Виккерсу следует проводить по ИСО 6507-1. Испытание на твердость по Бринеллю следует проводить по ИСО 6506-1. Испытание на твердость по Роквеллу следует проводить по ИСО 6508-1.

9.2.3 Процедура испытания

9.2.3.1 Нагрузка для определения твердости

Испытание на твердость по Виккерсу следует проводить с минимальной нагрузкой 98 Н.


Испытание на твердость по Бринеллю следует проводить с нагрузкой $30D^2$, выраженной в Ньютонах.

9.2.3.2 Определение твердости на поверхности

Для контроля, как правило, испытание на твердость проводят на одной опорной поверхности гайки после удаления любого гальванопокрытия или других покрытий и после соответствующей подготовки гайки. Значения твердости определяют как среднеарифметическое значение измерений в трех точках, смещенных относительно друг друга на 120°.

9.2.3.3 Определение твердости на продольном срезе

Испытание на твердость следует проводить на продольном срезе, проходящем через ось гайки. Точки должны быть расположены на высоте около 0,5m и как можно ближе к номинальному наружному диаметру резьбы гайки, см. рисунок 3.

1 – Расположение точек измерения твердости
 Рисунок 3 – Расположение точек измерения твердости на середине высоты гайки

9.2.4 Требования

9.2.4.1 Закаленные и отпущенные гайки

Твердость на поверхности согласно 9.2.3.2 должна соответствовать требованиям, установленным в таблице 6 для гаек с крупной резьбой и в таблице 7 для гаек с мелким шагом резьбы.

В спорных случаях:

- а) для твердости на поверхности согласно 9.2.3.2 определение твердости по Виккерсу с нагрузкой 98 Н (HV 10) является решающим методом испытания, и твердость должна соответствовать требованиям, установленным в таблицах 6 или 7;
- b) для твердости сердцевины определение твердости по Виккерсу согласно 9.2.3.3 является решающим методом испытания, и твердость должна соответствовать требованиям, установленным в таблицах 6 или 7.

9.2.4.2 Гайки без закалки и отпуска

Максимальная твердость гаек без закалки и отпуска не должна превышать требований, установленных в таблицах 6 или 7. В спорных случаях определение твердости по Виккерсу согласно 9.2.3.3 является решающим методом испытаний.

Если минимальная твердость не соответствует требованиям при испытании согласно 9.2.3.2 или 9.2.3.3, то это не может быть основанием для отбраковки, при условии соблюдения требований согласно 9.1.7.

9.3 Контроль дефектов поверхности

Контроль дефектов поверхности по ИСО 6157-2.

10 Маркировка

10.1 Общие требования

Только гайки, которые отвечают соответствующим требованиям настоящего стандарта, должны обозначаться в соответствии с системой обозначений, установленной в 4.2 и маркироваться в соответствии с 10.2–10.6.

Альтернативная маркировка, установленная в таблице 9, применяется по усмотрению изготовителя.

10.2 Маркировка товарного знака изготовителя

Товарный знак изготовителя должен быть нанесен в процессе изготовления на всех гайках,

ГОСТ Р ИСО 898-2-2013

маркированных символом класса прочности. Товарный знак изготовителя также рекомендуется наносить на гайки, которые не маркируют символом класса прочности.

Настоящий стандарт распространяется также на продавца, который продает гайки, маркированные собственным товарным знаком, и рассматривается как изготовитель.

10.3 Маркировка классов прочности

10.3.1 Общие требования

Символ маркировки в соответствии с 10.3.2—10.5 должен быть выпуклым или углубленным, нанесенным в процессе производства на всех гайках, изготовленных в соответствии с требованиями настоящего стандарта.

10.3.2 Нормальные гайки (тип 1) и высокие гайки (тип 2)

Символы маркировки для классов прочности нормальных гаек (тип 1) и высоких гаек (тип 2) установлены во второй строке таблицы 9. Для гаек небольших размеров или в случае, когда из-за формы гайки невозможно нанести символ маркировки, допускается применять символы маркировки по системе циферблата, приведенные в третьей строке таблицы 9.

Т а б л и ц а 9 — Символы маркировки для классов прочности нормальных гаек (тип 1) и высоких гаек (тип 2)

Символ обозначения класса прочности	5	6	8	9	10	12
Символ маркировки	5	6	8	9	10	12
Альтернатив ный символ маркировки по системе циферблата [®]						

В позиции, соответствующей двенадцати часам (начало отсчета), должен быть нанесен либо товарный знака изготовителя, либо точка.

10.3.3 Низкие гайки (тип 0)

Символы маркировки для классов прочности низких гаек (тип 0) установлены в таблице 10.

Таблица 10 – Символы маркировки классов прочности для низких гаек (тип 0)

 a o i i i a a i o o o i i i a pia pia	south relaced the mooth this is	riolaria rack (1941 c)
Класс прочности	04	05
Символ маркировки	04	05

Альтернативная маркировка по системе циферблата согласно таблице 9 для низких гаек не применяется.

10.4 Идентификация

10.4.1 Шестигранные гайки

Шестигранные гайки (включая гайки с фланцем, самостопорящиеся гайки и т.д.) должны быть маркированы товарным знаком изготовителя и символом маркировки класса прочности, установленным в таблице 9. Пример изображен на рисунках 4 и 5.

Маркировка является обязательной для гаек всех классов прочности.

Маркировка должна быть углубленная на боковой или опорной поверхности или выпуклая на фаске. Выпуклые знаки не должны выступать над опорной поверхностью гайки.

Для гаек с фланцем маркировка должна быть на фланце, так как процесс изготовления не позволяет наносить маркировку на верхней части гайки.

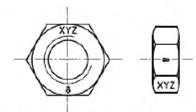
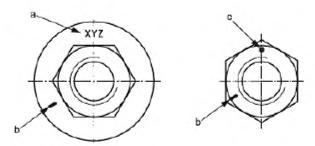



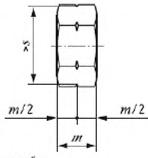
Рисунок 4 – Примеры символа маркировки

^{а)} Товарный знак изготовителя

b) Класс прочности

10.4.2 Другой тип гаек

По требованию заказчика для других типов гаек могут быть использованы системы маркировки, описанные в 10.4.1.


10.5 Маркировка левой резьбы

Гайки с левой резьбой следует маркировать, как показано на рисунке 6, углублением на одной опорной поверхности гайки.

Рисунок 6 - Маркировка левой резьбы

Альтернативную маркировку для левой резьбы, представленную на рисунке 7, также можно использовать для шестигранных гаек.

s – размер «под ключ»; т – высота гайки

Рисунок 7 – Альтернативная маркировка левой резьбы

10.6 Маркировка упаковки

Все упаковки для всех типов гаек всех размеров должны иметь маркировку (например, используя ярлык). Маркировка должна включать товарный знак изготовителя и (или) товарный знак продавца и символ маркировки класса прочности согласно таблице 9 или таблице 10, а также номер производственной партии, как предусмотрено в ИСО 16426.

Точка может быть заменена товарным знаком изготовителя
 Рисунок 5 – Примеры маркировки по системе циферблата (альтернативная маркировка)

Приложение А (справочное)

Принципы конструирования гаек

А. 1 Основные принципы конструирования гаек

Болтовое соединение в основном состоит из двух изделий, соединенных между собой наружной резьбовой частью (болта или винта) с одной стороны и внутренней резьбовой частью или гайкой с другой стороны.

Оптимальное болтовое соединение состоит из болта, винта или шпильки классов прочности, представленных в ИСО 898-1, в сборке с гайкой нормальной или высокой сопряженных классов прочности согласно настоящему стандарту, способное обеспечить максимальную предварительную затяжку с использованием полной прочности болта. В случае чрезмерной затяжки происходит разрыв в нагруженной резьбовой части болта, который является признаком неправильного способа затяжки.

При растягивающей нагрузке характер разрушения сборки болта и гайки соответствует наименьшему значению из следующих трех нагрузок:

- а) нагрузка среза резьбы гайки;
- b) нагрузка среза резьбы болта, винта или шпильки;
- с) разрушающая нагрузка болта, винта или шпильки. (Разрушение болта желательный характер разрушения в сборке болта и гайки в случае перегрузки).

Эти три нагрузки во многом зависят от:

- твердости, высоты, действительной длины полной резьбы, диаметра, шага и поля допуска резьбы гайки;
 - твердости, диаметра, шага и поля допуска резьбы болта.

Кроме того, эти три нагрузки взаимосвязаны между собой. Например, увеличение твердости болта может вызвать увеличение нагрузки среза резьбы гайки. Твердость также определяет функциональную прочность гайки, и лоэтому верхний предел твердости установлен для каждого класса прочности.

Аналитическая основа для расчета различных разрушающих нагрузок была разработана в публикациях Александера [14]. Теория Александера подтверждена практическими результатами многочисленных экспериментальных испытаний. Современные исследования, включая расчеты методом конечных элементов, подтверждают теорию Александера [15].

Три типа гаек (см. 4.1) отличаются своей высотой. Это дает возможность выбора изготовителю для определенных классов прочности применять процесс закалки и отпуска с использованием меньшего объема материала для достижения требуемых свойств или использовать больший объем материала без дополнительной термической обработки.

Таблица А. 1 – Минимальная высота шестигранных гаек

	Размер под	Ми	нимальная высота	шестигранных га	аек
Резьба,	ключ,	Нормальная	гайка (тип 1)	Высокая га	йка (тип 2)
D	S MM	m _{ммн} мм	тыны/D	m _{мин} мм	m _{мин} /D
M5	8	4,40	0,88	4,80	0,96
M6	10	4,90	0,82	5,40	0,90
M7	11	6,14	0,88	6,84	0,98
M8	13	6,44	0,81	7,14	0,90
M10	16	8,04	0,80	8,94	0,89
M12	18	10,37	0,86	11,57	0,96
M14	21	12,10	0,86	13,40	0,96
M16	24	14,10	0,88	15,70	0,98
M18	27	15,10	0,84	16,90	0,94
M20	30	16,90	0,85	19,00	0,95
M22	34	18,10	0,82	20,50	0,93
M24	36	20,20	0,84	22,60	0,94
M27	41	22,50	0,83	25,40	0,94
M30	46	24,30	0,81	27,30	0,91
M33	50	27,40	0,83	30,90	0,94
M36	55	29,40	0,82	33,10	0,92
M39	60	31,80	0,82	35,90	0.92

Подробную техническую информацию о принципе конструирования гаек см. в ИСО / TR 16224. **A.2 Гайки с диаметром** D < M5 и D > M39

Механические свойства сборки болта и гайки были оптимизированы для крепежных изделий с резьбой от М5 до М39 включительно на основе размеров шестигранных гаек, установленных в ИСО 4032 (нормальные гайки, тип 1) и ИСО 4033 (высокие гайки, тип 2). В общем для сборки болта и гайки малого диаметра необходимы пониженная твердость гайки и (или) уменьшенная относительная высота гайки (m/D) вследствие большего отношения PID.

Гайки с D <M5, установленные в ИСО 4032, имеют минимальную высоту, $m_{\text{мин}}$, меньше чем 0,8D, которая является слишком низкой в соответствии с этим принципом конструирования. Это означает, что для таких гаек необходимо более высокое значение твердости, чтобы избежать характера разрушения — среза резьбы (см. таблицу A.2).

Т а б л и ц а А . 2 – Примерная минимальная твердость по Виккерсу для нормальных гаек (тип 1) с D < M5

Don 60 D		Минимальная	твердость гаек по HV	Виккерсу,	
Резьба, D		Kr	пассы прочности		
	5	6	8	10	12
M3	151	178	233	284	347
M3,5	157	184	240	294	357
M4	147	174	228	277	337

Гайки с D > M39, приведенные в ИСО 4032, имеют минимальную высоту гайки, $m_{\text{миж}}$, меньше чем 0,8D, которая является слишком низкой в соответствии с этим принципом конструирования. Таким образом, механические свойства этих гаек не определены в настоящем стандарте и классы прочности не установлены в ИСО 4032 (механические свойства по соглашению между заказчиком и поставщиком).

Приложение В (справочное)

Размеры резьбы испытательной оправки

Таблица В. 1 – Размеры резьбы оправки для испытания пробной нагрузкой – крупная резьба

Гайка	Оправка (крупная резьба)			
Резьба, D	Наружный диаметр резьбы оправки (нижняя четверть поля допуска 6g)		Средний диаметр резьбы оправки (поле допуска 5h)	
	не более	не менее	не более	не менее
M3	2,901	2,874	2,675	2,615
M3,5	3,385	3,354	3,110	3,043
M4	3,873	3,838	3,545	3,474
M5	4,864	4,826	4,480	4,405
M6	5,839	5,794	5,350	5,260
M7	6,839	6,794	6,350	6,260
M8	7,813	7,760	7,188	7,093
M10	9,791	9,732	9,026	8,920
M12	11,767	11,701	10,863	10,745
M14	13,752	13,682	12,701	12,576
M16	15,752	15,682	14,701	14,576
M18	17,707	17,623	16,376	16,244
M20	19,707	19,623	18,376	18,244
M22	21,707	21,623	20,376	20,244
M24	23,671	23,577	22,051	21,891
M27	26,671	26,577	25,051	24,891
M30	29,628	29,522	27,727	27,557
M33	32,628	32,522	30,727	30,557
M36	35,584	35,465	33,402	33,222
M39	38,584	38,465	36,402	36,222

Т а б л и ц а В . 2 – Размеры резьбы оправки для испытания пробной нагрузкой – резьба с мелким шагом

Гайка	Оправка (мелкий шаг резьбы)			
Резьба, <i>D x P</i>	Наружный диаметр резьбы оправки (нижняя четверть поля допуска 6g)		Средний диаметр резьбы оправки (поле допуска 5h)	
	не более	не менее	не более	не менее
M8 x 1	7,839	7,794	7,350	7,260
M10 x 1,25	9,813	9,760	9,188	9,093
M10 x 1	9,839	9,794	9,350	9,260
M12 x 1,5	11,791	11,732	11,026	10,914
M12 x 1,25	11,813	11,760	11,188	11,082
M14 x 1,5	13,791	13,732	13,026	12,911
M16 x 1,5	15,791	15,732	15,026	14,914
M18 x 2	17,752	17,682	16,701	16,569
M18 x 1,5	17,791	17,732	17,026	16,914
M20 x 2	19,752	19,682	18,701	18,569
M20 x 1,5	19,791	19,732	19,026	18,914
M22 x 2	21,752	21,682	20,701	20,569
M22 x 1,5	21,791	21,732	21,026	20,914
M24 x 2	23,752	23,682	22,701	22,569
M27 x 2	26,752	26,682	25,701	25,569
M30 x 2	29,752	29,682	28,701	28,569
M33 x 2	32,752	32,682	31,701	31,569
M36 x 3	35,671	35,577	34,051	33,891
M39 x 3	38,671	38,577	37,051	36,891

Приложение ДА (справочное)

Сведения о соответствии ссылочных международных стандартов ссылочным национальным стандартам Российской Федерации (и действующим в этом качестве межгосударственным стандартам)

Таблица ДА.1

Обозначение ссылочного международного стандарта	Степень соответствия	Обозначение и наименование соответствующего национального стандарта	
ИСО 6157-2	IDT	ГОСТ Р ИСО 6157-2-2009 «Изделия крепежные. Дефекты поверхности. Часть 2. Гайки»	
ИСО 6506-1	NEQ	ГОСТ 9012–59 «Металлы. Метод измерения твердости по Бринеллю»	
ИСО 6507-1	IDT	ГОСТ Р ИСО 6507-1-2007 «Металлы и сплавы. Измерение твердости по Виккерсу. Часть 1. Метод измерения»	
ИСО 6508-1	NEQ	ГОСТ 9013–59 «Металлы. Метод измерения твердости по Роквеллу»	
ИСО 6892-1	NEQ	ГОСТ 1497-84 «Металлы. Методы испытания на растяжение»	
ИСО 7500-1	-	*	
ИСО 16426	IDT	ГОСТ Р ИСО 16426–2009 «Изделия крепежные. Система обеспечения качества»	

Соответствующий национальный стандарт отсутствует. До его утверждения рекомендуется использовать перевод на русский язык данного международного стандарта. Перевод данного международного стандарта находится в Федеральном информационном фонде технических регламентов и стандартов.

Примечание — В настоящей таблице использованы следующие условные обозначения степени соответствия стандартов:

- IDT идентичные стандарты;
- NEQ неэквивалентные стандарты.

Библиография

- [1] ISO 68-1, ISO general purpose screw threads Basic profile Part 1: Metric screw threads
- [2] ISO 261, ISO general purpose metric screw threads General plan
- [3] ISO 262, ISO general purpose metric screw threads Selected sizes for screws, bolts and nuts
- [4] ISO 286-2, Geometrical product specifications (GPS) ISO code system for tolerances in linear sizes — Part 2: Table of standard tolerance classes and limit deviations for holes and shafts
 - [5] ISO 2320, Prevailing torque type steel nuts Mechanical and performance properties
 - [6] ISO 4032, Hexagon nuts, style 1 Product grades A and B
 - [7] ISO 4033, Hexagon nuts, style 2 Product grades A and B
 - [8] ISO 10684, Fasteners Hot dip galvanized coatings
 - [9] ISO 16047, Fasteners Torque/clamp force testing
 - [10] ISO/TR 16224, Technical aspects of nut design
- [11] EN 10269, Steels and nickel alloys for fasteners with specified elevated and/or low temperature properties
- [12] ASTM A320/A320M, Standard Specification for Alloy-Steel and Stainless Steel Bolting for Low-Temperature Service
- [13] ASTM F2281, Standard Specification for Stainless Steel and Nickel Alloy Bolts, Hex Cap Screws, and Studs, for Heat Resistance and High Temperature Applications
- [14] Alexander, E.M., Analysis and design of threaded assemblies. 1977 SAE Transactions, Paper No. 770420
- [15] Hagiwara. M., Hiroaki, S. Verification of the Design Concept in Bolt/Nut Assemblies for the revision of ISO 898-2 and ISO 898-6, Journal of Advanced Mechanical Design, Systems, and Manufacturing, vol. 1, no. 5, 2007, pp. 755–762.

УДК 621.882.6:006.354 OKC 21.060.20 ОКП 16 8000 Ключевые слова: гайки, механические свойства, система обозначений, маркировка

> Подписано в печать 05.11.2014. Формат 60х84¹/_в. Усл. печ. л. 2,33. Тираж 77 экз. Зак. 3011.

Подготовлено на основе электронной версии, предоставленной разработчиком стандарта