МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ (МГС)

INTERSTATE COUNCIL FOR STANDARDIZATION, METROLOGY AND CERTIFICATION (ISC)

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ ΓΟCT 32011— 2013 (ISO 16654:2001)

МИКРОБИОЛОГИЯ ПИЩЕВЫХ ПРОДУКТОВ И КОРМОВ ДЛЯ ЖИВОТНЫХ

Горизонтальный метод обнаружения Escherichia coli O157

(ISO 16654:2001, MOD)

Издание официальное

Предисловие

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0—92 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2—2009 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, применения, обновления и отмены»

Сведения о стандарте

- ПОДГОТОВЛЕН ОАО «Всероссийский научно-исследовательский институт сертификации» (ОАО «ВНИИС»)
 - ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии (Росстандарт)
- 3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 7 июня 2013 г. № 43)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004—97	Код страны по МК (ИСО 3166) 004—97	Сокращенное наименование национального органа по стандартизации
Казахстан	KZ	Госстандарт Республики Казахстан
Киргизия	KG	Кыргызстандарт
Молдова	MD	Молдова-Стандарт
Россия	RU	Росстандарт
Таджикистан	TJ	Таджикстандарт
Узбекистан	UZ	Узстандарт

- 4 Приказом Федерального агентства по техническому регулированию и метрологии от 27 июня 2013 г. № 226-ст межгосударственный стандарт ГОСТ 32011—2013 (ISO 16654:2001) введен в действие в качестве национального стандарта Российской Федерации с 1 июля 2014 г.
- 5 Настоящий стандарт модифицирован по отношению к международному стандарту ISO 16654:2001 Microbiology of food and animal feeding stuffs — Horizontal method for the detection of Escherichia coli O157 (Микробиология пищевых продуктов и кормов для животных. Горизонтальный метод обнаружения Escherichia coli O157)

Дополнительные фразы, слова, показатели и их значения внесены в текст стандарта и выделены курсивом.

Международный стандарт разработан подкомитетом SC 9 «Микробиология» технического комитета по стандартизации ISO/TC 34 «Пищевые продукты» Международной организации по стандартизации (ISO).

Перевод с английского языка (en).

Официальные экземпляры международного стандарта, на основе которого подготовлен настоящий стандарт, и международных стандартов, на которые даны ссылки, имеются в национальных (государственных) органах по стандартизации указанных выше государств.

Степень соответствия — модифицированная (MOD).

- 6 Стандарт подготовлен на основе применения ГОСТ Р 53913-2010 (ИСО 16654:2001)
- 7 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

© Стандартинформ, 2014

В Российской Федерации настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

FOCT 32011—2013

Содержание

6
6
6
6
8
8
8
9

Поправка к ГОСТ 32011—2012 (ISO 16654:2001) Микробиология пищевых продуктов и кормов для животных. Горизонтальный метод обнаружения Escherichia coli O157

В каком месте	Напечатано		Долж	но быть
Предисловие. Таблица согла- сования	-	Армения	AM	Минэкономразвития Республики Армения

(ИУС № 6 2019 г.)

МИКРОБИОЛОГИЯ ПИЩЕВЫХ ПРОДУКТОВ И КОРМОВ ДЛЯ ЖИВОТНЫХ

Горизонтальный метод обнаружения Escherichia coli O157

Microbiology of food and animal feeding stuffs.

Horizontal method for the detection of Escherichia coli O157

Дата введения — 2014-07-01

1 Область применения

Настоящий стандарт распространяется на пищевые продукты, корма для животных и устанавливает метод обнаружения бактерий Escherichia coli O157 с обязательным использованием четырех последовательных стадий.

Настоящий стандарт применяется при исследовании пищевых продуктов и кормов для животных.

ПРЕДУПРЕЖДЕНИЕ! Бактерия Escherichia coli O157 может вызывать тяжелую болезнь, опасную для жизни и имеет низкую дозу инфекционности. Зарегистрировано приобретенное внутрилабораторное заражение.

В целях защиты здоровья персонала лаборатории, важно, чтобы этот метод обнаружения выполняли только квалифицированные сотрудники, используя общепринятую лабораторную практику и предпочтительно работая в защищенном производственном помещении. В отношении данного организма необходимо придерживаться требований соответствующих национальных регламентов о здоровье и безопасности на рабочих местах.

Следует соблюдать меры безопасности при утилизации всех инфекционных материалов.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ ISO 7218—2011 Микробиология пищевых продуктов и кормов для животных. Общие требования и рекомендации по микробиологическим исследованиям

ГОСТ 26668—85 Продукты пищевые и вкусовые. Методы отбора проб для микробиологических анализов

ГОСТ 26669—85 Продукты пищевые и вкусовые. Подготовка проб для микробиологических анализов

П р и м е ч а н и е — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования —на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя «Национальные стандарты» а текущий год. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применены термины по ГОСТ ISO 7218, а также следующий термин с соответствующим определением:

3.1 escherichia coli O157 (E. coli O157): Микроорганизмы, дающие типичный рост на поверхности селективного агара, образующие индол и специфическим образом агглютинирующие с антисывороткой к антигену O157.

Примечания.

- 1 Сорбит-положительные штаммы E. coli О157 не обнаружены в среде СТ-SMAC (5.2).
- 2 Обнаружены некоторые индол-отрицательные мутации.

4 Сущность метода

Обнаружение Escherichia coli O157 связано с обязательным использованием четырех последовательных стадий (см. приложение A):

- обогащение пробы для анализа, гомогенизированной в модифицированном триптон-соевом бульоне, содержащем новобиоцин (mTSB + N), с инкубацией при температуре (41,5 ± 1) °C в течение 6 ч, а затем еще в течение 12—18 ч;
- сепарация и концентрация микроорганизмов с помощью иммуномагнитных частиц, связанных с антителами к палочке E. coli O157;
- выделение путем пересева иммуномагнитных частиц с налипшими бактериями на агаровую среду Мак-Конки, в которую добавляют сорбит и суплемент СТ (цефиксим и теллурит калия) (СТ-SMAC), и на выбранную заказчиком вторую селективную агаровую среду для выделения;
- подтверждение сорбит-негативных колоний на среде СТ-SMAC и колоний, типичных для E. coli O157, на второй агаровой среде для выделения в результате образования индола и агглютинации с антисывороткой к E. coli O157.

П р и м е ч а н и е — Определение других характеристик положительных штаммов, например с помощью патогенных маркеров, возможно после их передачи в соответствующую референтную лабораторию.

5 Питательные среды, реактивы и антисыворотки

Общие правила микробиологических исследований — по ГОСТ ISO 7218.

5.1 Обогатительная среда (модифицированный триптон-соевый бульон с новобиоцином (mTSB + N)

Состав:

Ферментативный перевар казеина			÷	_		_				17,0 г
Ферментативный перевар сои										3,0 r
D(+)-глюкоза										
Желчные соли No. 3		_			ı			-	è	1,5 г
Хлорид натрия	į						4		į.	5,0 r
Моногидрофосфат калия (K ₂ HPO ₄)		4				-				4,0 r
Дистиплированная вода			÷	·			-	-	è	1 000 cm ³

5.1.1 Приготовление среды

Растворяют компоненты или готовую дегидратированную питательную среду в воде, при необходимости подогревают. Устанавливают уровень pH, используя pH-метр (см. 6.6), если необходимо, так, чтобы после стерилизации он соответствовал pH (7,4 ± 0,2) при температуре 25 °C.

Разливают среду в соответствующих количествах в колбы или склянки (6.7).

Стерилизуют в течение 15 мин в автоклаве (см. 6.1) при температуре 121 °C.

5.1.1.1 Раствор новобиоцина

Состав:

Приготовление раствора:

Растворяют новобиоцин в воде и стерилизуют фильтрованием через микропористую мембрану. Готовят раствор перед определением.

5.1.1.2 Приготовление готовой среды

Непосредственно перед применением е среду (см. 5.1.1) добавляют 1 см³ или 4 см³ раствора новобиоцина (см. 5.1.1.1) или к 225 см³, или к 900 см³ охлажденной среды mTSB (см. 5.1.1).

Конечная концентрация новобиоцина равна 20 мг/дм3 среды mTSB.

5.2 Первая селективная среда для выделения микроорганизмов: агаровая среда Мак-Конки с сорбитом и суплементом СТ (цефиксим и теллурит калия) (СТ-SMAC)

5.2.1 Основная среда

Состав:

Ферментативный перевар казеина					
Ферментативный перевар животных тканей	١,	-			. 3,0 г
Сорбит			_		. 10,0 г
Желчные соли No. 3				ż	. 1,5 г
Хлорид натрия					
Нейтральный красный					. 0,03 г
Кристаллический фиолетовый					. 0,001 r
Arap					
Дистиллированная вода					. 1 000 см ³

5.2.1.1 Приготовление среды

Растворяют основные компоненты или готовую дегидратированную основу в воде, при необходимости кипятят. Устанавливают уровень pH (см. 6.6), если необходимо, чтобы после стерилизации он соответствовал (7,1 ± 0,2) при температуре 25 °C, стерилизуют в течение 15 мин в автоклаве (см. 6.1) при температуре 121 °C.

5.2.2 Раствор теллурита калия

Состав:

Теллурит калия для бактериологического исследования 0,25 г Дистиллированная вода 100 см³;

5.2.2.1 Приготовление

Растворяют теллурит калия в воде и стерилизуют фильтрованием через микропористую мембрану. Раствор можно хранить при комнатной температуре в течение 1 мес, но, если образуется белый осадок, его не применяют.

5.2.3 Раствор цефиксима

Состав:

5.2.3.1 Приготовление раствора

Растворяют цефиксим в воде и стерилизуют фильтрованием через микропористую мембрану.

Примечание — Возможно, цефиксим надо будет растворить в этаноле.

Этот раствор хранят при температуре (3 ± 2) °C в течение 1 нед.

5.2.4 Готовая питательная среда

Состав среды:

5.2.4.1 Приготовление среды

Основную среду сразу же после стерилизации или охлаждают (см. 5.2.1) до температуры от 44 °C до 47 °C (см. 6.5), или расплавляют ее, пропаривая предварительно стерилизованную и застывшую основную среду, а затем охлаждают до температуры от 44 °C до 47 °C.

Добавляют 1 см³ раствора теллурита и 1 см³ раствора цефиксима к 1000 см³ основной среды. Перемешивают и разливают приблизительно по 15 см³ в стерильные чашки Петри (см. 6.15). Оставляют застывать.

Окончательная концентрация теллурита составляет 2,5 мг/дм3, а цефиксима — 0,05 мг/дм3.

Непосредственно перед употреблением чашки с агаром высушивают, сняв крышки и перевернув их вверх дном, в сушильном шкафу при температуре от 25 °C до 50 °C (см. 6.2), пока с поверхности среды не исчезнут все капли. Чашки с агаром можно также сушить в защитном шкафу с ламинарным потоком в течение 30 мин с приоткрытыми крышками или оставить на ночь с закрытыми крышками.

^{*} В зависимости от прочности геля.

FOCT 32011—2013

Приготовленные заранее невысушенные чашки можно хранить в темных пластиковых пакетах или в других сохраняющих влагу контейнерах в холодильнике при температуре (3 ± 2) °C в течение двух недель.

5.3 Вторая селективная среда для выделения микроорганизмов

По выбору лаборатории используют любую другую твердую селективную среду дополнительно к агару CT-SMAC и специально предназначенную для выделения Escherichia coli O157.

Непосредственно перед употреблением чашки с агаром высушивают (см. 5.2.4.1).

Приготовленные заранее невысушенные чашки можно хранить в темных пластиковых пакетах или в других сохраняющих влагу контейнерах в холодильнике при температуре (3 ± 2) °С в течение такого срока, который не приведет к изменению их характеристик.

5.4 Питательный агар

Состав:

Мясной экс	T	36	3K	Т				ż	ä.	,	ě.	į,		÷			ż		2		3,0 r
Пептон		_										×				ě					5,0 r
Агар			,			į.						į	į,					÷			9-18 r*
Дистиплир	00	8	ar	iH	as	7 8	30	Да	3.												1 000 cm ³

5.4.1 Приготовление питательного агара

Растворяют компоненты или готовую дегидратированную основу среды в воде, при необходимости подогревают. Устанавливают уровень pH так, чтобы после стерилизации он соответствовал $(7,0\pm0,2)$ при температуре 25 °C.

Переносят среду в колбы или склянки (см. 6.7) соответствующей вместимости.

Стерилизуют в течение 15 мин в автоклаве (см. 6.1) при температуре 121 °C.

5.4.2 Приготовление чашек с питательным агаром

Переносят 15 см³ расплавленной, охлажденной среды (см. 5.4.1) при температуре от 44 °C до 47 °C (см. 6.5) в чашки Петри и оставляют застывать.

Непосредственно перед употреблением чашки с агаром высушивают (см. 5.2.4.1).

Приготовленные заранее невысушенные чашки можно хранить в темных пластиковых пакетах или в других сохраняющих влагу контейнерах в холодильнике при температуре (3 ± 2) °C в течение двух недель.

5.5 Триптон/триптофановая среда

Состав среды:

Триптон									è				÷			10,0 г
Хлорид натрия							_					i				5,0 r
DL-Триптофан		, i					_	,							į,	1,0 r
Дистиллирован	ΗН	as	7 1	30	да	3.		į.								1 000 см ³

5.5.1 Приготовление среды

Растворяют компоненты в воде, доводят до кипения. Устанавливают уровень pH (см. 6.6) так, чтобы после стерилизации он соответствовал (7,5 ± 0,2) при температуре 25 °C.

Разливают по 5 см³ в пробирки (см. 6.7) соответствующей вместимости.

Стерилизуют в течение 15 мин в автоклаве (см. 6.1) при температуре 121 °C.

5.6 Реактив Ковача на индол

Состав реактива:

4-диметиламинобензальдегид	i,	5,0 r
2-метилбутан-1-ол или пентан-1-ол		75,0 cm3
Соляная кислота (о20 от 1.18 г/см ³ до 1.19 г/см ³).		25.0 cm3

5.6.1 Приготовление реактива

Растворяют 4-диметиламинобензальдегид в спирте, при необходимости подогревая на водяной бане (см. 6.5), поддерживающей температуру от 44 °C до 47 °C. Охлаждают до комнатной температуры и добавляют соляную кислоту.

Защищают реактив от света в стеклянном флаконе из коричневого стекла и хранят при температуре (3 ± 2) °C.

Цвет реактива — от светло-желтого до светло-коричневого, без осадка.

В зависимости от прочности геля.

5.7 Иммуномагнитные частицы, связанные с антителами к Escherichia coli O157

Иммуномагнитные частицы, связанные со специфическими антителами к палочке E. coli O157, для концентрации и сепарации этих микроорганизмов.

Примечание — При подготовке иммуномагнитных частиц к использованию необходимо соблюдать инструкции изготовителя.

5.8 Промывочный буфер: модифицированный фосфатный буфер 0,01 моль/дм³, уровень рН 7.2

Состав буфера:

Хлорид натрия			ž.			. 8	8,0 г
Хлорид калия			_		_	. (0,2 г
Вторичный кислый фосфат натрия (безводный)	•						1,44 г
Первичный кислый фосфат калия (безводный)						. (0,24 г
Полиоксиэтиленсорбитанмонолаурат (сироп Tween 20)							
Дистиплированная вода							1 000 см ³

5.8.1 Приготовление буфера

Растворяют компоненты в воде. Устанавливают уровень pH (см. 6.6) (7,2 ± 0,2) при температуре 25 °C.

Разливают в колбы (см. 6.7) и стерилизуют в течение 15 мин в автоклаве (см. 6.1) при температуре 121 °C. Раствор может быть мутным, но становится прозрачным после отстаивания.

Допускается использовать готовый фосфатный буфер того же состава и с теми же характеристиками.

5.9 Физиологический раствор

Состав раствора:

5.9.1 Приготовление раствора

Растворяют хлорид натрия в воде. Разливают в колбы и стерилизуют в течение 15 мин в автоклаве при температуре 121 °C.

5.10 Антисыворотка против Escherichia coli O157

Антисыворотку можно приобрести в специальных лабораториях или купить как выделенный соматический серотип O157.

Антисыворотка должна быть протестирована на неизвестные культуры с помощью положительных и отрицательных контролей.

6 Оборудование и лабораторная посуда

Обычное оборудование для микробиологических исследований по ГОСТ ISO 7218.

- 6.1 Оборудование для стерилизации сухим жаром (печь) и/или стерилизации паром (автоклав)
- 6.2 Сушильный шкаф или термостат, поддерживающий температуру от 25 °C до 50 °C.
- б.3 Термостат, поддерживающий температуру (37 ± 1) °С.
- 6.4 Инкубатор, поддерживающий температуру (41,5 ± 1) °C.
- 6.5 Водяная баня, поддерживающая температуру от 44 °C до 47 °C.
- 6.6 рН-метр, с разрешением 0,01 единицы рН при температуре 25 °C, измеряющий с точностью ± 0.1.
- 6.7 Пробирки, колбы или склянки, соответствующей вместимости, для стерилизации и хранения питательных сред и инкубации жидких сред.
- 6.8 Мерные цилиндры, соответствующей вместимости, для приготовления разведений и готовых сред.
- 6.9 Градуированные пипетки с полным сливом, номинальным объемом 1 см³ и 10 см³, градуированные на 0.1 см³ и 0.5 см³. соответственно.
- 6.10 Петли и иглы, изготовленные из платино-иридиевого или никель-хромового сплава, или пипетки Пастера, или петли одноразового использования.
- 6.11 Механические пипетторы с воздухозамещением, стерильные, с рабочим диапазоном от 20 мкл до 200 мкл и делениями на 10 мкл, или аналогичные.

FOCT 32011—2013

- 6.12 Магнитный сепаратор с магнитным штативом, для концентрации иммуномагнитных частиц, применяемый для пробирок (см. 6.13).
- 6.13 Пробирки полипропиленовые типа Эппендорф, с навинчивающимся колпачком, стерильные, одноразовые, центрифужные, вместимостью 1,5 см³, подходящие для магнитного штатива.

Следует избегать образования аэрозолей при открытии.

- 6.14 Роторный смеситель (работающий в режиме авторотации, смеситель проб крови), вращающийся со скоростью от 15 до 20 об/мин.
 - 6.15 Чашки Петри, диаметром 90 мм и 140 мм.
 - 6.16 Смеситель типа Вортекс.

7 Отбор проб

Отбор проб проводят в соответствии с ГОСТ 26668. Рекомендуется перед хранением пробу быстро остудить.

В лабораторию направляют представительную пробу, которая не должна быть повреждена или изменена в процессе транспортирования или хранения.

8 Подготовка проб

Подготовку проб проводят в соответствии с [1], ГОСТ 26669.

9 Методика проведения испытания по схеме, приведенной в приложении А

9.1 Проба для анализа и исходная суспензия

Для приготовления исходной суспензии пробу для анализа (г или см³) добавляют к модифицированному триптон-соевому бульону с новобиоцином (mTSB + N) объемом 9 см³ или массой 9 г, предварительно нагретого в инкубаторе до температуры 41,5°C, чтобы проба для анализа была в соотношении с mTSB + N как 1/10 (масса к объему или объем к объему).

Рекомендуется использовать пакеты Стомахер с сетчатыми вставками для снижения интерференции пищевых частиц с набором реактивов для иммунозахвата (см. 9.3).

9.2 Обогащение

Инкубируют (см. 6.4) исходную суспензию, приготовленную в соответствии с 9.1, при температуре 41,5 °C в течение 6 ч, а затем еще в течение 12—18 ч (фактическая продолжительность от 18 до 24 ч).

6-часовая инкубация, за которой следует иммуномагнитная сепарация и посев на чашки с селективным агаром, может дать положительный результат обнаружения презумптивных бактерий, который может стать отрицательным после дальнейшей 18-часовой инкубации.

9.3 Иммуномагнитная сепарация

9.3.1 Общие требования

Иммуномагнитную сепарацию следует проводить спустя 6 ч после инкубации и еще раз, если необходимо, после 12—18 ч инкубации.

Для иммунозахвата необходимо следовать инструкциям изготовителя в отношении методики и метода применения набора реактивов и оборудования.

9.3.2 Иммунозахват

ПРЕДУПРЕЖДЕНИЕ! — Используют только асептические методы, чтобы избежать любого внешнего загрязнения и образования аэрозолей. Выполняют эту процедуру в защищенной от загрязнений камере, если имеется. Работают в перчатках.

Используя магнитный сепаратор (см. 6.12) и иммуномагнитные частицы, связанные с антителами к E. coli O157, выполняют следующую процедуру захвата/сепарации.

Смешивают обогатительную культуру (см. 9.2) и оставляют для осаждения всех крупных пищевых частиц. В полипропиленовую пробирку типа Эппендорф (см. 6.13) добавляют 20 мкл подготовленных иммуномагнитных частиц (5.7) при комнатной температуре. Отделяют 1 см³ верхнего слоя жидкости от обогатительной культуры, стараясь, по возможности, избегать попадания любых пищевых частиц или жировых включений, и переносят в полипропиленовую пробирку типа Эппендорф.

Перемешивают суспензию в роторном смесителе (см. 6.14) со скоростью вращения приблизительно от 12 до 20 об/мин в течение 10 мин.

9.3.3 Сепарация

Устанавливают каждую полипропиленовую пробирку типа Эппендорф (см. 9.3.2) в магнитный штатив (см. 6.12) и дают магнитным частицам скопиться около магнита, слегка покачивая штатив на 180°. Осторожно открывают колпачок, стараясь не задеть частицы на стенке пробирки. Используя каждый раз новую стерильную пипетку Пастера (см. 6.10) для каждой пробы, с пробиркой в магнитном штативе, удаляют жидкость, медленно отсасывая ее со дна пробирки. Добавляют 1 см³ стерильного промывочного буфера (см. 5.8) и закрывают колпачком. Удаляют магнит из штатива. Перемешивают содержимое пробирок, осторожно поворачивая штатив на 180°, и затем возвращают магнит на штатив.

Следует соблюдать осторожность, чтобы избежать перекрестного загрязнения при добавлении свежего буфера.

Продолжают процедуру, как описано выше, чтобы удалить промывочную жидкость новой пипеткой Пастера для каждой пробы. Повторяют процедуру промывки несколько раз.

Вынимают из магнитного сепаратора, добавляют 0,1 см³ стерильного промывочного буфера в пробирку и ресуспендируют магнитные частицы.

Примечание — Эту процедуру трудно применять к жирным продуктам или свежим сырам.

9.4 Посев на чашки с селективным агаром и идентификация колоний E. coli O157

9.4.1 Посев на чашки

С помощью механического пипеттора (см. 6.11) переносят 0,05 см³ промытых и ресуспендированных магнитных частиц на предварительно высушенную чашку с агаровой средой Мак-Конки с сорбитом и суплементом СТ (цефиксим и теллурит калия) (см. 5.2), а также 0,05 см³ на предварительно высушенную чашку со второй селективной средой для выделения микроорганизмов (см. 5.3).

Делают посев частиц штрихом, используя стерильную петлю (см. 6.10), для получения множества хорошо изолированных колоний на поверхности агара.

Инкубируют посевы в термостате CT-SMAC при температуре 37 °C в течение 18—24 ч, а также инкубируют вторую селективную среду для выделения при тех же температуре и времени.

В зависимости от типа пищевой пробы и ее микробиологической обсемененности инкубация в течение 20—24 ч может привести к бурному росту других бактерий на чашках с селективным агаром, что затруднит обнаружение колоний E. coli O157.

Посев на селективные среды препаратов с большими разведениями для иммуномагнитной сепарации или объемами меньше 0,05 см³ на чашку повышает возможность получения изолированных колоний E. coli O157.

9.4.2 Идентификация типичных колоний E. coli O157

На агаре Мак-Конки типичные колонии бывают прозрачными и почти бесцветными с бледными желтовато-коричневыми проявлениями и диаметром приблизительно 1 мм.

Исследуют вторую селективную агаровую среду для выделения типичных колоний E. coli O157, следуя инструкциям изготовителя.

9.5 Подтверждение идентификации

Можно использовать имеющиеся в продаже миниатюрные биохимические наборы для идентификации сорбит-отрицательных и индол-положительных бактерий Е. coli и наборов для идентификации E. coli О157 методом латекс-агглютинации при условии, что для подтверждения проводятся соответствующие тесты с известными положительными и отрицательными штаймами.

9.5.1 Отбор колоний

С каждой чашки отбирают пять типичных колоний, как указано в 9.4. Если чашка с агаром содержит менее 5 типичных колоний, необходимо исследовать все колонии.

Засевают штрихом каждую выбранную колонию на чашку с питательным агаром (см. 5.4), чтобы дать возможность разрастись хорошо выделенным колониям.

Инкубируют (см. 6.3) чашки в течение 18-24 ч при температуре 37 °C.

Для тестов используют только чистые культуры из чашки с питательным агаром, как описано в 9.5.2 и 9.5.3.

9.5.2 Биохимическая идентификация (образование индола)

Инокулируют одну колонию чистой культуры с питательного arapa (см. 9.5.1) в пробирку с триптон/триптофановой средой (см. 5.5).

Инкубируют (см. 6.3) при температуре 37 °C в течение 24 ч.

FOCT 32011-2013

Добавляют 1 см³ реактива Ковача (см. 5.6) и оставляют при комнатной температуре в течение 10 мин.

Появление красного цвета указывает на положительную реакцию. Желто-коричневый цвет указывает на отрицательную реакцию.

9.5.3 Серологическая идентификация

9.5.3.1 Общее требование

Исследуют только индол-положительные колонии на серологическую реакцию с антисывороткой к E. coli O157.

9.5.3.2 Выделение автоагглютинирующих штаммов

Одну каплю солевого раствора (см. 5.9) капают на чистое предметное стекло.

Используя петлю (см. 6.10), подмешивают к этой капле одну колонию из чашки с питательным агаром (см. 9.5.1), чтобы получилась однородная и мутная суспензия.

Осторожно встряхивают стекло в течение 30—60 с. Наблюдают за результатом на темном фоне и, в случае необходимости, с помощью увеличительных линз.

При обнаружении в суспензий видимых скоплений бактерий считается, что штамм способен автоагглютинировать и далее не должен тестироваться, так как реакция со специфической антисывороткой невозможна.

9.5.3.3 Реакция с антисывороткой против E. coli O157

Используя чистую культуру из питательного агара (см. 9.5.1), суспендируют ее в свежей капле солевого раствора, как описано в 9.5.3.2 и добавляют маленькую каплю антисыворотки против E. coli O157 (см. 5.10).

Реакция является положительной, если агглютинация проявляется в течение 1 мин.

9.5.3.4 Положительная идентификация

Считать положительными штаммы, которые дают положительную реакцию на индол и реагируют либо с антисывороткой против О157, либо с антисыворотками против О157 плюс H7.

10 Обеспечение качества испытания

10.1 Испытуемые штаммы

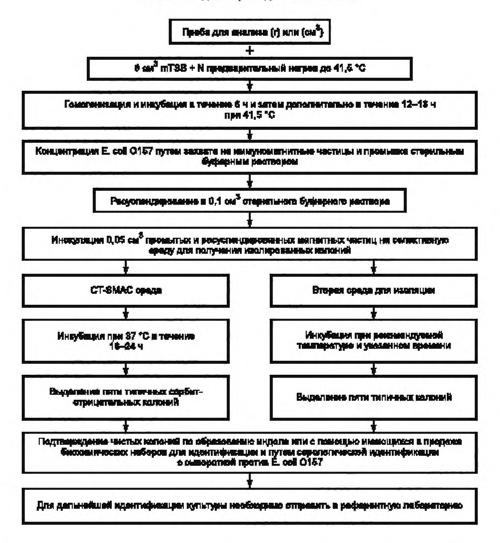
Для обеспечения качества испытаний штаммы E. coli O157, которые не имеют коэффициентов вирулентности, характерной для патогенности, можно получить из национальных или международных коллекций культур. Их рекомендуется применять для испытания сред и антисывороток.

10.2 Культуральный метод

Для проверки возможности лаборатории и среды обнаруживать низкое содержание бактерий Escherichia coli O157 в пищевых пробах, подлежащих анализу с помощью метода, описанного в настоящем стандарте, контрольные пробы инокулята низкой концентрации непатогенных E. coli O157 и высокой концентрации другого штамма E. coli должны исследоваться параллельно с пробой для анализа.

11 Выражение результатов

Для интерпретации результатов следует представить данные о присутствии или отсутствии бактерии Escherichia coli O157 в пробе для анализа, указав массу в г или объем в см³ пробы.


12 Протокол испытания

В протоколе испытания указывают:

- всю информацию, необходимую для полной идентификации пробы;
- используемый метод отбора проб (если известен);
- используемый метод испытания со ссылкой на настоящий стандарт;
- температуру инкубации;
- все детали исследования, не оговариваемые в настоящем стандарте или рассматриваемые как необязательные, а также детали иного свойства, могущие оказать влияние на результаты исследований;
 - полученные результаты.

Приложение А (обязательное)

Схема методики проведения испытания

Библиография

[1] ISO 6887-2:2003 Microbiology of food and animal feeding stuffs — Preparation of test samples, initial suspension and decimal dilutions for microbiological examination — Part 2: Specific rules for the preparation of meat and meat products (Микробиология пищевых продуктов и кормов для животных. Подготовка проб, исходной суспензии и десятикратных разведений для микробиологических исследований. Часть 2. Специальные правила подготовки мяса и мясных продуктов)

УДК 664:636.085:543.9:006.034

MKC 07.100.30

H09

MOD

Ключевые слова: пищевые продукты, корма, микробиология, метод обнаружения, бактерии Escherichia coli O157, питательные среды, индол, типичные колонии, идентификация

Редактор М.И. Максимова
Технический редактор О.Н. Власова
Корректор М.М. Малахова
Компьютерная верстка В.И. Грищенко

Сдано в набор 11.02.2014. Подписано в печать 24.02.2014. Формат 60×84¹/₆. Гарнитура Ариал. Усл. печ. л. 1,86. Уч.-изд. л. 1,10. Тираж 86 экз. Зак. 316.

Поправка к ГОСТ 32011—2012 (ISO 16654:2001) Микробиология пищевых продуктов и кормов для животных. Горизонтальный метод обнаружения Escherichia coli O157

В каком месте	Напечатано		Долж	но быть
Предисловие. Таблица согла- сования	-	Армения	AM	Минэкономразвития Республики Армения

(ИУС № 6 2019 г.)