МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ (МГС)

INTERSTATE COUNCIL FOR STANDARDIZATION, METROLOGY AND CERTIFICATION (ISC)

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ ΓΟCT 25898— 2012

МАТЕРИАЛЫ И ИЗДЕЛИЯ СТРОИТЕЛЬНЫЕ

Методы определения паропроницаемости и сопротивления паропроницанию

(ISO 12572:2001, NEQ)

Издание официальное

Предисловие

Цели, основные принципы и общие правила проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены»

Сведения о стандарте

- 1 PA3PAБОТАН Федеральным государственным бюджетным учреждением «Научно-исследовательский институт строительной физики Российской академии архитектуры и строительных наук» («НИИСФ РААСН»)
 - 2 ВНЕСЕН Техническим комитетом ТК 465 «Строительство»
- 3 ПРИНЯТ Межгосударственной научно-технической комиссией по стандартизации, техническому нормированию и оценке соответствия в строительстве (МНТКС) (протокол от 18 декабря 2012 г. № 41)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004 97	Код страны по МК (ИСО 3166) 00497	Сокращенное наименование национального органа по стандартизации
Армения	AM	Минэкономики Республики Армения
Киргизия	KG	Кыргызстандарт
Молдова	MD	Молдова-Стандарт
Россия	RU	Росстандарт
Таджикистан	TJ	Таджикстандарт
Узбекистан	UZ	Узстандарт

- 4 Приказом Федерального агентства по техническому регулированию и метрологии от 27 декабря 2012 г. № 2013-ст межгосударственный стандарт ГОСТ 25898—2012 введен в действие в качестве национального стандарта Российской Федерации с 1 января 2014 г.
- 5 В настоящем стандарте учтены требования международного стандарта ISO 12572:2001 «Тепловлажностные свойства строительных материалов и изделий. Определение характеристик паропроницаемости» («Hydrothermal performance of building materials and products Determination of water vapour transmission properties», NEQ), в части условий проведения испытаний
 - 6 B3AMEH FOCT 25898-83
 - 7 ПЕРЕИЗДАНИЕ. Декабрь 2019 г.

Информация о введении в действие (прекращении действия) настоящего стандарта и изменений к нему на территории указанных выше государств публикуется в указателях национальных стандартов, издаваемых в этих государствах, а также в сети Интернет на сайтах соответствующих национальных органов по стандартизации.

В случае пересмотра, изменения или отмены настоящего стандарта соответствующая информация будет опубликована на официальном интернет-сайте Межгосударственного совета по стандартизации, метрологии и сертификации в каталоге «Межгосударственные стандарты»

© Стандартинформ, оформление, 2014, 2019

В Российской Федерации настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

Содержание

бласть применения	1
ермины и определения	1
бщие положения	2
спытательное оборудование	3
бразцы для испытаний	3
роведение испытаний	
бработка результатов испытаний	5
ложение А (справочное) Определение сравнительного коэффициента паропроницаемости	6
ложение Б (справочное) Таблица перевода единиц измерения паропроницаемости	7
ложение В (рекомендуемое) Схемы испытательных сосудов с образцами	8
ложение Г (рекомендуемое) Форма протокола испытаний на паропроницаемость	.10
пожение Д (справочное) Значения парциального давления насыщенного водяного пара	. 11

МАТЕРИАЛЫ И ИЗДЕЛИЯ СТРОИТЕЛЬНЫЕ

Методы определения паропроницаемости и сопротивления паропроницанию

Building materials and products. Methods for determination of water vapour permeability and steam-tightness

Дата введения — 2014—01—01

1 Область применения

Настоящий стандарт распространяется на строительные материалы и изделия, включая тонкослойные покрытия, листы и пленки, и устанавливает методы определения паропроницаемости строительных материалов и изделий и сопротивления паропроницанию тонкослойных покрытий, листовых и пленочных материалов.

Результаты испытаний применяют при теплотехнических расчетах, для производственного контроля качества строительных материалов и изделий и при разработке нормативных документов на материалы и изделия конкретных видов.

2 Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями:

 2.1 плотность потока водяного пара: Масса потока водяного пара, проходящего через единицу площади рабочей поверхности образца за единицу времени.

Примечание — Рабочая поверхность образца — поверхность, через которую проходит поток водяного пара.

- 2.2 однородный материал: Материал, плотность которого одинаковая по всему объему.
- 2.3 паропроницаемость: Величина, численно равная количеству водяного пара в миллиграммах, проходящего за 1 ч через слой материала площадью 1 м² и толщиной 1 м при условии, что температура воздуха у противоположных сторон слоя одинаковая, а разность парциальных давлений водяного пара равна 1 Па.
- 2.4 сопротивление паропроницанию: Показатель, характеризующий разность парциальных давлений водяного пара в паскалях у противоположных сторон изделия с плоскопараллельными сторонами, при которой через изделие площадью 1 м² за 1 ч проходит 1 мг водяного пара при равенстве температуры воздуха у противоположных сторон изделия; величина, численно равная отношению толщины слоя испытуемого материала к значению паропроницаемости.
- 2.5 коэффициент паропроницаемости материала: Расчетный теплотехнический показатель, определяемый как отношение толщины образца материала d к сопротивлению паропроницанию R_n, измеренному при установившемся стационарном потоке водяного пара через этот образец.
- 2.6 сравнительный коэффициент паропроницаемости: Отношение значения коэффициента паропроницаемости воздуха к значению коэффициента паропроницаемости испытуемого материала.

Примечание — Сравнительный коэффициент паропроницаемости показывает, на сколько при одинаковой температуре сопротивление паропроницанию слоя материала больше сопротивления паропроницанию слоя неподвижного воздуха такой же толщины; определяют, как показано в приложении А.

2.7 толщина слоя неподвижного воздуха с сопротивлением паропроницанию, эквивалентным сопротивлению паропроницанию образца: Толщина слоя неподвижного воздуха с сопротивлением паропроницанию, равным сопротивлению паропроницанию образца толщиной d.

3 Общие положения

3.1 Сущность методов определения сопротивления паропроницанию и паропроницаемости заключается в создании стационарного потока водяного пара через исследуемый образец и определении интенсивности этого потока.

В настоящем стандарте приведены методы «мокрой чашки» и «сухой чашки». Метод «мокрой чашки» является основным. Метод «сухой чашки» является дополнительным при определении характеристик материалов и изделий, применяемых в сухом режиме эксплуатации.

3.2 Если изделия применяют в специальных условиях, то при проведении испытаний значения температуры и относительной влажности воздуха могут быть согласованы между изготовителем и потребителем.

По требованию потребителя определение паропроницаемости материалов и изделий или сопротивления паропроницанию тонкослойных покрытий, пленок и др. может быть проведено методом «сухой чашки», при этом в сосуде под образцом должен находиться влагопоглотитель.

- 3.3 Сопротивление паропроницанию определяют для листовых и пленочных строительных материалов толщиной менее 10 мм, а также для тонкослойных покрытий (тонкие штукатурные слои систем наружного утепления; кровельные рулонные материалы; лакокрасочные, пароизоляционные покрытия и т. п.). Для остальных материалов определяют паропроницаемость.
- 3.4 При испытании для герметизации зон прилегания образцов к верхним кромкам испытательных сосудов применяют паронепроницаемые герметики, не изменяющие во время испытания своих физических и химических свойств и не вызывающие изменения физических и химических свойств материала испытуемого образца.

3.5 Обозначения и единицы измерения

Обозначения и единицы измерения основных параметров определения характеристик паропроницаемости, применяемые в настоящем стандарте, приведены в таблице 1.

Таблица 1 — Обозначения и единицы измерения

Наименование параметра	Обозначение	Единица измерения		
Сопротивление паропроницанию образцов	R _n	(м² · ч · Па)/мг		
Масса испытательного сосуда с образцом	m	r		
Изменение массы испытательного сосуда с образцом за время Δau	Δm	мг		
Интервал времени между двумя последовательными взвешиваниями	Δτ	ч		
Температура воздуха	t	*C		
Относительная влажность воздуха	φ	%		
Площадь поверхности образца, через которую проходит поток водяного пара (площадь рабочей поверхности образца)	A	M ²		
Давление насыщенного водяного пара	E	Па		
Давление водяного пара	6	Па		
Интенсивность потока водяного пара, проходящего через образец за 1 ч	j	мг/ч		
Сопротивление паропроницанию воздуха	R _{n.s}	(м² · ч · Па)/мл		
Коэффициент паропроницаемости материала	μ	мг/(м - ч - Па)		
Средняя толщина испытуемого образца	d	М		
Плотность потока водяного пара через образец	g	мг/(ч - м ²)		

 Π р и м е ч а н и е — В приложении Б приведена таблица перевода единиц измерения при определении характеристик паропроницаемости.

3.6 Методы, приведенные в настоящем стандарте, обеспечивают определение характеристик паропроницаемости с относительной ошибкой, не превышающей 10 %.

4 Испытательное оборудование

Испытательное оборудование для определения характеристик паропроницаемости включает в себя:

- испытательные стеклянные сосуды (чашки);
- средства измерения толщины образца с точностью до 0,1 мм или ±0,5 %.
- аналитические весы с погрешностью взвешивания 0,001 г для определения массы испытательного сосуда с образцом.

При увеличении массы сосуда с образцом в два раза и более применяют весы с погрешностью взвешивания 0.01 г. Относительная ошибка при периодическом взвешивании не должна превышать 10 %:

- испытательную камеру, обеспечивающую поддержание относительной влажности воздуха φ = 50 % с точностью ±3 % и температуры t = 23 °C с точностью ±0,5 °C, с системой обеспечения циркуляции воздуха со скоростью от 0,02 до 0,3 м/с, исключающей прямое попадание потока воздуха на образец;
- измерительные датчики и приборы для регистрации температуры и относительной влажности воздуха. Измерительные датчики и приборы поверяют в установленном порядке.

5 Образцы для испытаний

5.1 Изготовление образцов

- 5.1.1 Образцы должны быть типовыми представителями изделий, из которых вырезают эти образцы.
- 5.1.2 Пленки, образованные в процессе производства изделия, или покрытия, приклеенные на изделия, при определении паропроницаемости удаляют с образцов.
- 5.1.3 При изготовлении образцов не допускаются повреждения поверхностей, которые могут вызвать изменение количества или направления потока водяного пара.
- 5.1.4 Площадь рабочей поверхности образцов должна быть не менее 90 % площади открытой поверхности испытательного сосуда.

5.2 Размеры и форма образцов

- 5.2.1 Для испытаний подготавливают образцы квадратного сечения со стороной размером 100 мм или цилиндрического сечения диаметром 100 мм.
- 5.2.2 При испытании неоднородных материалов допускается изготовлять образцы диаметром (для круглых образцов) или длиной сторон (для квадратных образцов), превышающих толщину не менее чем в три раза.
- 5.2.3 Отклонение от плоскостности верхней и нижней поверхностей образцов допускается не более 10 % среднего значения толщины образца.

5.3 Толщина образцов

- 5.3.1 Для материалов, изделия из которых имеют толщину 10—30 мм, толщина образцов должна соответствовать толщине изделия. Из материалов, изделия из которых имеют толщину более 30 мм, изготовляют образцы толщиной 30 мм. Толщина образцов из неоднородных материалов (бетон и т. п.) должна превышать размер максимального зерна в 3—5 раз.
- 5.3.2 Толщину образцов измеряют три раза, поворачивая образец вокруг оси симметрии на 60°. Толщиной образца считают среднеарифметическое значение результатов трех измерений. Для образцов сжимаемых, сыпучих материалов и образцов неправильной формы применяемый метод измерения толщины указывают в протоколе испытаний.

5.4 Число образцов

Если площадь рабочей поверхности образца меньше 0,02 м², испытывают не менее пяти образцов. В других случаях испытывают не менее трех образцов.

5.5 Кондиционирование образцов

Образцы перед испытанием выдерживают при температуре (23 ± 5) °C и относительной влажности воздуха (50 ± 5) % до достижения постоянной массы, когда результаты взвешивания в течение трех последующих дней отличаются не более чем на 5 %.

6 Проведение испытаний

- 6.1 Подготовленные образцы устанавливают в верхней части испытательного сосуда. Зазоры между боковыми гранями образца и стенками сосуда тщательно герметизируют и проводят первое (контрольное) взвешивание сосуда с образцом. При необходимости для фиксации тонкослойных образцов используют удерживающие шаблоны. Схемы испытательных сосудов с образцами представлены в приложении В.
- 6.2 Образцы устанавливают в испытательный сосуд так, чтобы направление потока водяного пара соответствовало предполагаемому потоку водяного пара при эксплуатации изделия. Если направление потока водяного пара неизвестно, изготовляют два идентичных образца и измерения проводят при разных направлениях потока водяного пара.
- 6.3 При испытаниях по методу «мокрой чашки» образец устанавливают в испытательный сосуд с дистиплированной водой. Расстояние между поверхностью воды и нижней поверхностью образца должно быть (15 ± 5) мм. Затем испытательный сосуд с образцом устанавливают в испытательную камеру, в которой поддерживаются значения температуры и относительной влажности воздуха, указанные в разделе 4.

При разности парциальных давлений водяного пара в испытательном сосуде и испытательной камере вокруг сосуда возникает поток водяного пара, который проходит через испытуемый образец. Для определения плотности потока водяного пара в стационарных условиях сосуд с образцом периодически взвешивают.

При испытании по методу «сухой чашки» в качестве влагопоглотителя применяют хлорид кальция CaCl₂, перхлорат магния Mg(ClO₄)₂ и аналоги.

- 6.4 При проведении испытаний по методу «мокрой чашки» испытательные сосуды с образцами взвешивают на аналитических весах через определенные промежутки времени, но не реже чем через 7 сут. В момент взвешивания фиксируют значения температуры и относительной влажности воздуха. Результаты измерений заносят в протокол испытаний. Форма протокола испытаний приведена в приложении Г.
- 6.5 При проведении испытаний по методу «сухой чашки» первое после контрольного (см. 6.1) взвешивание испытательного сосуда с образцом проводят через 1 ч. следующие через 2, 4, 12 и далее через каждые 24 ч (ежедневно).
- 6.6 Испытания считают законченными после установления стационарного потока водяного пара через образец, когда плотность потока в течение нескольких последовательных взвешиваний колеблется не более чем на 5 % среднего значения.
- 6.7 Испытания по методу «сухой чашки» прекращают досрочно, если при испытании масса сосуда с образцом увеличилась более чем на 1,5 г на каждые 25 мл находящегося в чашке влагопоглотителя.
- 6.8 Сопротивление паропроницанию лакокрасочных покрытий определяют на шести образцах, три из которых являются основой и три основой с нанесенным слоем лакокрасочного покрытия. В качестве основы подготавливают образцы из материала, на который в реальном изделии наносят лакокрасочное покрытие.

В протокол испытания (см. приложение Г) заносят информацию о способе нанесения лакокрасочного покрытия, числе слоев и другие данные, необходимые для идентификации покрытия. Одновременно с испытанием лакокрасочного покрытия, нанесенного на основу, определяют характеристики паропроницаемости основы. Сопротивление паропроницанию лакокрасочного покрытия, нанесенного на основу, определяют как разность между сопротивлением паропроницанию основы с покрытием и сопротивлением паропроницанию основы.

6.9 Сопротивление паропроницанию защитного, клеевого и декоративного слоев систем наружной теплоизоляции с толщиной слоев менее 5 мм допускается определять по 6.8. В качестве основы используют минераловатные плиты, соответствующие проектной документации на систему наружной теплоизоляции. Размеры образцов должны соответствовать приведенным в 5.2.2.

7 Обработка результатов испытаний

7.1 Для расчета сопротивления паропроницанию используют полученные значения плотности потока водяного пара через образец, значения упругостей водяного пара в воздухе камеры и в испытательном сосуде под образцом (давление насыщенного водяного пара и давление водяного пара в камере вокруг испытательного сосуда). Значения парциального давления насыщенного водяного пара приведены в приложении Д.

Результаты испытаний заносят в протокол испытаний (см. приложение Г).

7.2 По результатам взвешивания испытательного сосуда с образцом вычисляют плотность потока водяного пара через образец g, мг/(ч · м²), по формуле

$$g = \Delta m/\Delta \tau A$$
, (1)

где Δm — изменение массы испытательного сосуда с образцом за интервал времени $\Delta \tau$, мг;

Δт — интервал времени между двумя последовательными взвешиваниями, ч;

А — площадь рабочей поверхности образца, через которую проходит поток водяного пара, м².

7.3 Сопротивление паропроницанию образцов R_n, (м² ч · Па)/мг, вычисляют по формуле

$$R_{\Pi} = \frac{E - e}{g} - R_{\Pi,B}, \qquad (2)$$

где E — давление насыщенного водяного пара в испытательном сосуде, Па; определяют по приложению Д;

е — давление водяного пара в камере вокруг сосуда, Па;

R_{п.в.} — сопротивление паропроницанию воздуха, (м² ч · Па)/мг, определяемое по формуле

$$R_{n,n} = d_n/\mu_n, \qquad (3)$$

 $rge d_e$ — толщина слоя воздуха (расстояние от поверхности воды в испытательном сосуде до нижней поверхности образца), м;

µ_в — паропроницаемость воздуха в испытательном сосуде, мг/(м · ч · Па), определяют по приложению A

Давление водяного пара в камере вокруг испытательного сосуда определяют по формуле

$$e = E_{\phi}$$
, (4)

где ф — относительная влажность воздуха в камере вокруг испытательного сосуда с образцом, %.

Коэффициент паропроницаемости материала µ, мг/(м · ч · Па), определяют по формуле

$$\mu = d/R_o, \qquad (5)$$

где d — средняя толщина испытуемого образца, м.

7.5 При расчете сопротивления паропроницанию материала по методу «сухой чашки» значение разности парциальных давлений над образцом определяют по измеренным значениям температуры t и относительной влажности воздуха φ в камере (см. раздел 4), а под образцом — при той же температуре и относительной влажности воздуха φ₀, равной не более 3 %.

Приложение А (справочное)

Определение сравнительного коэффициента паропроницаемости

При определении сравнительного коэффициента паропроницемости применяют обозначения и единицы измерения параметров, приведенные в таблице A.1.

Таблица А.1 — Обозначения и единицы измерения параметров

Наименование параметра	Обозначение	Единица измерения
Газовая постоянная для водяного пара, равная 462	R _{const}	H · m/(кг · K)
Среднее давление воздуха	р	Па
Нормальное атмосферное давление	p_0	1013,25 ∏a
Температура воздуха в испытательной камере	T	к
Паропроницаемость слоя неподвижного воздуха	μ _α	мг/(м ⋅ ч ⋅ Па)
Сравнительный коэффициент паропроницаемости	μ ₆ /μ	-
Толщина слоя неподвижного воздуха, имеющего сопротивление паропроницанию, эквивалентное сопротивлению паропроницанию ислытуемого образца толщиной d	S _d	М

Сравнительный коэффициент паропроницаемости рассчитывают как отношение паропроницаемости слоя неподвижного воздуха к паропроницаемости испытуемого материала $\mu_{\rm e}/\mu$.

Для расчета паропроницаемости слоя неподвижного воздуха $\mu_{\rm B}$ применяют формулу Ширмера, в которой используют среднее давление воздуха p за время испытания

$$\mu_{B} = [0.083p_{0}IR_{const} T \cdot p] [7/273]^{1.81}$$
(A.1)

или определяют графически по графику зависимости коэффициента паропроницаемости воздуха от давления при температуре 23 °C (см. рисунок A.1).

Давление воздуха при испытании р определяют барометром.

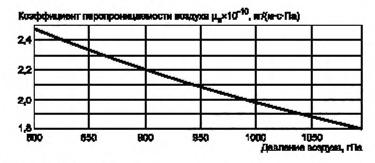


Рисунок А.1 — График зависимости коэффициента паропроницаемости воздуха от давления при температуре 23 °C

Толщину слоя неподвижного воздуха S_d , имеющего сопротивление паропроницанию, эквивалентное сопротивлению паропроницанию ислытуемого образца материала толщиной d, определяют по формуле

$$S_d = (\mu_u/\mu)d. \tag{A.2}$$

Приложение Б (справочное)

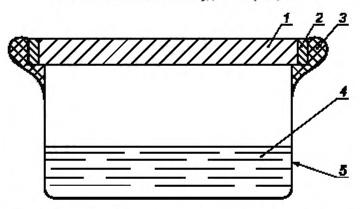
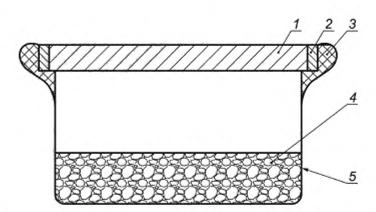

Таблица перевода единиц измерения паропроницаемости

Таблица Б.1

Наименование показателя	Единица измерения	Другая единица измерения	Переводной коэффициент		
Плотность потока водяного пара	r/(m ² · c)	мг/(м ² · ч)	3,60 · 10 ⁹		
Коэффициент сопротивления паропроницанию	кт/(м² - с - Па)	мг/(м² · ч · Па)	3,60 - 10 ⁹		
Сопротивление паропроницанию	(м² · c · Па)/кг	(м² · ч · Па)/мг	2,778 · 10 ⁻¹⁰		
Паропроницаемость (коэффициент паропроницаемости)	кг/(м - с - Па)	мг/(м - ч - Па)	3,60 · 10 ⁹		
Сравнительный коэффициент паропроницаемости	-	-	- N-		
Поток водяного пара в единицу времени	кг/с	мг/ч	3,60 · 10 ⁹		


Приложение В (рекомендуемое)

Схемы испытательных сосудов с образцами

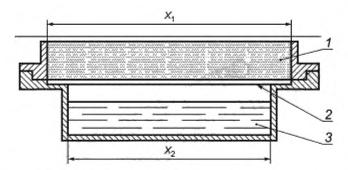

f — испытуемый образец; 2 — удерживающий шаблон (если необходимо); 3 — герметик; 4 — дистиплированная вода; 5 — стеклянный испытательный сосуд

Рисунок В.1 — Схема испытательного сосуда с образцом (метод «мокрой чашки»)

1— испытуемый образец; 2— удерживающий шаблон (если необходимо); 3 — герметик; 4 — влагопоглотитель [хлорид кальция $CaCl_2$, перхлорат магния $Mg(ClO_4)_2$ или аналоги]; 5 — стеклянный испытательный сосуд

Рисунок В.2 — Схема испытательного сосуда с образцом (метод «сухой чашки»)

т — испытуемый образец сылучего материала; 2 — решетка или паропроницаемая мембрана;
 3 — дистиплированная вода

Рисунох В.3 — Схема испытательного сосуда с образцом сыпучего материала

Приложение Г (рекомендуемое)

(рекомендуемое) Форма протокола испытаний на паропроницаемость

		MM.			еп и	м)/лм нодподвП	15						
ML/Ms;		2		او با الا _م . الا	иналанг ицаник м/(вП :	roqnoQ Hoqnoqen P ^S M)	14						
			(м² - ч - Па)/мг.	д между	водяного	разность давлений £ — е. Па	13						
		и образца	(M ²	Средние метеорологические данные за период между	Парциальное давление водяного гара	в окружа- ющем воз- духе е. Па	12						
мала	M ² ;	оверхност	D.E.	ические дан замерами	Парциаль	под образцом Е. Па	F						
, плотность материала	M	р нижней п	и образца /	метеоролог	Влаж-	воздуха в камере ф. %	10						
, плотн	P P	сти воды д	оверхност	Средние	Темпе-	разура воздуха в камере 4, °C	8						
	материал (наименование, мармуровка, изготовитель, партия). топщина образца м, площадь рабсчей поверхности образца м, площадь расстояние от поверхности воды до нижней поверхности образца сопротивление паропроницанию слоя воздуха от поверхности воды до нижней поверхности образца (м)	стояние от поверхно	о нижней п	2000	ность	водяного пара g. мг/(м 2ч)	80						
(E)			сти воды д		сивность	водяного пара /. мг/ч	7						
тель, парту	анодео чте	мм; рас	товерхно		Интервал времени между	замера- ми. Ат. ч	9						
Материал (наименование, маркировка, изготовитель, партия)	M; ririous		оя воздуха о	Количество	napa. npoweg- wero \epes	образец за интервал времени Δт, мг	5						
ие, маркиров		разпа	сопротивление паропроницанию слоя во Особые условия проведения испытания		Масса со- суда с водой или с водо-	пем т. г	107						
аименован	реже	внутренние размеры образца	ие паропро	Замер	Время	взвешива- ика, ч/мин	8						
териал (н	топщина образца д	пренние!	тротивлен обые усли	Sai		ната взвеши- вания	2						
Wa	TOT	BH	8 8	dev	вый ноя винаце	онрядоП эмен	-						

Приложение Д (справочное)

Значения парциального давления насыщенного водяного пара

В настоящем приложении приведены значения парциального давления насыщенного водяного пара E в паскалях при температуре воздуха над водой от 17,0 °C до 28,9 °C (см. таблицу Д.1).

Таблица Д.1 — Парциальное давление насыщенного водяного пара

t, 'C	0	0.1	0,2	0,3	0,4	0,5	8,0	0,7	8,0	0.9
17	1937	1949	1962	1974	1986	2000	2012	2025	2037	2050
18	2064	2077	2089	2102	2115	2129	2142	2156	2169	2182
19	2197	2210	2225	2238	2252	2266	2281	2294	2309	2324
20	2338	2352	2366	2381	2396	2412	2426	2441	2456	2471
21	2488	2502	2517	2538	2538 2542		2580 2596	2596	2612	2628
22	2644	2660	2676	2691	2709	2725	2742	2758	2776	2792
23	2809	2826	2842	2860	2877	2894	2913	2930	2948	2965
24	2984	3001	3020	3038	3056	3074	3093	3112	3130	3149
25	3168	3186	3205	3224	3244	3262	3282	3301	3321	3341
26	3363	3381	3401	3421	3441	3461	3481	3502	3523	3544
27	3567	3586	3608	3628	3649	3672	3692	3714	3796	3758
28	3782	3801	3824	4846	3869	3890	3913	3937	3960	3982

УДК 669.001.4:006.354 MKC 91.100.01

Ключевые слова: паропроницаемость, плотность потока водяного пара, сопротивление паропроницанию, тонкослойные покрытия, пленки, строительные материалы и изделия

> Редактор Г.Н. Симонова Технический редактор В.Н. Прусакова Корректор И.А. Королева Компьютерная верстка Л.А. Круговой

Сдано в набор 02.12.2019. Подписано в лечать 06.12.2019. Формат 60×84
¹/₈. Гарнитура Ариал. Усл. печ. л. 1,86. Уч.-изд. л. 1,30. Подготовлено на основе электронной версии, предоставленной разработчиком стандарта