ФЕДЕРАЛЬНОЕ АГЕНТСТВО

ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

ГОСТ Р ИСО 8573-7— 2005

Сжатый воздух

Часть 7

МЕТОД КОНТРОЛЯ ЗАГРЯЗНЕНИЯ ЖИЗНЕСПОСОБНЫМИ МИКРООРГАНИЗМАМИ

ISO 8573-7:2003

Compressed air — Part 7: Test method for viable microbiological contamination content (IDT)

Издание официальное

Предисловие

Задачи, основные принципы и правила проведения работ по государственной стандартизации в Российской Федерации установлены ГОСТ Р 1.0—92 «Государственная система стандартизации Российской Федерации. Основные положения» и ГОСТ Р 1.2—92 «Государственная система стандартизации Российской Федерации. Порядок разработки государственных стандартов»

Сведения о стандарте

1 ПОДГОТОВЛЕН Общероссийской общественной организацией «Ассоциация инженеров по контролю микрозагрязнений» (АСИНКОМ), ООО «ЭНСИ», ОАО «НИЦ КД», ОАО «Мосэлектронпроект» на основе собственного аутентичного перевода стандарта, указанного в пункте 4

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 184 «Обеспечение промышленной чистоты»

- 3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 11 марта 2005 г. № 48-ст
- 4 Настоящий стандарт идентичен международному стандарту ИСО 8573-7:2003 «Сжатый воздух. Часть 7. Метод контроля загрязнения жизнеспособными микроорганизмами» (ISO 8573-7:2003 «Compressed air — Part 7: Test method for viable microbiological contamination content»).

При применении настоящего стандарта рекомендуется использовать вместо ссылочных международных стандартов соответствующие им национальные стандарты, сведения о которых приведены в приложении E

5 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в указателе «Национальные стандарты», а текст изменений — в информационных указателях «Национальные стандарты». В случае пересмотра или отмены настоящего стандарта соответствующая информация будет опубликована в информационном указателе «Национальные стандарты»

© Стандартинформ, 2005

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

Содержание

Введение	IV.
1 Область применения	1
2 Нормативные ссылки	1
3 Термины и определения	1
4 Метод контроля содержания жизнеспособных микроорганизмов путем парциального отбора	
проб воздуха	2
5 Рабочие условия	2
6 Контроль наличия жизнеспособных колониеобразующих микроорганизмов	2
7 Заключение в аналитическом отчете	2
Приложение А (справочное) Аналитический отчет. Контроль содержания жизнеспособных	
микробиологических частиц в сжатом воздухе	4
Приложение В (рекомендуемое) Количественный метод отбора проб	5
Приложение С (справочное) Отбор проб на эндотоксины	6
Приложение D (справочное) Подготовка чашек Петри с питательной средой	7
Приложение Е (справочное) Сведения о соответствии национальных стандартов Российской	
Федерации ссылочным международным (региональным) стандартам	7

Введение

Серия международных стандартов по чистоте сжатого воздуха ИСО 8573 разработана Техническим комитетом ИСО/ТК 118 Compressors, pneumatic tools and pneumatic machines, Subcommittee SC 4, Quality of compressed air — Компрессоры, пневматические инструменты и пневматическое оборудование, подкомитет ПК 4 «Качество сжатого воздуха».

В указанную серию входят следующие стандарты:

- ИСО 8573-1:2001 Сжатый воздух. Часть 1. Загрязнения и классы чистоты;
- ИСО 8573-2:1996 Сжатый воздух. Часть 2. Методы контроля содержания масел в виде аэрозолей;
- ИСО 8573-3:1999 Сжатый воздух. Часть 3. Методы контроля влажности;
- ИСО 8573-4:2001 Сжатый воздух. Часть 4. Методы контроля содержания твердых частиц;
- ИСО 8573-5:2001 Сжатый воздух. Часть 5. Методы контроля содержания паров масла и органических растворителей;
 - ИСО 8573-6:2003 Сжатый воздух. Часть 6. Методы контроля загрязнения газами;
- ИСО 8573-7:2003 Сжатый воздух. Часть 7. Метод контроля загрязнения жизнеспособными микроорганизмами;
- ИСО 8573-8:2004 Сжатый воздух. Часть 8. Методы контроля загрязнения твердыми частицами по массовой концентрации;
 - ИСО 8573-9:2004 Сжатый воздух. Часть 9. Методы контроля содержания воды в жидкой фазе.

Сжатый воздух

Часть 7

МЕТОД КОНТРОЛЯ ЗАГРЯЗНЕНИЯ ЖИЗНЕСПОСОБНЫМИ МИКРООРГАНИЗМАМИ

Compressed air - Part 7: Test method for viable microbiological contamination content

Дата введения — 2006—01—01

1 Область применения

Настоящий стандарт устанавливает метод контроля загрязнения жизнеспособными колониеобразующими микроорганизмами (например дрожжей, бактерий, эндотоксинов) из твердых частиц, присутствующих в сжатом воздухе, а также методы отбора проб и условия инкубации.

Метод контроля используется для определения классов чистоты в соответствии с ИСО 8573-1 и ИСО 8573-4 и может, при необходимости, применяться для выявления твердых частиц, одновременно являющихся жизнеспособными колониеобразующими единицами.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ИСО 4833:2003 Микробиология пищевых продуктов и кормов для животных. Горизонтальный метод подсчета микроорганизмов. Метод подсчета колоний при температуре 30 °C

ИСО 7218:1996 Микробиология пищевых продуктов и кормовых продуктов. Общие правила микробиологических исследований

ИСО 7954:1987 Микробиология. Общее руководство по подсчету дрожжевых и плесневых грибов. Метод подсчета колоний при температуре 25 °C

ИСО 8573-1:2001 Сжатый воздух. Часть 1. Загрязнения и классы чистоты

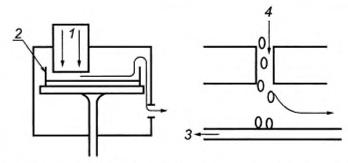
ИСО 8573-4:2001 Сжатый воздух. Часть 4. Методы контроля содержания твердых частиц

3 Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями.

3.1 микроорганизмы (microbiological organisms): Частицы, характеризующиеся своей способностью образовывать жизнеспособные колонии.

Примечание — Они могут идентифицироваться как бактерии, дрожжи или грибы.


- 3.2 число жизнеспособных микроорганизмов (number of viable microorganisms): Число микроорганизмов, проявляющих метаболическую активность.
- 3.3 число культиватов (culturable number): Число микроорганизмов (единичных клеток или агрегатов), способных образовывать колонии на твердой питательной среде.
- 3.4 колониеобразующая единица (КОЕ) (Colony-forming unit (CFU)): Единица, в которой выражается число культиватов.

4 Метод контроля содержания жизнеспособных микроорганизмов путем парциального отбора проб воздуха

Метод контроля наличия жизнеспособных микроорганизмов в пробе сжатого воздуха основан на воздействии воздуха на агаровую питательную среду. Количественная оценка может быть проведена с использованием метода, приведенного в приложении В. Метод подготовки чашки Петри с агаровой питательной средой приведен в приложении D.

Для парциального отбора проб воздуха следует использовать щелевой пробоотборник (вид импактора для анализа воздуха) и метод, приведенный в ИСО 8573-4; провести изокинетический отбор проб и снизить давление сжатого воздуха до диапазона, указанного для данного пробоотборника в инструкции производителя. Снижение давления воздуха до атмосферного и измерение скорости потока воздуха следует проводить для подтверждения диапазона, установленного производителем или в соответствии с ИСО 8753-4. При известной скорости потока должно регистрироваться время экспозиции пробы сжатого воздуха с агаровой питательной средой.

Для более легкого разделения частиц, содержащих и не содержащих микроорганизмы, контроль следует проводить в течение 4 ч.

т — вход воздуха; 2 — вращающаяся чашка Петри с агаровой питательной средой; 3 — выход воздуха; 4 — поток воздуха

Рисунок 1 — Щелевой пробоотборник

При контроле, для получения достоверных результатов по количеству и размерам частиц, следует устранить влияние на них воды и других жидкостей.

Влияние воды на получение результатов следует устранять путем нагревания или сушки воздуха (что в других случаях может быть приемлемым), так как наличие ее может оказать отрицательное воздействие на жизнеспособность микроорганизмов.

5 Рабочие условия

Фактические рабочие условия должны быть приведены в аналитическом отчете о контроле содержания жизнеспособных микробиологических частиц в сжатом воздухе (приложение A).

6 Контроль наличия жизнеспособных колониеобразующих микроорганизмов

После инкубации пробы воздуха на агаровой питательной среде (В.3) поверхность среды визуально исследуется на наличие жизнеспособных колониеобразующих микроорганизмов.

7 Заключение в аналитическом отчете

В аналитическом отчете о контроле содержания твердых частиц в соответствии с ИСО 8573-4 дополнительно следует привести заключение о наличии частиц, содержащих жизнеспособные колониеобразующие микроорганизмы, твердых частиц и слова «Стерильность сжатого воздуха декларируется в соответствии с ИСО 8573-1» с указанием:

- «стерильный» или «нестерильный»;
- даты отбора пробы;
- даты контроля;
- точек отбора проб.

В приложении А приведена форма аналитического отчета о контроле содержания жизнеспособных микробиологических частиц в сжатом воздухе.

Приложение A (справочное)

Аналитический отчет. Контроль содержания жизнеспособных микробиологических частиц в сжатом воздухе

После контроля содержания твердых частиц в пробе, отобранной из системы сжатого воздуха в соответствии с ИСО 8573-4, оформляется аналитический отчет в виде таблицы А.1 с данными о количестве частиц, на которых присутствуют жизнеспособные микробиологические колониеобразующие единицы (КОЕ).

Примечание — Сведения об агаровой питательной среде приведены в В.З.

Т а б л и ц а A.1 — Форма аналитического отчета о контроле содержания жизнеспособных микробиологических частиц в пробе сжатого воздуха

Микроорганизм	КОЕ/м ³ при стандартных условиях ^{я)}
Бактерии	100
Дрожжи	14
Грибы	Не обнаружено
Эндобактерии	50
Давление, при котором проводился контроль	МПа [бар(е)]
Заявление относительно возможности применения (раздел 7)	
Дата протокола калибровки	год/месяц/день

^{а)} Стандартные условия:

⁻ температура ... 20 °C;

давление ... 0,1 МПа (1 бар).

В данном применении относительная влажность не оказывает влияния на объем.

Приложение В (рекомендуемое)

Количественный метод отбора проб

В.1 Отбор проб с использованием щелевого пробоотборника

В.1.1 Принцип отбора проб

Механизм захвата микроорганизмов с использованием щелевого пробоотборника (импактора для анализа воздуха) характеризуется простотой и надежностью. Воздух из установки сжатого воздуха проходит через специально сконструированный переходник и ускоряется при поступлении через узкую щель к влажной поверхности агаровой питательной среды (рисунок 1). Согласно закону инерции микроорганизмы (как более тяжелые) оседают на поверхность среды, а молекулы воздуха отклоняются от нее. При соответствующих условиях инкубации микроорганизмы вырастают в колонии, которые подсчитываются в предположении, что один микроорганизм вырастает в одну колонию.

Щелевой пробоотборник используется для бактерий, дрожжей или грибов; для вирусов и бактериофагов применяются специальные методы отбора проб. Поскольку оседание частиц происходит на большую поверхность агаровой питательной среды в чашке Петри диаметром 140 мм и пробоотборник расположен радиально относительно вращающейся чашки, то может быть подсчитано большее число микроорганизмов.

В.1.2 Методы работы в асептических условиях

Метод отбора проб предусматривает работу в асептических условиях. В качестве дезинфицирующего средства рекомендуется использование 70 % -ного этилового спирта. Во время простоя пробоотборника следует принимать меры, ограничивающие рост микроорганизмов. Все операции, связанные с открытием щели, должны проводиться в минимальные сроки, чтобы избежать возможности попадания загрязнений из непосредственного окружения. Должны приниматься меры, исключающие сквозняки.

В.2 Методика отбора проб

Для отбора проб следует применять следующую методику:

- а) оборудование, используемое для отбора проб, в т. ч. трубки и шланги, непосредственно перед использованием стерилизуется дезинфицирующим средством;
- b) испытуемая проба воздуха пропускается через пробоотборник и соединенные с ним трубки и шланги (без чашки Петри с агаровой питательной средой). Это необходимо для испарения дезинфицирующего средства и настройки щелевого пробоотборника;
- с) путем выполнения процедур по перечислениям d) f) (при выключенном пробоотборнике) до и после контроля проводится «слепое испытание». Используемые при этом чашки Петри диаметром 140 мм, наполненные агаровой питательной средой, не должны показывать роста микроорганизмов;
- d) на дне чашки Петри снаружи закрепляется этикетка с информацией о дате и начале испытания, адресе места проведения испытания, коде и т. д. Отмечается начальная позиция и направление вращения;
- е) проверяется, что индикатор уровня и крышка в щелевом пробоотборнике для входа воздуха открыты. При открытой крышке проверяется правильность расположения держателя пластины и микропереключателя. Внутренние поверхности пробоотборника протираются дезинфицирующим средством;
- f) чашка Петри вставляется в щелевой пробоотборник таким образом, чтобы ее радиус располагался вертикально под щелью для поступления воздуха. Крышка чашки Петри снимается и помещается в стерильный пластиковый пакет;
 - д) после снятия крышки чашки Петри крышка щелевого пробоотборника возвращается в исходное положение;
- h) освобождается индикатор уровня и осторожно опускается к поверхности агаровой питательной среды.
 Крышка щелевого пробоотборника для входа воздуха опускается так, чтобы индикаторная стрелка указывала на нижний край направляющего желоба. Индикатор уровня пробоотборника возвращается в верхнюю позицию и закрепляется;
- i) после нажатия клавиши «старт» начинается автоматический отбор пробы. Отмечается время начала и продолжительность отбора пробы, наименование и размещение испытательного оборудования и другие условия или явления, которые могут повлиять на результаты контроля;
- j) отбор пробы завершается при выключении индикаторной лампы. При выключенной клавише «старт/стоп» поднимается крышка для входа воздуха;
- крышка щелевого пробоотборника освобождается и осторожно сдвигается с одновременным извлечением крышки чашки Петри из стерильного пластикового пакета для последующего закрытия чашки Петри. Такие действия проводятся осторожно, чтобы не повредить агаровую питательную среду с пробой сжатого воздуха;
- I) чашка Петри извлекается из пробоотборника, закрывается крышкой, заклеивается лентой и помещается в стерильный пакет, который также заклеивается;
 - ташки Петри инкубируются при комнатной температуре и через соответствующий период времени осмат-

ГОСТ Р ИСО 8573-7-2005

риваются (В.3). В центре и на внешнем крае поверхности агаровой питательной среды колониеобразующие единицы должны отсутствовать.

Примечание — Линия «старт/финиш» может содержать «дополнительные» колонии;

- п) ручка активации держателя чашки передвигается и микропереключатель переводится в другую стартовую позицию:
- о) внутренние поверхности щелевого пробоотборника протираются дезинфицирующим средством и закрываются крышкой;
 - р) для следующего отбора пробы приведенные действия повторяются.

Следует контролировать условия транспортирования чашек Петри от производителя, наполнившего их агаровой питательной средой, до места отбора пробы в лаборатории на предмет возможного загрязнения чашек при транспортировании. Чашки Петри после транспортирования не должны показывать роста микроорганизмов.

В.3 Инкубация загрязняющих жизнеспособных микроорганизмов

Наиболее подходящей температурой инкубации микроорганизмов в общем случае является температура окружающей среды, в которой они находились до отбора проб. Мезофильные бактерии или грибы культивируются при температуре от 20 °C до 30 °C. Для некоторых термочувствительных бактерий могут потребоваться другие температуры инкубации. Период инкубации обычно составляет для грибов 14 сут, для мезофильных бактерий — от 2 до 14 сут. Возможны и другие температуры инкубации микроорганизмов.

Для выделения отдельных видов бактерий (например грамм-отрицательных энтеробактерий) могут использоваться селективные среды (агаровые питательные). Число колониеобразующих единиц подсчитывается через заданный период времени (например 24 ч).

В.4 Подсчет колониеобразующих единиц (КОЕ)

Неселективные среды анализируются на наличие роста колониеобразующих единиц, начиная с 24 ч после начала инкубации, с повторным подсчетом колоний каждые 24 ч в течение 14 сут. Для предотвращения неопределенности измерений при инкубации следует проводить регулярные наблюдения и подсчет колоний по мере их выявления и с учетом возможности перерастания.

Приложение С (справочное)

Отбор проб на эндотоксины

С.1 Общие положения

Отбор проб сжатого воздуха на эндотоксины является сложным процессом, требующим неиспользованных ранее пластиковых трубок и стеклянных флаконов, а также персонала, обученного методам отбора проб. Наличие эндотоксинов в сжатом воздухе подтверждается после подсчета количества грамм-отрицательных энтеробактерий в конденсате сжатого воздуха и дополнительных измерений содержания бактерий, грибов и дрожжей.

С.2 Методика отбора проб

П р и м е ч а н и е — Содержание в сжатом воздухе всего нескольких нанограмм эндотоксинов (продуктов метаболизма грамм-отрицательных бактерий) может вызвать заболевание.

Испытания следует проводить в стерильных условиях с применением пластины с соответствующей агаровой средой. Точки отбора проб в системе сжатого воздуха выбираются в местах, удобных для сбора конденсата. Для подсчета количества грамм-отрицательных бактерий в конденсате используется следующая методика:

- а) непосредственно перед испытанием точки отбора пробы дезинфицируются 70 %-ным этиловым спиртом;
- с флакона с агаровой питательной средой снимается крышка с прикрепленной к ней пластиной;
- с) из точки отбора пробы конденсат отбирается в стерильный флакон;
- d) прикрепленная к крышке флакона пластина вводится в отобранный конденсат на 10 с. Обе поверхности (пластины и конденсата) должны контактировать;
 - е) пластина медленно (примерно за 3 с) извлекается из конденсата;
 - f) содержимое флакона выливается;
- д) после инокуляции пластина вновь помещается во флакон. На этой стадии флакон с пластиной может храниться или транспортироваться в течение нескольких часов, что не влияет на результат. Флакон с испытуемой пластиной не допускается замораживать:
- h) пластины инкубируются при 27 °C в течение 14 сут. При медленном росте микроорганизмов период инкубации продлевается до 1 мес;

 i) после инкубации пластина из флакона осторожно удаляется. Рост колоний анализируется и проводятся реакции на изменение цвета по инструкциям производителей.

Приемлемый уровень бактерий, дрожжей и грибов в конденсате, как правило, составляет 10000 КОЕ/мл. При обнаружении одной грамм-отрицательной бактерии считается, что в сжатом воздухе присутствуют эндотоксины и, следовательно, влажные детали установки следует очистить и продезинфицировать.

Приложение D (справочное)

Подготовка чашек Петри с питательной средой

Методика применима к агаровой питательной среде, используемой для подсчета колоний, и среде Сабуро с 4 %-ной декстрозой.

Методика включает в себя следующие действия:

- а) питательная среда в количестве, указанном производителем, взвешивается и растворяется в воде:
- b) питательная среда стерилизуется в автоклаве при температуре 121 °C в течение 15 мин;
- с) после охлаждения до 50 °С измеряется рН среды, который при необходимости доводится до заданного значения с использованием соляной кислоты или шелочи натрия;
 - d) на каждую стерильную чашку Петри диаметром 140 мм наносится по 65 мл питательной среды;
- е) после остывания и затвердения среды каждая чашка Петри упаковывается в два стерильных пластиковых пакета;
 - 1) первый пакет закрывается простой двусторонней круговой пломбой,
 - 2) второй пакет герметично укупоривается с запайкой краев;
 - f) пакеты с чашками маркируются с указанием даты, содержимого и номера серии.

Приложение Е (справочное)

Сведения о соответствии национальных стандартов Российской Федерации ссылочным международным (региональным) стандартам

Таблица Е. 1

Обозначение ссылочного международного стандарта	Обозначение и наименование соответствующего национального стандарта
ИСО 8573-1:2001	ГОСТ Р ИСО 8573-1—2005 Сжатый воздух. Часть 1. Загрязнения и классы чистоты (IDT)
ИСО 8573-4:2001	ГОСТ Р ИСО 8573-4—2005 Сжатый воздух. Часть 4. Методы контроля содержания твердых частиц (IDT)

УДК 661.92.001.33:006.354

OKC 71.100.20

T58

Ключевые слова: сжатый воздух, жизнеспособные микроорганизмы, колониеобразующие единицы, эндотоксины, парциальный отбор проб, щелевой пробоотборник, аналитический отчет

> Редактор В.П. Огурцое Технический редактор Л.А. Гусева Корректор В.С. Черная Компьютерная верстка А.Н. Золотаревой

Сдано в набор 22.03.2005. Подписано в печать 15.06.2005. Формат 60×84 1/8. Бумага офсетная. Гарнитура Ариал. Печать офсетная. Усл.печ.п. 1,40. Уч.-изд.л. 0,75. Тираж 389 экз. Зак. 218. С 938.

ФГУП «Стандартинформ», 123995 Москва, Гранатный пер., 4, www.gostinfo.ru info@gostinfo.ru ufo@gostinfo.ru Набрано во ФГУП «Стандартинформ» на ПЭВМ
Отпечатано в филиале ФГУП «Стандартинформ» — тип. "Московский печатник", 105062 Москва, Лялин пер., 6.