АППАРАТУРА ВОЛОКОННО-ОПТИЧЕСКИХ СИСТЕМ ПЕРЕДАЧИ ПО ЛИНИЯМ ЭЛЕКТРОПЕРЕДАЧ ЦИФРОВАЯ

ОБЩИЕ ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

Издание официальное

УДК 681.7.068:006.354 Группа Э50

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

АППАРАТУРА ВОЛОКОННО-ОПТИЧЕСКИХ СИСТЕМ ПЕРЕДАЧИ ПО ЛИНИЯМ ЭЛЕКТРОПЕРЕДАЧ ЦИФРОВАЯ

Общие технические требования

ΓΟCT 28439-90

Digital equipment of fibre-optic power line transmission systems.

General technical requirements

MKC 33.180 OKΠ 66 5700

Дата введения 01.01.91

Настоящий стандарт распространяется на цифровую каналообразующую аппаратуру волоконно-оптических систем передачи (ВОСП) по линиям электропередачи для энергосистем в составе оконечных постов, обслуживаемых и необслуживаемых регенераторов.

1. ТРЕБОВАНИЯ НАЗНАЧЕНИЯ

- 1.1. ВОСП представляет собой комплекс технических средств, обеспечивающих образование цифрового волоконно-оптического тракта по волоконно-оптическому кабелю (ВОК), подвешиваемых на опорах высоковольтных линий (ВЛ) электропередачи, в том числе встроенных в грозозащитный трос.
 - ВОСП по линиям электропередачи включает оконечную и промежуточную аппаратуру.
- 1.3. Оконечная аппаратура состоит из передающего и приемного устройств, каждое из которых содержит аналоговую и цифровую электрическую части, а также электрический преобразователь и выходную оконечную часть.
- Промежуточная аппаратура предназначена для регенерации группового оптического сигнала электросвязи и состоит из обслуживаемых и необслуживаемых регенерационных пунктов.

Количество регенераторов в тракте — не менее 8.

- Скорость передачи символов цифрового сигнала 2048, 8448 кбит/с. Номинальное число стандартных телефонных каналов — 30, 60, 90.
- Оптическое излучение передатчиков одномодовое с длиной волны (λ) лазерного излучения 0.85; 1.30; 1.55 мкм.
- 1.7. Электропитание аппаратуры обслуживаемого регенерационного пункта осуществляется от сети переменного тока, необслуживаемых регенерационных пунктов от сети переменного тока или отбором электрической мощности от высоковольтной линии. Оборудование отбора мощности в состав аппаратуры не входит.
- 1.8. Средняя мощность оптического излучения на выходе передающего устройства не менее $1\cdot 10^{-3}~{\rm Br.}$
 - 1.9. Ширина спектра оптического излучения на выходе передающего устройства не более:

 $100 \text{ HM} - \lambda = 0.85 \text{ MKM};$

 $10 \text{ HM} - \lambda = 1,30 \text{ MKM};$

 $0.3 \text{ HM} - \lambda = 1.55 \text{ MKM}.$

- 1.10. Чувствительность фотоприемного устройства не более 0,5 · 10⁻⁹ Вт.
- Коэффициент ошибки регенератора 1 · 10⁻¹⁰.

Издание официальное

Перепечатка воспрещена

© Издательство стандартов, 1990 © Стандартинформ, 2005

- 1.12. Предаварийное значение коэффициента ошибок (K_{om}):
- К_{ош} ≥ 10⁻⁶ для оконечной аппаратуры;
- К_{ош} ≥ 10⁻⁷ для промежуточной аппаратуры.
- 1.13. Аварийное значение коэффициента ошибок:
- 1) $K_{\rm om} \ge 10^{-3}$ для оконечной аппаратуры; 2) $K_{\rm om} \ge 10^{-4}$ для промежуточной аппаратуры.
- Оконечная аппаратура должна обеспечивать:
- 1) организацию 30, 60, 90 телефонных (ТФ) каналов по двум волокнам светового кабеля с используемой длиной волны оптического излучения 0,85; 1,30; 1,55 мкм;
- 2) вместо трех ТФ каналов организацию трех каналов цифровой информации со скоростью передачи 64 кбит/с:
- 3) дополнительную организацию канала передачи цифровой информации со скоростью 8 кбит/с по стыку С-2 по ГОСТ 18145.
- 1.15. Энергетический потенциал регенерационного участка должен быть не менее 63 дБ, что обеспечивается при использовании волоконно-оптического кабеля с затуханием 1 дБ/км, при этом максимальная протяженность одного регенерационного участка — 30 км. Протяженность линии — 250 км при установке на ней не менее 8 регенерационных пунктов.
- 1.16. Оконечная аппаратура и аппаратура обслуживаемого регенерационного пункта в общепромышленном и экспортном исполнении должна удовлетворять требованиям исполнения УХЛ4.2 по ГОСТ 15150, а в экспортно-тропическом исполнении - требованиям исполнения О4.2 по ΓΟCT 15150.
- Аппаратура необслуживаемого регенерационного пункта должна работать в климатических условиях У1 по ГОСТ 15150.
 - Размеры стоек аппаратуры устанавливают в соответствии с ГОСТ 26537.

Масса оконечной аппаратуры в расчете на один канал — не более 0.9 кг/кан.

- 1.19. Потребляемая комплексом аппаратуры линейного тракта мощность в расчете на один канал — не более 2,1 Вт/кан.
- 1.20. Аппаратура оконечная и обслуживаемого регенерационного пункта должна быть рассчитана на работу от сети переменного тока напряжением 22012 В, от сети общего назначения с частотой 50+2.5 Гц в соответствии с ГОСТ 5237.
- 1.21. Питание аппаратуры необслуживаемого регенерационного пункта должно осуществляться от устройств емкостного отбора мощности от ВЛ. Напряжение устройства отбора составляет 220+55 В с частотой от 47 до 63 Гц.
- При пропадании напряжения отбора (при снятии напряжения с ВЛ) блок электропитания должен безынерционно переключаться на питание от аккумуляторной батареи, входящей в состав устройства регенерационного пункта. Емкость батареи должна обеспечить нормальную работу аппаратуры в течение 7,5 ч.
- 1.23. Аппаратура ВОСП должна быть рассчитана на напряжение пульсаций, обусловленных работой электропитающей установки в соответствии с ГОСТ 5237.
 - Мощность, потребляемая оконечной аппаратурой, не должна превышать 65 В.А.
- 1.25. Мощность, потребляемая аппаратурой обслуживаемого регенерационного пункта, не должна превышать 30 В-А.
- 1.26. Мощность, потребляемая аппаратурой необслуживаемого регенерационного пункта при температуре окружающей среды более 253 К (минус 20 °С), не должна превышать 30 В.А, при температуре от 223 (минус 50 °C) до 253 К (минус 20 °C) — 60 В-А.
 - Требования к электрическому сетевому стыку в соответствии с ГОСТ 26886.

2. ТРЕБОВАНИЯ НАДЕЖНОСТИ

- Назначенный ресурс аппаратуры линейного тракта не менее 20 лет, с учетом срока хранения.
- Средняя наработка на отказ (T₀) канала связи, содержащего оконечную аппаратуру и 8 регенераторов - не менее 50000 ч.
- Среднее время восстановления на одну неисправность линейного тракта не более 30 мин (без учета времени подъезда к месту повреждения и подготовки места установки регенератора для безопасной работы людей при пользовании ЗИП).

C. 3 FOCT 28439-90

2.4. Средний срок сохраняемости (T_c) в отапливаемых помещениях должен быть не менее 5 лет.

 Π р и м е ч а н и е. Надежность изделий по результатам испытаний на надежность должна оцениваться при доверительной вероятности $\gamma = 0.8$, риске поставщика $\alpha = 0.2$, риске заказчика $\beta = 0.2$.

3. ТРЕБОВАНИЯ К СЫРЬЮ, МАТЕРИАЛАМ И ПОКУПНЫМ ИЗДЕЛИЯМ

- 3.1. Применяемые материалы и покрытия, покупные изделия должны обеспечивать исправную работу ВОСП в течение срока службы с указанными условиями эксплуатации.
- Электрорадиоизделия и материалы должны применяться с учетом действующих ограничительных перечней.

4. ТРЕБОВАНИЯ СТОЙКОСТИ К ВНЕШНИМ ВОЗДЕЙСТВИЯМ И ЖИВУЧЕСТИ

- 4.1. Изделия, упакованные в ящик, должны быть работоспособны после воздействия ударной нагрузки 1000 ударов с ускорением 98 м/с² (10 g) с частотой 200 ударов в минуту при длительности импульса от 5 до 16 мс.
- 4.2. Отдельные сборочные единицы и детали узлов и блоков изделий не должны иметь механических резонансов на частотах от 10 до 25 Гц с амплитудой перемещения от 0,5 до 0,8 мм.
- 4.3. Изделия должны выдерживать испытания на вибропрочность на частотах, лежащих в диапазоне от 10 до 40 Γ ц, при ускорении 4,9 м/c^2 (0,5 g) и от 41 до 100 Γ ц при ускорении 9,8 м/c^2 (1,0 g).
- 4.4. Оконечная аппаратура и обслуживаемый регенератор должны соответствовать требованиям ТУ при температурах 308 К (35 °C), 313 К (40 °C) и после воздействия повышенной температуры 323 К (50 °C), а также при температурах 283 К (10 °C), 274 К (1 °C) и после воздействия пониженной температуры 223 К (минус 50 °C).
- 4.5. Необслуживаемый регенератор должен соответствовать требованиям ТУ при температурах 313 К (40 °C), 318 К (45 °C) и после воздействия повышенной температуры 323 К (50 °C), а также при температурах 228 К (минус 45 °C), 223 К (минус 50 °C) и после воздействия температуры 213 К (минус 60 °C).
- 4.6. Оконечная аппаратура и обслуживаемый регенератор должны соответствовать требованиям ТУ при воздействии относительной влажности 80 % при температуре 298 К (25 °C) и после воздействия на изделия в упаковке влажности 100 % при температуре 298 К (25 °C).
- 4.7. Необслуживаемый регенератор должен соответствовать требованиям ТУ при воздействии относительной влажности 100 % при температуре 298 К (25 °C).
- 4.8. Необслуживаемый регенератор должен быть брызгозащищенным при воздействии дождя интенсивностью 3 мм/мин.
- 4.9. Необслуживаемый регенератор должен быть пыленепроницаемым при воздействии пылевой смеси размером частиц не более 50 мкм.

5. ТРЕБОВАНИЯ ЭРГОНОМИКИ И ТЕХНИЧЕСКОЙ ЭСТЕТИКИ

Требования по эргономике и технической эстетике должны соответствовать ГОСТ 22269, ГОСТ 23090.

6. ТРЕБОВАНИЯ ТЕХНИЧЕСКОГО ОБСЛУЖИВАНИЯ И РЕМОНТА

- 6.1. В изделиях оконечной аппаратуры и аппаратуры обслуживания регенерационных пунктов должны быть предусмотрены устройства тестового контроля, индикации и измерительные гнезда, индикаторные лампы неисправности и сигнализации действия.
 - Изделия должны быть ремонтопригодными.
- Изделия должны быть укомплектованы одиночными комплектами ЗИП (ЗИП-О), разработанными на уровне законченных функциональных узлов.
- Оконечная аппаратура должна быть оборудована системами автоматизированного управления, самодиагностики, контроля и служебной связи.

- Должно быть предусмотрено не менее двух подсистем телемеханического контроля (ТМ1, ТМ2).
- 6.6. Подсистема ТМ1 должна предусматривать непрерывный контроль исправности сигнализации, диагностики сквозного тракта, организованный по вспомогательным каналам АЦ0—11 (ИКМ30—4).
- 6.7. Подсистема ТМ2 должна предусматривать контроль исправности, сигнализации, диагностики сквозного тракта, оконечной аппаратуры, обслуживаемых и необслуживаемых регенерационных пунктов.

Объекты TM2 — оконечные устройства и все регенерационные пункты от 1 до 8.

- 6.8. Подсистема ТМ2 и система служебной связи должны быть организованы по той же паре оптических волокон, что и информационный сигнал.
- 6.9. Оконечная аппаратура должна иметь возможность работы в режиме ведущего или ведомого оконечного поста. Оба поста должны получать и отображать информацию состояния датчиков объектов телеконтроля.
- Контроль каждого объекта системы должен проводиться по параметрам, соответствующим рекомендации G914 MKКТТ.
- 6.11. Система ТМ2 должна обеспечивать возможность получения информации на оконечную аппаратуру о датчиках, перешедших на аварийное положение или находящихся в нем, с любого объекта контроля.
- 6.12. Технический контроль по ТМ2 должен быть непрерывным, круглосуточным, цикличным, полный цикл оговаривается в ТЗ и ТУ на конкретное изделие. Длительность одного полного цикла не должна превышать 1 ч.
- 6.13. Система ТМ2 должна быть микропроцессорной с выводом сигналов предупреждения и аварии на устройства внешнего подключения, с отображением на световом табло, расположенном в оконечной аппаратуре.
- 6.14. Световая индикация должна отображать состояние объекта и параметра на объекте по программе или селективно — по выбору оператора.
- 6.15. Должно быть предусмотрено автоматическое выключение резервной аккумуляторной батареи по истечении 7,5 ч электропитания аппаратуры необслуживаемого регенерационного пункта.
- 6.16. Должна быть предусмотрена возможность организации служебной связи для ремонта и профилактических работ без занятия рабочих каналов.
- 6.17. При осуществлении служебной связи система ТМ1 должна функционировать непрерывно, система ТМ2 должна быть отключена на время проведения служебной связи.
- 6.18. Служебная связь должна осуществляться между двумя необслуживаемыми регенерационными пунктами и оконечной аппаратурой по выбору с необслуживаемого пункта.
- 6.19. Оконечная аппаратура должна быть оборудована двумя комплектами автоматики для обеспечения возможности связи с диспетчерского коммутатора или телефонного аппарата.

7. ТРЕБОВАНИЯ ТРАНСПОРТАБЕЛЬНОСТИ

7.1. Транспортирование изделий должно производиться всеми видами транспорта: в крытых железнодорожных вагонах, крытых автомашинах, в кабинах самолетов и вертолетов (при атмосферном давлении от 84 10³ до 107 · 10³ Па (от 630 до 800 мм рт. ст) в упакованном виде при соблюдении указанного на упаковке положения ящика в климатических условиях по группе 3 ОЖ4 ГОСТ 15150, а также в трюмах судов в климатических условиях по группе ЖЗ ГОСТ 15150.

Транспортирование должно производиться в соответствии с правилами перевозок грузов, действующими на каждом виде транспорта.

7.2. При перевозке автомобильным, воздушным или водным транспортом ящики с упакованной аппаратурой должны быть укреплены в транспортном средстве так, чтобы при транспортировании была исключена возможность смещения ящиков и их соударений.

При перевозке железнодорожным транспортом ящики крепят в вагонах согласно условиям погрузки и крепления грузов, принятым Министерством путей сообщения СССР.

7.3. В случае транспортирования в адрес одного грузополучателя двух и более грузовых мест они должны объединяться в пакеты в соответствии с правилами перевозки грузов, утвержденными соответствующими ведомствами, и с учетом требований ГОСТ 24597 при помощи деревянных брусков, обеспечивающих возможность применения погрузочно-разгрузочных механизмов, или с использованием плоских упрощенных поддонов по ГОСТ 9078 и средств крепления по ГОСТ 21650.

Транспортная тара должна соответствовать ГОСТ 5959 (тип ящика VI).

При отправке изделий в районы Крайнего Севера и приравненные к ним местности должны использоваться плотные дощатые ящики (типа III—1 или III—2 по ГОСТ 2991).

- 7.5. Предельные габаритные размеры тары: длина 1120 мм; ширина 720 мм; высота 424 мм.
- В транспортную тару упаковывают одно изделие, комплект запасных частей (ЗИП-0) и технической документации, поставляемой с изделием.
- Способ крепления изделия, комплекта ЗИП и документации должен исключать возможность их перемещения в таре.
- 7.7. При транспортировании морем должна использоваться упаковка, предназначенная для изделий в экспортно-тропическом исполнении (вариант противокоррозионной защиты ВЗ-10, вариант внутренней упаковки ВУ-5 по ГОСТ 9.014).
- 7.8. На каждом изделии должна быть установлена фирменная планка с обозначением товарного знака предприятия-изготовителя, наименования изделия, порядкового номера, месяца и года изготовления по ГОСТ 2.314.
- Элементы собственного изготовления (трансформаторы, дроссели и т. п.), не имеющие фирменных планок, должны иметь маркировку в сборочных чертежах по ГОСТ 2.314.

8. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- Конструкция, изготовление, монтаж, наладка и эксплуатация изделий должны отвечать требованиям ГОСТ 12.2.007.0.
- 8.2. Изделие должно иметь приспособление (болт) для подключения к заземляющему контуру. На корпусе изделия возле приспособления для заземления должен быть нанесен знак заземления по ГОСТ 21130.
- 8.3. Электрическое сопротивление между приспособлением для заземления (болтом) и каждой доступной прикосновению металлической нетоковедущей частью изделия должно быть не более 0,1 Ом.
 - Приспособление для заземления не должно иметь лакокрасочного покрытия.
 - 8.5. Изделие должно иметь световую индикацию включения напряжения электропитания.
 - 8.6. Предупреждающие надписи и знаки должны быть четкими и нестираемыми.
 - Выключатель электропитания должен разрывать цепи каждого полюса сети.
- 8.8. Электрическое сопротивление устройств относительно корпуса должно быть, МОм, не менее:

в нормальных климатических условиях - 20;

при температуре 313 K (40 °C) - 5;

при относительной влажности 98 % и температуре 298 K (25 °C) - 1.

8.9. Изоляция монтажа цепей питания и цепей, указанных в ТУ на изделие, по отношению к корпусу и между собой должна выдерживать в нормальных климатических условиях без пробоя и поверхностного перекрытия испытательное напряжение согласно табл. 1 ГОСТ 12997.

Примечание. Испытание цепей с рабочим напряжением до 36 В не проводят. Цепи изделий, испытательное напряжение которых превышает 2000 В, испытывают полным испытательным напряжением не более двух раз. Последующие испытания проводят напряжением, составляющим 80 % полного испытательного напряжения.

9. ТРЕБОВАНИЯ СТАНДАРТИЗАЦИИ И УНИФИКАЦИИ

- Детали и узлы, входящие в ВОСП, должны быть конструктивно и электрически взаимозаменяемы.
- 9.2. При изготовлении ВОСП должны применяться типовые технологические процессы и переналаживаемая стандартная оснастка.
 - 9.3. Коэффициент применяемости (K_{np}) должен быть не менее 0,8.
 - Коэффициент повторяемости (K_n) должен быть не менее 8.

10. ТРЕБОВАНИЯ ОХРАНЫ ПРИРОДЫ

Шумовые характеристики изделий устанавливают в технических условиях на изделия конкретного типа в соответствии с требованиями ГОСТ 12.1.023.

Уровни шума на рабочих местах должны соответствовать требованиям ГОСТ 12.1.003.

11. ТРЕБОВАНИЯ ТЕХНОЛОГИЧНОСТИ

- Комплексный показатель технологичности разрабатываемых изделий должен быть не менее 0.75.
- 11.2. Конструктивные и технологические решения разрабатываемых изделий должны соответствовать требованиям ГОСТ 14.201.
- 11.3. Должна быть предусмотрена автоматизация монтажно-сборочных операций, в том числе при изготовлении плат поверхностного монтажа.
- 11.4. Должна быть обеспечена контролепригодность изделий и их составных частей в соответствии с ГОСТ 26656.
 - 11.5. Коэффициент использования металла должен быть не ниже 0,75.
- Технологическую подготовку производства следует осуществлять в соответствии с требованиями Р 50—297, ГОСТ 14.201.
- 11.7. Для регулировки и контроля аппаратуры и ее составных частей применяют комплект нестандартизованной измерительной аппаратуры в соответствии с ГОСТ 8.326*, ГОСТ 8.010**, РМГ 51, ГОСТ 8.437***, а также стандартные измерительные приборы.

12. КОНСТРУКТИВНЫЕ ТРЕБОВАНИЯ

 Оконечная и промежуточная аппаратура конструктивно должна быть выполнена в стоечном исполнении в соответствии с требованиями ОСТ 4.210.002, ОСТ 4.410.007, ОСТ 4.410.024.

Необслуживаемый регенератор должен быть размещен в контейнере, дающем возможность установки на опоре воздушной линии или на столбе вблизи опоры. Внешние подключения должны быть герметичны. Должны быть предусмотрены вскрытие крышки контейнера и доступ к разъемным соединениям только с помощью ключа.

12.2. Функциональные узлы должны быть выполнены в виде керамических плат поверхностного монтажа. Печатные платы при необходимости должны использоваться как коммутационные.

Контактные выводы должны иметь антикоррозионное покрытие, обеспечивающее надежный электрический контакт.

 Конструкция изделий и стыковка их электрических связей должны быть согласованы с заказчиком в процессе разработки конструкторской документации для изготовления опытных образцов.

13. ТРЕБОВАНИЯ РАДИОЭЛЕКТРОННОЙ ЗАЩИТЫ

Уровень напряжения радиопомех, создаваемых изделием, не должен превышать допустимых индустриальных радиопомех по «Общесоюзным нормам допустимых индустриальных радиопомех» (Нормы 4—87, 9—72) и должен соответствовать требованиям ГОСТ 16842*4.

На территории Российской Федерации действуют ПР 50.2.009—94.

^{**} На территории Российской Федерации действует ГОСТ Р 8.563-96.

^{***} На территории Российской Федерации действует ГОСТ Р 8.596—2002.

^{*4} На территории Российской Федерации действует ГОСТ Р 51320—99.

ИНФОРМАЦИОННЫЕ ДАННЫЕ

РАЗРАБОТЧИКИ

- О.П. Басюк (руководитель темы), Д.С. Шевченко, В.Г. Федоров
- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по управлению качеством продукции и стандартам от 29.01.90 № 105
- П. 8.8 ГОСТ 28439—90 соответствует п. 4.2 СТ СЭВ 1635—79, п. 8.9 ГОСТ 28439—90 соответствует п. 4.4 СТ СЭВ 1635—79, п. 7.3 ГОСТ 28439—90 соответствует п. 2 СТ СЭВ 317—76 Стандарт соответствует требованиям рекомендаций G601, G602, G703, G821, G921, G956 МККТТ
- 4. ВВЕДЕН ВПЕРВЫЕ

5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссыака	Номер пункта, подпункта	Обозначение НТД, на который дана ссылка	Номер пункта, подпункта
ΓQCT 2.314-68	7.8, 7.9	ΓΟCT 1814581	1,14
FOCT 8.010-90	11.7	FOCT 21130-75	8.2
ГОСТ 8.326-89	11.7	ГОСТ 21650-76	7.3
ΓΟCT 8.43781	11.7	FOCT 22269-76	5
ΓΟCT 9.014-78	7.7	ГОСТ 23090-78	5, 7,14
ΓΟCT 12.1.003-83	10	ΓΟCT 2459781	7.3
ΓΟCT 12.1.023-80	10	FOCT 26537-85	1.18
ΓΟCT 12.2.007.0-75	8.1	ГОСТ 26656-85	11.4
ΓΟCT 14.201-83	11.2, 11.6	FOCT 26886-86	1.27
ΓΟCT 2991-85	7.4	G914 MKKTT	6.10
ΓΟCT 5237—83	1.20, 1.23	Нормы 4-87, 9-72	13
ΓΟCT 5959-80	7.4	OCT 4.210.002-84	12.1
ΓΟCT 9078-84	7.3	OCT 4.410.007-85	12.1
ГОСТ 12997-84	8.9	OCT 4.410.024-85	12.1
ГОСТ 15150-69	1.16, 1.17, 7.1	P 50-297-90	11.6
ГОСТ 16842—82	13	PMΓ 51-2002	11.7

6. ПЕРЕИЗДАНИЕ. Ноябрь 2005 г.

Редактор М.И. Максимова
Технический редактор Л.А. Гусева
Корректор В.И. Варенцова
Компьютерная верстка И.А. Налейкиной

Сдано в набор 06.10.2005. Подвисано в печать 30.11.2005. Формат 60 × 84¹/s. Бумага офестная. Гарнитура Таймс. Печать офестная. Усл. печ.л. 0,93. Уч.-изд.л. 0,75. Тираж 65 экз. С 2144. Зак. 859.