ФЕДЕРАЛЬНОЕ АГЕНТСТВО

ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ ΓΟCT P 54777— 2011

АВТОМАТИЧЕСКИЕ СИСТЕМЫ ВЗРЫВОПОДАВЛЕНИЯ — ЛОКАЛИЗАЦИИ ВЗРЫВОВ МЕТАНОПЫЛЕВОЗДУШНЫХ СМЕСЕЙ В УГОЛЬНЫХ ШАХТАХ

Общие технические требования. Методы испытаний

Издание официальное

Предисловие

Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. № 184-ФЗ «О техническом регулировании», а правила применения национальных стандартов Российской Федерации — ГОСТ Р 1.0—2004 «Стандартизация в Российской Федерации. Основные положения»

- РАЗРАБОТАН Федеральным государственным унитарным предприятием «Национальный научный центр горного производства — Институт горного дела им. А.А. Скочинского (ФГУП «ННЦ ГП — ИГД им. А.А. Скочинского»)
 - 2 ВНЕСЕН Техническим комитетом по стандартизации ТК 269 «Горное дело»
- 3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 13 декабря 2011 г. № 989-ст
 - 4 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячно издаваемых информационных указателях «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

Содержание

1	Область применения.	1
2	Нормативные ссылки	1
3	Термины и определения	2
4	Основные технические требования	3
	4.1 Основные параметры	3
	4.2 Функциональный состав системы	3
	4.3 Требования к конструкции	4
	4.4 Требования к материалу	4
	4.5 Требования стойкости к внешним воздействиям	4
5	Требования безопасности	5
6	Требования к покупным изделиям	5
7	Комплектность	5
8	Маркировка	5
9	Упаковка	6
10	Транспортирование и хранение	6
11	Правила приемки	6
12	Указания по эксплуатации.	7
13	Гарантийные обязательства	7
14	Методы испытаний	7
	14.1 Общие положения	7
	14.2 Приемо-сдаточные испытания	7
	14.3 Приемочные (предварительные) испытания	8
	14.4 Типовые испытания	8
	14.5 Сертификационные испытания	8
	14.6 Контролируемые параметры при проведении испытаний систем	8
	14.7 Методы контроля	g
15	Средства измерений и контроля параметров	
	Обработка и оформление результатов испытаний	
	блиография	

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

АВТОМАТИЧЕСКИЕ СИСТЕМЫ ВЗРЫВОПОДАВЛЕНИЯ — ЛОКАЛИЗАЦИИ ВЗРЫВОВ МЕТАНОПЫЛЕВОЗДУШНЫХ СМЕСЕЙ В УГОЛЬНЫХ ШАХТАХ

Общие технические требования. Методы испытаний

Automatic systems for localization and suppression of methane-dust-air mixture explosions in coal mines. General technical requirements, Test methods

Дата введения — 2013—01—01

1 Область применения

Настоящий стандарт распространяется на автоматические системы взрывоподавления — локализации взрывов метанопылевоздушных смесей в угольных шахтах (далее — системы), предназначенные для взрывоподавления и локализации взрывов метана и/или угольной пыли в горных выработках.

Настоящий стандарт устанавливает единые технические требования и методы испытаний разрабатываемых систем.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ Р 51330.0—99 (МЭК 60079.0—98) Электрооборудование взрывозащищенное. Часть 0. Общие требования

ГОСТ Р 51330.10—99 (МЭК 60079.11—99) Электрооборудование взрывозащищенное. Часть 11. Искробезопасная электрическая цепь і

ГОСТ РМЭК 60079-0—2011 (МЭК 60079-0—2011) Взрывоопасные среды. Часть 0. Оборудование. Общие требования

ГОСТ 2.601—2006 Единая система конструкторской документации. Эксплуатационные документы

ГОСТ 9.014—78 Единая система защиты от коррозии и старения. Временная противокоррозионная защита изделий. Общие требования

ГОСТ 9.032—74 Единая система защиты от коррозии и старения. Покрытия лакокрасочные. Группы, технические требования и обозначения

ГОСТ 9.104—79 Единая система защиты от коррозии и старения. Покрытия лакокрасочные. Группы условий эксплуатации

ГОСТ 9.401—91 Единая система защиты от коррозии и старения. Покрытия лакокрасочные. Общие требования и методы ускоренных испытаний на стойкость к воздействию климатических факторов

ГОСТ 9.402—2004 Единая система защиты от коррозии и старения. Покрытия лакокрасочные. Подготовка металлических поверхностей к окрашиванию

ГОСТ 12.2.003—91 Система стандартов безопасности труда. Оборудование производственное. Общие требования безопасности

ГОСТ 12.2.007.0—75 Система стандартов безопасности труда. Изделия электротехнические. Общие требования безопасности

ГОСТ 12.2.106—85 Система стандартов безопасности труда. Машины и механизмы, применяемые при разработке рудных, нерудных и россыпных месторождений полезных ископаемых. Общие гигиенические требования и методы оценки

FOCT P 54777-2011

- ГОСТ 15.201—2000 Система разработки постановки продукции на производство. Продукция производственно-технического назначения. Порядок разработки и постановки продукции на производство
 - ГОСТ 10354-82 Пленка полиэтиленовая. Технические условия
 - ГОСТ 12971—67 Таблички прямоугольные для машин и приборов. Размеры
 - ГОСТ 14192-96 Маркировка грузов
 - ГОСТ 14254—96 Степени защиты, обеспечиваемые оболочками (код IP)
- ГОСТ 15150—69 Машины, приборы и другие технические изделия. Исполнения для различных климатических районов. Категории, условия эксплуатации, хранения и транспортирования в части воздействия климатических факторов внешней среды
- ГОСТ 15846—2002 Продукция, отправляемая в районы Крайнего Севера и приравненные к ним местности. Упаковка, маркировка, транспортирование и хранение
- ГОСТ 16504—81 Система государственных испытаний продукции. Испытания и контроль качества продукции. Основные термины и определения
 - ГОСТ 23170—78 Упаковка для изделий машиностроения. Общие требования

Примечание сыпочных стандартов в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодно издаваемому информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по соответствующим ежемесячно издаваемым информационным указателям, опубликованным в текущем году. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями:

- 3.1 автоматическая система взрывоподавления локализации взрывов метанопылевоздушных смесей в угольных шахтах: Взрыволокализующий заслон, выполняющий формирование огнетушащей среды в горной выработке до прихода фронта пламени за счет внутренней, запасенной в самом взрыволокализующем заслоне энергии (энергии сжатого воздуха или газов, образующихся при сгорании газогенерирующих веществ) по команде от датчика, реагирующего на ударно-воздушную волну или излучение фронта пламени внезапно возникшего взрыва пылегазовоздушной смеси.
- 3.2 взрыв: Процесс выделения энергии за короткий промежуток времени, связанный с мгновенным физико химическим изменением состояния вещества, приводящим к возникновению скачка давления или ударной волны, сопровождающийся образованием сильно нагретого газа с очень высоким давлением, способным производить работу.
- 3.3 взрыв пылегазовоздушной (метанопылевоздушной) смеси: Взрыв метана с участием угольной пыли, когда первоначальный инициирующий импульс от взрыва метана способствует возмущению отложившейся угольной пыли, созданию ей взрывчатой взвеси, что приводит к лавинообразно последующим более мощным взрывам пылевоздушной смеси.
- 3.4 взрывоподавление: Прекращение взрыва пылегазовоздушных смесей в начальный момент его возникновения: взрывоподавление обеспечивается автоматическими системами.
- 3.5 взрыволокализующий заслон: Техническое средство локализации взрывов, предназначенное для локализации (предотвращения распространения) взрывов пылегазовоздушных смесей в горных выработках угольных шахт.
- 3.6 взрывчатая взвесь угольной пыли: Распределение угольной пыли в воздухе в концентрации, способной взрываться.
 - воспламенение: Начало пламенного горения под действием источника зажигания.
- 3.8 время действия (продолжительность подачи огнетушащего вещества): Время от момента начала выхода огнетушащего вещества из модуля (бункера, сосуда и т. п.) системы до момента выброса в горную выработку не менее 85 % его основного объема (массы) с полным перекрытием ее сечения.
- 3.9 горение: Экзотермическая реакция окисления вещества, сопровождающаяся, по крайней мере, одним из трех факторов: пламенем, свечением, выделением дыма.
- 3.10 инерционность автоматической системы взрывоподавления локализации взрывов: Время с момента получения исполняющего импульса на срабатывающий (пусковой) элемент системы до момента начала выброса огнетушащего вещества в атмосферу горной выработки.

- 3.11 искробезопасная электрическая цепь: Электрическая цепь, выполненная так, что электрический разряд или ее нагрев не может воспламенить взрывоопасную среду при предписанных условиях испытания.
- 3.12 искрозащитные элементы: Специальные элементы, обеспечивающие искробезопасность электрической цепи.
- 3.13 локализация (от латинского localis местный): Ограничение распространения какого-либо явления, процесса какими-либо пределами; не допускать распространения чего-либо дальше определенного места.
- 3.14 локализация взрывов пылегазовоздушных смесей в угольной шахте: Предотвращение возможности дальнейшего распространения по горным выработкам фронта пламени, образованного в результате взрыва пылегазовоздушной смеси.
- 3.15 метанопылевоздушная смесь: Взрывоопасная концентрация горючего газа метана в воздухе и распределение угольной пыли в воздухе в концентрации, способной взрываться.
- 3.16 облако: Дисперсия в атмосфере какого-либо вещества в любом из возможных фазовых состояний.

П р и м е ч а н и е — Выделяют твердые, жидкие и/или газообразные фазовые состояния дисперсии.

- 3.17 огнетушащее вещество: Вещество, обладающее физико-химическими свойствами, позволяющими создавать условия для предотвращения горения.
 - 3.18 пламя: Зона горения в газовой фазе с видимым излучением.
 - 3.19 пламенное горение: Горение веществ и материалов, сопровождающееся пламенем.
- 3.20 пылегазовоздушная смесь: Распределение угольной пыли в воздухе в концентрации, способной взрываться, и взрывоопасная концентрация горючего газа (метана) в воздухе.
- 3.21 скорость распространения фронта пламени: Расстояние, пройденное фронтом пламени в единицу времени.
- 3.22 ударно-воздушная волна: Однократный скачок уплотнения среды, распространяющийся по горной выработке со сверхзвуковой скоростью.
- 3.23 фронт ударно-воздушной волны: Движущаяся по горной выработке зона мгновенного изменения (увеличения) давления, плотности и температуры среды.
- 3.24 фронт пламени: Движущаяся по горной выработке зона химической реакции и нагретых газов.

4 Основные технические требования

4.1 Основные параметры

4.1.1 Основные параметры систем должны соответствовать требованиям, приведенным в таблице 1.

Таблица 1 — Основные параметры систем

Наименование параметра	Значение параметра
Чувствительность системы к взрыву метана м/или угольной пыли. Системы должны срабатывать при давлении на фронте ударно-воздушной волны, МПа	Не менее 0,02
Инерционность срабатывания системы, мс	Не более 50,0
Параметры облака из огнетушащего вещества: - протяженность, м - концентрация огнетушащего вещества, кт/м ³	Не менее 15 0,01—0,10

П р и м е ч а н и е — Другие параметры определяют на стадии разработки конкретного типа системы и указывают в технических условиях (ТУ) на систему.

4.2 Функциональный состав системы

В состав системы должно входить следующее функциональное оборудование:

4.2.1 Исполнительное (взрывоподавляющее) устройство, назначение которого состоит в принудительном выбросе дисперсного огнетушащего вещества в пространство горной на пути распространения фронта пламени от взрыва пылегазовоздушной смеси.

FOCT P 54777-2011

- 4.2.2 Датчик, реагирующий на излучение или ударно-воздушную волну от взрыва пылегазовоздушной смеси и выдающий управляющий сигнал на срабатывание исполнительного устройства.
- 4.2.3 Огнетушащее вещество, предназначенное для создания в горной выработке среды в виде аэрозольного облака, подавляющей взрыв или горение метана и угольной пыли (флегматизирующей или ингибирующей взрывоопасную пылегазовоздушную смесь).

4.3 Требования к конструкции

- 4.3.1 Конструкция систем должна соответствовать выполнению назначения, указанного в разделе 1.
 - 4.3.2 Конструкцией систем должно быть предусмотрено обеспечение:
 - надежного крепления системы в горной выработке;
- постоянной готовности систем к срабатыванию при внезапно возникшем взрыве пылегазовоздушной смеси;
- контроля обслуживающим персоналом параметров нахождения систем в рабочем состоянии (готовность систем к срабатыванию);
- возможности включения и выключения рабочего состояния систем непосредственно на месте установки в горной выработке шахты;
- создания до прихода фронта пламени от взрыва пылегазовоздушной смеси в горной выработке взрыволокализующей среды из облака диспергированного огнетушащего порошка во взвешенном состоянии с определенным временем жизни по команде датчика, реагирующего на излучение или ударно-воздушную волну;
- применения защит, блокировок и других мер, обеспечивающих соответствие действующим нормам безопасности;
- возможности проведения коррекции расположения систем в пространстве горной выработки при влиянии горного давления;
 - удобства технического обслуживания и текущих ремонтов;
- разборки на транспортабельные узлы для спуска в шахту и доставки их к месту установки. Массу транспортабельных узлов, их габаритные размеры следует указывать в нормативном документе (НД) и в руководстве по эксплуатации систем.
- 4.3.3 Системы должны вписываться в сечение горной выработки шахты с обеспечением установленных правилами безопасности [1] зазоров между креплением (бортами и кровлей), горно-шахтным оборудованием, свободным проходом людей и встречными поездами, в том числе монорельсовыми.

4.4 Требования к материалу

- 4.4.1 Все материалы и комплектующие изделия, применяемые при изготовлении систем, должны соответствовать стандартам и НД.
- 4.4.2 Детали систем должны быть изготовлены из негорючих и жароупорных материалов. Допускается изготовление из трудносгораемых или трудновоспламеняющихся материалов следующих изделий: уплотнительных манжет и колец; прокладок; амортизаторов; изоляции электрических кабелей. Конструкция узлов систем во взрывобезопасном (искробезопасном) исполнении и используемые в них материалы должны обеспечивать также фрикционную и электростатическую искробезопасность.
- 4.4.3 Системы не должны содержать элементы, которые могут быть источником выделения ядовитых или токсичных химических соединений.

4.5 Требования стойкости к внешним воздействиям

- 4.5.1 Системы следует изготовлять в климатических исполнениях:
- У для районов с умеренным климатом, категория размещения 5 по ГОСТ 15150;
- Т для районов с сухим и влажным тропическим климатом, категория размещения 5 по ГОСТ 15150.

Температура окружающей среды для исполнений:

- У от минус 40 °C до плюс 35 °C;
- Т от 1°С до 35°С.
- 4.5.2 Защита от коррозии и старения систем должна соответствовать ГОСТ 9.104.
- 4.5.3 Лакокрасочные покрытия систем в климатическом исполнении У должны соответствовать классу покрытия VI по ГОСТ 9.032, группе условий эксплуатации систем с покрытием В5 ГОСТ 9.104, а в климатическом исполнении Т требованиям ГОСТ 9.401.

Подготовка металлических поверхностей перед покрытием — по ГОСТ 9.402. Лакокрасочные покрытия должны соответствовать требованиям ГОСТ 9.032.

- 4.5.4 По степени защищенности от внешних воздействий окружающей среды системы должны быть изготовлены в исполнении IP54 по ГОСТ 14254.
 - 4.5.5 Системы в упаковке при транспортировании должны выдерживать без повреждений:
 - вибрацию частотой 80—120 уд/мин, с ускорением 30 м/с²;
 - воздействие температур от 223 до 323 К (от минус 50 °C до плюс 50 °C);
 - воздействие относительной влажности 100 % при температуре 298 К (25 °C).
- 4.5.6 Системы должны соответствовать требованиям настоящего стандарта в условиях воздействия повышенной влажности окружающей среды не более 98 % при температуре не выше 308 К (35 °C).

5 Требования безопасности

- 5.1 В зависимости от условий применения системы должны соответствовать требованиям ГОСТ 12.2.003, ГОСТ 12.2.106, [1], [2], [3].
- 5.2 Системы, имеющие в конструкции электрооборудование, следует изготовлять в рудничном взрывобезопасном исполнении (РВ) по ГОСТ Р 52350.0.
- 5.3 В системах во взрывобезопасном исполнении искрозащитные элементы подвергают 100 %-ному входному контролю. Эти системы должны иметь взрывобезопасный уровень взрывозащиты, обеспечиваемый видом взрывозащиты «Искробезопасная электрическая цепь» по ГОСТ 12.2.007.0, ГОСТ Р 51330.10, маркировку по взрывозащите РО ExialX по ГОСТ Р 51330.0.
 - 5.4 Особо взрывобезопасное исполнение системы должно обеспечиваться:
- применением источника питания неразборной конструкции совместно с токоограничительным элементом, обеспечивающим искробезопасность источника;
- ограничением суммарной электрической емкости и индуктивности в электронной схеме системы до искробезопасной величины.
 - 5.5 Системы должны иметь защиту от самопроизвольного ложного срабатывания.
- 5.6 Системы, в конструкции которых предусмотрено использование сосудов (баллонов), работающих под давлением сжатого воздуха (газа), должны соответствовать 1.1.3 [4].
- 5.7 При наличии в системах газогенератора, пирозаряда или других взрывчатых материалов конструкцией систем должна быть предусмотрена возможность исключения несанкционированного доступа к ним посторонних лиц. При этом системы должны соответствовать [5], [6].
 - Контрольные приборы и управляющие узлы системы должны быть опломбированы.
- 5.9 Влияющие на безопасность показания контрольных приборов должны соответствовать допустимым значениям, указанным в руководстве по эксплуатации системы.

6 Требования к покупным изделиям

6.1 Покупное электротехническое оборудование, приборы для измерения давления и контроля прочих эксплуатационных параметров, аппаратура средств защиты, применяемые для систем, должны соответствовать требованиям нормативных документов по безопасности и иметь разрешение (сертификат соответствия) на выпуск и применение в условиях угольных шахт, опасных по газу и/или пыли.

7 Комплектность

- 7.1 В комплект поставки систем должны входить:
- комплект запасных частей, инструмента и приспособлений согласно ведомости ЗИП, обеспечивающих работу системы в гарантийный период;
 - паспорт изделия и руководство по эксплуатации с сервисной книгой в соответствии с ГОСТ 2.601.

8 Маркировка

- 8.1 Непосредственно на системе в доступном для обозрения месте должна быть установлена табличка по ГОСТ 12971, содержащая следующие данные:
- товарный знак и полное или сокращенное наименование предприятия-изготовителя, адрес предприятия-изготовителя;
- шифр (обозначение типа) автоматической системы взрывоподавления локализации взрывов метанопылевоздушных смесей;

FOCT P 54777-2011

- номинальные значения основных параметров;
- номер изделия в нумерации предприятия-изготовителя;
- год изготовления.
- 8.2 На боковых поверхностях изделия должны быть расположены светоотражающие полосы.
- 8.3 Транспортную маркировку следует проводить в соответствии с ГОСТ 14192 на каждое грузовое место. Место и способ нанесения транспортной маркировки должны быть установлены в НД на конкретный вид продукции.

9 Упаковка

- 9.1 Упаковку систем следует проводить в соответствии с требованиями настоящего стандарта и ГОСТ 23170.
- 9.2 Перед упаковкой в транспортную тару изделия консервируют методом нанесения консервационной смазки в соответствии с требованиями ГОСТ 9.014 на срок хранения до двух лет (условная группа хранения 5 (ОЖ4) ГОСТ 15150).
- 9.3 Способ упаковки основных сборочных единиц систем определяет предприятие изготовитель продукции, оно должно обеспечивать сохранность груза при транспортировании и хранении.
- 9.4 Съемные сборочные единицы и детали, запасные части, инструменты и принадлежности должны быть надежно упакованы.
- 9.5 Эксплуатационная и товаросопроводительная документации должны быть вложены в пакет из полиэтиленовой пленки по ГОСТ 10354, края пакета должны быть заварены оплавлением или закрыты (зафиксированы) иным способом.
 - Пакет с документацией должен быть уложен в упаковку одной из сборочных единиц.
- Качество упаковки и комплектность продукции проверяет представитель отдела технического контроля (ОТК) изготовителя.
- 9.8 Упаковку систем при транспортировании груза в районы Крайнего Севера и приравненные к ним районы следует проводить по ГОСТ 15846.

10 Транспортирование и хранение

- 10.1 Транспортирование систем допускается без ограничения дальности перевозок следующими видами транспорта;
 - автомобильным в закрытых машинах;
 - железнодорожным в закрытых вагонах;
 - воздушным транспортом в герметизированных отсеках.
- 10.2 Транспортирование систем следует осуществлять в соответствии с правилами, действующими на данном виде транспорта.
 - 10.3 Условия транспортирования не ниже группы 5 (ОЖ4) согласно ГОСТ 15150.
- 10.4 Хранение на складе изготовителя (потребителя) упакованных систем должно производиться в отапливаемом и вентилируемом помещении при температуре воздуха от 274 до 313 К (от 1 °C до 40 °C) и относительной влажности до 80 % при температуре 298 К (25 °C). В окружающем воздухе должны отсутствовать кислотные, щелочные и другие агрессивные примеси.
 - 10.5 Хранение электрооборудования и электронных приборов согласно требованиям НД.

11 Правила приемки

- 11.1 При серийном производстве систем с каждой системой следует проводить испытания в соответствии с настоящим стандартом и ТУ на конкретную продукцию. Определение видов испытаний по ГОСТ 16504.
- 11.2 Системы, имеющие емкость(и) со сжатым воздухом высокого давления, следует подвергать испытаниям на прочность и герметичность согласно методике предприятия-изготовителя.
- 11.3 Если в состав систем входит электрооборудование, то следует выполнять проверки целостности цепей и функционирования контрольных систем.
- 11.4 Все системы должны проходить контроль функционирования механизма срабатывания, привода, устройства-распылителя.

12 Указания по эксплуатации

12.1 Эксплуатацию систем следует осуществлять в соответствии с требованиями настоящего стандарта и инструкции (руководства) по эксплуатации.

13 Гарантийные обязательства

- 13.1 Изготовитель должен гарантировать соответствие качества систем требованиям настоящего стандарта при соблюдении потребителем условий и правил хранения, транспортирования и эксплуатации.
- 13.2 Гарантийный срок эксплуатации систем с комплектом запасных частей должен быть не менее 12 мес со дня отгрузки потребителю.

14 Методы испытаний

14.1 Общие положения

- 14.1.1 Все испытания систем проводят (если условия испытания не оговорены особо) при:
- температуре окружающей среды от (298 ± 10) К [(25 °C ± 10 °C)];
- относительной влажности от 45 % до 80 %;
- атмосферном давлении (84—106,7) кПа [(630—800) мм. рт. ст)].
- 14.1.2 Система, представленная на испытания, должна быть укомплектована запасными частями, инструментом и принадлежностями в соответствии с НД.
- 14.1.3 Испытания систем следует проводить на стендах в специально отведенных для испытаний помещениях, обеспечивающих безопасность персонала.
- 14.1.4 При измерениях следует соблюдать требования безопасности, изложенные в Руководстве по применению автоматических систем, методиках по проведению испытаний и инструкциях по работе на стенде.
- 14.1.5 При испытании систем, содержащих газогенератор, пирозаряд или другие взрывчатые материалы, необходимо соблюдать требования НД [5] и Постановления правительства Российской Федерации [6].
 - 14.1.6 Системы подлежат следующим категориям испытаний:
 - приемо-сдаточным каждая система;
 - приемочным (предварительным) опытные образцы;
 - эксплуатационным установочные серии новых (вновь созданных) образцов;
- типовым одна система при внесении изменений в конструкцию (модернизации), технологию изготовления и применяемые материалы, влияющие на качество и безопасность системы;
 - сертификационным образцы в соответствии с установленным порядком сертификации.
- 14.1.7 Допускается раздельное проведение испытаний на контроль технических параметров систем, обеспечивающих формирование взрыволокализующего облака огнетушащего порошка во взвешенном состоянии и на свойства взрыволокализующего облака к подавлению взрыва метанопылевоздушных смесей. При проведении приемочных и эксплуатационных испытаний систем разрешается использовать результаты ранее проведенных испытаний свойства взрыволокализующего облака к подавлению взрыва метанопылевоздушных смесей без повторного проведения таких испытаний.
- 14.1.8 Программы и методики проведения испытаний с перечнем основных показателей и методов их контроля устанавливают в НД на систему.

14.2 Приемо-сдаточные испытания

- 14.2.1 На приемо-сдаточные испытания системы предъявляют поштучно или партией. За партию принимают системы не менее 5 шт.
 - 14.2.2 Приемо-сдаточным испытаниям следует подвергать каждую систему.
- 14.2.3 Состав и последовательность приемо-сдаточных испытаний должны быть отражены в НД на систему.
- 14.2.4 При получении неудовлетворительных результатов хотя бы по одному из предусмотренных проверяемых параметров систему признают не выдержавшей испытания.
- 14.2.5 После устранения выявленных дефектов допускается проведение повторных испытаний в полном объеме. Результаты повторных испытаний являются окончательными.

- 14.2.6 Если при повторных испытаниях будут обнаружены дефекты, которые являлись причиной возврата системы, испытания должны быть прекращены.
- 14.2.7 Возможность дальнейшего производства и приемки систем должна быть решена руководством предприятия-изготовителя и предприятия-разработчика.
- 14.2.8 В паспорте системы, прошедшей приемо-сдаточные испытания с положительными результатами, должны быть проставлены подпись и штамп представителя ОТК предприятия-изготовителя и дата приемки.
- 14.2.9 После приемки система должна быть опломбирована представителем отдела технического контроля.

14.3 Приемочные (предварительные) испытания

- 14.3.1 Приемочные испытания должна проводить приемочная комиссия, в состав которой должны входить разработчик, изготовитель, представитель независимого испытательного центра (лаборатории), аккредитованного Росстандартом, и представитель Ростехнадзора.
- 14.3.2 С целью предварительной оценки соответствия опытного образца системы НД, а также для определения готовности опытного образца к приемочным испытаниям допускается проводить предварительные испытания.
- 14.3.3 Приемочные испытания опытного образца системы или установочной серии систем следует проводить в условиях, максимально приближенных к условиям реальной эксплуатации (применения, использования), а также для принятия решений о возможности промышленного производства, реализации и применения систем.
- 14.3.4 К приемочным испытаниям должны предъявляться опытный образец системы или установочная серия, прошедшие приемо-сдаточные испытания.
- 14.3.5 Испытания проводят по программе и методике, утвержденной в установленном порядке, или по соответствующим разделам конструкторской и технологической документации и НД на изготовление системы.
- 14.3.6 При проведении приемочных испытаний должны быть (с учетом результатов предварительных испытаний опытного образца системы или установочной серии систем) определены все показатели, указанные в технической характеристике системы, в том числе показатель надежности срабатывания, удобство обслуживания.
 - 14.3.7 Приемочные испытания проводит комиссия, назначенная в установленном порядке.

14.4 Типовые испытания

- 14.4.1 Типовые испытания систем следует проводить на предприятии-изготовителе с участием организации-разработчика при внесении в конструкцию, технологию изготовления или применяемые материалы существенных изменений, влияющих на качество и безопасность системы, для оценки эффективности и целесообразности внесенных изменений.
 - 14.4.2 Типовые испытания назначают исходя из серьезности и объема изменений.
- 14.4.3 Необходимость проведения типовых испытаний, число испытуемых систем и объем испытаний устанавливают по согласованию между организацией разработчиком и предприятием-изготовителем в зависимости от характера внесенных изменений.
- 14.4.4 Испытания проводят по программе и методике, утвержденной в установленном порядке, или по соответствующим разделам конструкторской и технологической документации и НД на изготовление системы.
 - 14.4.5 Типовые испытания проводит комиссия, назначенная в установленном порядке.
- 14.4.6 Типовые испытания обязательно должны содержать проверку всех параметров и характеристик системы, на которые могли повлиять проведенные изменения.
- 14.4.7 Результаты типовых испытаний оформляют актом, который утверждает главный инженер предприятия-изготовителя.

14.5 Сертификационные испытания

- 14.5.1 Сертификационные испытания следует проводить в соответствии с системой сертификации ГОСТ Р. В соответствии с ГОСТ 15.201 допускается использовать результаты испытаний других категорий в порядке, установленном правилами сертификации.
- 14.5.2 Состав показателей, проверяемых при сертификационных испытаниях, и методы их проверки должны соответствовать требованиям настоящего стандарта.

14.6 Контролируемые параметры при проведении испытаний систем

14.6.1 Обязательно контролируемые параметры при проведении испытаний систем приведены в таблице 2.

Таблица 2 — Обязательно контролируемые параметры при проведении испытаний

572. T. A	Испытания			
Контролируемый параметр	приемо- сдаточные	приемочные (предварительные)	типовые	сертификационные
 Чувствительность системы к взрыву мета- на и/или угольной пыпи 	-	+	+	+
2 Инерционность срабатывания системы	-	1-	+	+
3 Надежность срабатывания системы	-	+	+	
4 Работа приборов контроля работоспособ- ности системы	+	+	+	+
 Работа защиты от произвольного срабатывания системы 	+	+	+	+
6 Габаритные размеры		-	+	+
7 Масса системы	1-12-	(+	
8 Прочность основного узла системы ¹⁾ или емкости с тазогенератором	-	+	+	*
9 Герметичность основного узла системы*)	+	·	+	+
10 Искробезопасность и взрывобезопас- ность ^{2), 3)}	-	+	+	+
11 Экологичность и токсичность генерируе- мого газового состава ³⁾	-	+	+	+

При наличии в системе емкости(ей) со сжатым воздухом высокого давления.

П р и м е ч а н и е — Знак плюс («+») означает, что испытания проводят, знак минус («-») — испытания не проводят.

14.7 Методы контроля

14.7.1 Испытания на соответствие общим требованиям

- 14.7.1.1 Проверку систем на соответствие требованиям комплекта документации проводят путем сверки системы с документацией, с указанными в ней стандартами, ТУ и другими НД.
- 14.7.1.2 Внешний вид системы проверяют визуальным осмотром на соответствие конструкторской документации.
 - 14.7.1.3 Проверяют отсутствие повреждений системы и тары.
- 14.7.1.4 Проверку массы и габаритных размеров систем проводят путем взвешивания их узлов на весах, обеспечивающих точность измерения 1,5 %, и измерением размеров мерительным инструментом, обеспечивающим требуемую чертежами точность.
- 14.7.1.5 Проверку маркировки проводят визуальным осмотром системы и его составных частей, сверкой с чертежами, требованиями настоящего стандарта и НД.

14.7.2 Испытание на соответствие требованиям к основным параметрам

- 14.7.2.1 Инерционность срабатывания системы не должна превышать 50 мс.
- 14.7.2.2 Минимальная чувствительность срабатывания системы при давлении на фронте ударно-воздушной волны от взрыва метана и/или угольной пыли составляет 0,02 МПа.
 - 14.7.2.3 Взрыволокализующее облако, создаваемое системой, должно иметь:
- протяженность не менее 15 м по горной выработке с полным перекрытием всего сечения горной выработки;
 - концентрацию огнетушащего вещества от 0,01 до 0,1 кг/м³.

² При использовании электропитания в работе системы.

³⁾ При наличии в системе газогенератора, пирозаряда или других взрывчатых материалов.

15 Средства измерений и контроля параметров

- 15.1 Средства измерений и контроля показателей систем должны иметь аттестаты, клейма или свидетельства и применяться в условиях, установленных в эксплуатационной документации.
- 15.2 Допустимые значения суммарной погрешности измерения параметров и допустимые отклонения результатов измерений от среднеарифметического значения не должны превышать значений, указанных в таблице 3.

Т а б л и ц а 3 — Допустимые значения погрешности и отклонений при измерении параметров систем

Наименование параметра	Долустимая суммарная погрешность измерения, %	Допустимое отклонение от среднеарифметического значения, %
Линейные размеры, мм	± 3,0	± 3,0
Масса, кг	± 2,0	± 2,0
Давление, МПа	± 2,5	± 2,5
Усилие, кН	± 3,0	± 2,5

- 15.3 При испытаниях допускается применять средства измерений, не указанные в настоящем стандарте, при условии обеспечения ими требуемой точности измерений.
- 15.4 При применении показывающих средств измерений число измерений должно быть не менее трех, а при регистрирующих и записывающих устройствах не менее пяти. За результат измерений принимают среднеарифметическое значение.

Если отклонение измеренного параметра превышает допустимое отклонение от среднеарифметического значения, то результат следует проверить по полной программе предыдущих измерений.

16 Обработка и оформление результатов испытаний

- 16.1 Результаты испытаний должны быть обработаны в целях сравнения их со значениями, установленными в НД на системы.
- 16.2 Обработку результатов измерений проводят в соответствии с инструкциями по применению используемых средств измерений.
- 16.3 Результаты испытаний оформляют в виде акта или протокола в соответствии с рабочими методиками испытаний.

Библиография

- Правила безопасности в угольных шахтах, утвержденные Постановлением Госгортехнадзора России 05.06.03 г. № 50
 ПБ 05-533—03
 Единые правила безопасности при разработке рудных, нерудных и россыпных месторождений полезных ископаемых подземным способом, утвержденные Постановлением Госгортехнадзора России 13.05.03 № 30
 РД 05-325—99
 Нормы безопасности на основное горно-транспортное оборудование для угольных шахт, утвержденные Постановлением Госгортехнадзора России от 10.11.99 г. № 83
 Повыда устройства и безопасной экспруатации сосудов, работающих под равлением
- [4] ПБ 03-576—03 Правила устройства и безопасной эксплуатации сосудов, работающих под давлением
- [5] Безопасность при взрывных работах: Сборник документов. Серия 13. Выпуск 1/Колл.авт. 2-е изд., испр. и доп. М.: Государственное унитарное предприятие «Научно-технический центр по безопасности в промышленности Госгортехнадзора России», 2002. 248 с.
- [6] Постановление правительства РФ от 12.07.2000 № 513 «О мерах по усилению государственного контроля за производством, распространением и применением взрывчатых веществ и отходов их производства, а также средств взрывания, порохов промышленного назначения и пиротехнических изделий в Российской Федерации» (совместно с правилами составления и ведения баланса производства, распространения и применения взрывчатых материалов промышленного назначения)

УДК 622.818.004.14:006.354 622.814:006.354 OKC 73.100.99

OKI 31 4665

Ключевые слова: стандарт, автоматические системы взрывоподавления — локализации взрывов метанопылевоздушных смесей в угольных шахтах, технические требования, требования безопасности, правила приемки, методы испытаний

> Редактор Р.Г. Говердоеская Технический редактор В.Н. Прусакова Корректор И.А. Королева Компьютерная верстка И.А. Налейкиной

Сдано в набор 11.03.2013. Подписано в печать 11.04.2013. Формат 60 х 84 /g. Гарнитура Ариал. Усл. печ. л. 1,86. Ум.-изд. л. 1,40. Тираж 91 экз. Зак. 391.