# МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ (МГС)

INTERSTATE COUNCIL FOR STANDARDIZATION, METROLOGY AND CERTIFICATION (ISC)

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ ΓΟCT 31745— 2012

# ПРОДУКТЫ ПИЩЕВЫЕ

Определение содержания полициклических ароматических углеводородов методом высокоэффективной жидкостной хроматографии

Издание официальное



# Предисловие

Цели, основные принципы и общие правила проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены»

# Сведения о стандарте

- ПОДГОТОВЛЕН Федеральным государственным унитарным предприятием «Атлантический научно-исследовательский институт рыбного хозяйства и океанографии» (ФГУП «Атлант НИРО»)
  - 2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии
- 3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 15 ноября 2012 г. № 42)

### За принятие проголосовали:

| Краткое наяменование страны<br>по МК (ИСО 3168) 004— 97 | Код страны по<br>МК (ИСО 3166) 00497 | Сокращенное наименование национального<br>органа по стандартизации |
|---------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------|
| Армения                                                 | AM                                   | Минэкономики Республики Армения                                    |
| Беларусь                                                | BY                                   | Госстандарт Республики Беларусь                                    |
| Киргизия                                                | KG                                   | Кыргызстандарт                                                     |
| Молдова                                                 | MD                                   | Молдова-Стандарт                                                   |
| Россия                                                  | RU                                   | Росстандарт                                                        |
| Таджикистан                                             | TJ                                   | Таджикстандарт                                                     |
| Узбекистан <a></a>                                      | UZ                                   | Узстандарт                                                         |

## (Поправка).

- 4 Приказом Федерального агентства по техническому регулированию и метрологии от 29 ноября 2012 г. № 1746-ст межгосударственный стандарт ГОСТ 31745—2012 введен в действие в качестве национального стандарта Российской Федерации с 1 июля 2013 г.
  - 5 Настоящий стандарт подготовлен на основе применения ГОСТ Р 53152—2008\*
  - 6 ВВЕДЕН ВПЕРВЫЕ
  - 7 ИЗДАНИЕ (Ноябрь 2019 г.) с Поправкой (ИУС 6—2019)

Информация о введении в действие (прекращении действия) настоящего стандарта и изменений к нему на территории указанных выше государств публикуется в указателях национальных стандартов, издаваемых в этих государствах, а также в сети Интернет на сайтах соответствующих национальных органов по стандартизации.

В случае пересмотра, изменения или отмены настоящего стандарта соответствующая информация будет опубликована на официальном интернет-сайте Межгосударственного совета по стандартизации, метрологии и сертификации в каталоге «Межгосударственные стандарты»

© Стандартинформ, оформление, 2014, 2019



В Российской Федерации настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

<sup>\*</sup> Приказом Федерального агентства по техническому регулированию и метрологии от 29 ноября 2012 г. № 1746-ст национальный стандарт ГОСТ Р 53152—2008 отменен с 15 февраля 2015 г.

# продукты пищевые

Определение содержания полициклических ароматических углеводородов методом высокоэффективной жидкостной хроматографии

Food products. Determination of PAHs content by HPLC method

Дата введения — 2013—07—01

# 1 Область применения

Настоящий стандарт распространяется на продовольственное сырье и пищевые продукты и устанавливает метод определения массовых долей полициклических ароматических углеводородов с применением высокоэффективной жидкостной хроматографии (ВЭЖХ).

## 2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ 4166 Реактивы. Натрий сернокислый, Технические условия

ГОСТ 6709 Вода дистиллированная. Технические условия

ГОСТ 7631 Рыба, нерыбные объекты и продукция из них. Методы определения органолептических и физических показателей

ГОСТ 8756.0 Продукты пищевые консервированные. Отбор проб и подготовка их к испытаниям

ГОСТ 9147 Посуда и оборудование лабораторные фарфоровые. Технические условия

ГОСТ 9293 Азот газообразный и жидкий. Технические условия

ГОСТ 9968 Метилен хлористый технический. Технические условия

ГОСТ 12026 Бумага фильтровальная лабораторная. Технические условия

ГОСТ 18300\* Спирт этиловый ректификованный технический. Технические условия

ГОСТ 20289 Реактивы. Диметилформамид. Технические условия

ГОСТ 24104\*\* Весы лабораторные. Общие технические требования

ГОСТ 24363 Реактивы. Калия гидроокись. Технические условия

ГОСТ 25336 Посуда и оборудование лабораторные стеклянные. Типы, основные параметры и размеры

ГОСТ 29228 (ИСО 835—80) Посуда лабораторная стеклянная. Пипетки градуированные. Часть 2. Пипетки градуированные без установленного времени ожидания

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов и классификаторов на официальном интернет-сайте Межгосударственного совета по стандартизации, метрологии и сертификации (www.easc.by) или по указателям национальных стандартов, издаваемым в государствах, указанных в предисловии, или на официальных сайтах соответствующих национальных органов по стандартизации. Если на документ дана недатированная ссылка, то следует использовать документ, действующий на текущий момент, с учетом всех внесенных в него изменений. Если заменен ссылочный документ, на который дана датированная ссылка, то следует использовать указанную версию этого документа. Если после принятия

В Российской Федерации действует ГОСТ Р 55878—2013.

В Российской Федерации действует ГОСТ Р 53228—2008.

#### **FOCT 31745-2012**

настоящего стандарта в ссылочный документ, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение применяется без учета данного изменения. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

# 3 Термины и определения

В настоящем стандарте применен следующий термин с соответствующим определением:

3.1 полициклические ароматические углеводороды; ПАУ: Группа органических полициклических соединений, молекулы которых построены из конденсированных бензольных ядер (двух и более), а также включающие пятичленные циклы.

# 4 Отбор проб

Отбор и подготовку лабораторной пробы к испытаниям проводят в соответствии с ГОСТ 7631, ГОСТ 8756.0

Допускается хранить подготовленную пробу в замороженном состоянии без доступа кислорода при температуре не выше 18 °C не более 7 сут.

Из объединенной лабораторной пробы для испытания отбирают две параллельные навески.

# 5 Сущность метода

Сущность метода заключается в щелочном гидролизе пробы, экстракции углеводородов гексаном из гидролизованного продукта, селективном выделении фракции полициклических ароматических углеводородов диметилформамидом, повторной экстракции ПАУ гексаном из разбавленного водного раствора диметилформамида, очистке полученной фракции от мешающих примесей на колонке с сефадексом или силикагелем с последующим количественным определением выделенных углеводородов высокоэффективной жидкостной хроматографией.

Метод позволяет провести определение 16 веществ (приоритетных загрязнителей по ЕРА).

Предел обнаружения массовых долей ПАУ в анализируемых продуктах составляет от 0,1 до 5 мкг/ кг для различных ПАУ.

# 6 Средства измерений, оборудование, реактивы, материалы

Хроматограф жидкостный любой марки с флуориметрическим детектором (диапазон длин волн возбуждения 230—280 нм, диапазон длин волн регистрации 310—500 нм) с программным обеспечением для регистрации и обработки хроматограмм.

Колонка хроматографическая для ВЭЖХ длиной 150—250 мм и диаметром 2,1—4,6 мм с обращенной фазой С18 специально предназначенная для разделения ПАУ, имеющая эффективность не менее 5000 теоретических тарелок по пикам ПАУ.

Баня водяная лабораторная любой марки, имеющая диапазон температур от 20 °C до 100 °C.

Весы лабораторные общего назначения высокого или специального класса точности с наибольшим пределом взвешивания 200 или 210 г и ценой деления 0,1 мг по ГОСТ 24104.

Испаритель ротационный любой марки.

Насос водоструйный лабораторный по ГОСТ 25336.

Дефлегматор 250-19/26-29/32 ТС по ГОСТ 25336.

Воронка делительная ВД-1-250 и ВД-1-500 по ГОСТ 25336.

Воронка стеклянная ВФО 100-14/23 по ГОСТ 25336.

Воронка Бюхнера по ГОСТ 9147.

Колбы конические 1-250,1-500 по ГОСТ 25336.

Колба градуированная 50-14/23 по ГОСТ 25336.

Колбы мерные 2-10-2,2-100-2,2-200-2 по ГОСТ 25336.

Колонка хроматографическая стеклянная длиной не менее 20 см и диаметром 1.0 см с резервуаром вместимостью не менее 20 см<sup>3</sup>.

Микрошприцы хроматографические двух видов: на 10 мкл с ценой деления 0,1 мкл и на 100 мкл с ценой деления 1,0 мкл. Пипетки 1-1-1,1-1-2,2-1-5 по ГОСТ 29228.

Стакан химический В-1-100 или В-1-150 по ГОСТ 25336.

Стаканы для взвешивания (бюксы) по ГОСТ 25336.

Цилиндры мерные 1-100,1-250 или 3-100, 3-250 по ГОСТ 25336.

Холодильник водяной по ГОСТ 25336.

Азот газообразный по ГОСТ 9293.

Ацетонитрил по документу, действующему на территории государства, принявшего стандарт, ос. ч. Бумага фильтровальная лабораторная по ГОСТ 12026.

Вода дистиллированная по ГОСТ 6709.

н-Гексан по документу, действующему на территории государства, принявшего стандарт, ос. ч.

Диметилформамид по ГОСТ 20289, х. ч.

Калия гидроокись по ГОСТ 24363, х. ч.

Натрий сернокислый, безводный, по ГОСТ 4166.

Спирт этиловый ректификованный по ГОСТ 18300.

Силикагель, размер частиц 60-200 мкм.

Хлористый метилен по ГОСТ 9968, х. ч.

Стандартные образцы состава раствора в ацетонитриле определяемых ПАУ массовой концентрации 100 или 200 мкг/см<sup>3</sup> и погрешностью аттестованного значения не более ± 2 % или чистые вещества, массовая доля основного вещества не менее 98 %.

Волокнистый кварцевый материал СКВ по документу, действующему на территории государства, принявшего стандарт.

Шпатели, стеклянные палочки, стеклянные капилляры.

Допускается применение других средств измерений с метрологическими характеристиками и оборудования с техническими характеристиками, а также других реактивов и материалов по качеству не ниже указанных в настоящем стандарте.

# 7 Проведение испытаний

## 7.1 Подготовка к испытанию

## 7.1.1 Очистка растворителей

Растворители при необходимости перегоняют общепринятым способом.

# 7.1.2 Приготовление исходных растворов индивидуальных ПАУ

В бюксы отвешивают по (10,0 ± 0,1) мг каждого индивидуального ПАУ. Навески количественно переносят в мерные колбы вместимостью 100 см<sup>3</sup>, затем объем раствора доводят до метки ацетонитрилом.

При использовании ГСО состава раствора в ацетонитриле массовой концентрацией 200 мкг/см<sup>3</sup> отбирают 1 см<sup>3</sup> и смешивают с равным объемом ацетонитрила.

Полученные растворы имеют массовую концентрацию 100 мкг/см<sup>3</sup>. Растворы хранят плотно закрытыми в темном холодном месте не более 3 мес.

## 7.1.3 Приготовление рабочих растворов индивидуальных ПАУ

Отбирают 0,5 см<sup>3</sup> исходного раствора индивидуального ПАУ в мерную колбу вместимостью 10 см<sup>3</sup> и объем раствора доводят до метки ацетонитрилом. Полученные рабочие растворы имеют массовую концентрацию 5 мкг/см<sup>3</sup>. Рабочие растворы допускается хранить плотно закрытыми в темном месте при температуре 4 °C—6 °C не более одного месяца.

# 7.1.4 Приготовление градуировочных растворов

Для приготовления градуировочных растворов смеси индивидуальных ПАУ в мерные колбы вместимостью 100 см<sup>3</sup> переносят приведенные в таблице 1 объемы рабочих растворов индивидуальных ПАУ массовой концентрацией 5 мкг/см<sup>3</sup>, затем доводят объем до метки ацетонитрилом. Градуировочные растворы допускается хранить плотно закрытыми в темном месте при температуре 4 °C—6 °C не более одного месяца.

#### FOCT 31745-2012

Таблица 1

| Наименование индивиду-<br>ального ПАУ | Объем исходного раствора, см <sup>3</sup> |             |             | Массовая концентрация в градуировочном<br>растворе, мкг/см <sup>3</sup> |             |              |  |
|---------------------------------------|-------------------------------------------|-------------|-------------|-------------------------------------------------------------------------|-------------|--------------|--|
| ального прау                          | Раствор № 1                               | Раствор № 2 | Раствор № 3 | Раствор № 1                                                             | Раствор № 2 | Раствор Ne 3 |  |
| Нафталин                              | 1                                         | 5           | 10          | 0,05                                                                    | 0,25        | 0,5          |  |
| Аценафтилен                           | 0,4                                       | 2           | 4           | 0,02                                                                    | 0,1         | 0,2          |  |
| Флуорен                               | 0,4                                       | 2           | 4           | 0,02                                                                    | 0,1         | 0,2          |  |
| Аценафтен                             | 0,4                                       | 2           | 4           | 0,02                                                                    | 0,1         | 0,2          |  |
| Фенантрен                             | 0,1                                       | 0,5         | 1           | 0,005                                                                   | 0,025       | 0,05         |  |
| Антрацен                              | 0,4                                       | 2           | 4           | 0,02                                                                    | 0,1         | 0,2          |  |
| Флуорантен                            | 0,1                                       | 0,5         | 1           | 0,005                                                                   | 0,025       | 0,05         |  |
| Пирен                                 | 0,2                                       | 1           | 2           | 0,01                                                                    | 0,05        | 0,1          |  |
| Хризен                                | 0,4                                       | 2           | 4           | 0,02                                                                    | 0,1         | 0,2          |  |
| Бенз(а)антрацен                       | 0,4                                       | 2           | 4           | 0,02                                                                    | 0,1         | 0,2          |  |
| Бенз(b)флуорантен                     | 0,1                                       | 0,5         | 1           | 0,005                                                                   | 0.025       | 0,05         |  |
| Бенз(k)флуорантен                     | 0,1                                       | 0,5         | 1           | 0,005                                                                   | 0,025       | 0,05         |  |
| Бенз(а)пирен                          | 0,2                                       | 1           | 2           | 0,01                                                                    | 0,05        | 0,1          |  |
| Дибенз(a,h)антрацен                   | 0,4                                       | 2           | 4           | 0,02                                                                    | 0,1         | 0,2          |  |
| Бенз(g,h,i)перилен                    | 0,2                                       | 1           | 2           | 0,01                                                                    | 0,05        | 0,1          |  |
| Индено(1,2,3-c,d)пирен                | 0,4                                       | 2           | 4           | 0,02                                                                    | 0,1         | 0,2          |  |
| Бенз(b)хризен                         | 0,4                                       | 2           | 4           | 0,02                                                                    | 0,1         | 0,2          |  |

# 7.1.5 Градуировка хроматографа

Градуировку хроматографа выполняют, используя градуировочные растворы, приготовленные по 7.1.4, с добавлением внутреннего стандарта. В качестве внутреннего стандарта используют бенз(b)хризен.

В условиях, позволяющих разделить все составные вещества калибровочной смеси (см. 7.2.4.1), записывают не менее трех хроматограмм для каждого градуировочного раствора.

Определяют среднеарифметическое значение площади пиков каждого индивидуального ПАУ, рассчитанное из трех хроматограмм.

Отдельно записывают не менее двух хроматограмм для каждого индивидуального ПАУ для определения времени удерживания, используя рабочие растворы, приготовленные по 7.1.3, объем инжекции 1—2 мкл. Стабильность времени удерживания считают удовлетворительной при расхождении между двумя значениями не более 5 %.

Градуировочный коэффициент K, определяемый экспериментально в зависимости от выбранных условий детектирования по хроматограмме стандартной смеси ПАУ, включающей бенз(b)хризен, для каждого индивидуального ПАУ рассчитывают по формуле

$$K = \frac{m_1 S_2}{m_2 S_1},$$
(1)

где m<sub>1</sub> — масса введенного индивидуального ПАУ, мкг,

S<sub>2</sub> — площадь пика внутреннего стандарта, усл. ед.;

 $m_2$  — масса внутреннего стандарта, мкг;

S<sub>1</sub> — площадь пика индивидуального ПАУ, усл. ед.

Градуировочный коэффициент К рассчитывают для каждого индивидуального ПАУ. Его значения не должны отличаться от среднеарифметического более чем на 10 %.

## 7.1.6 Подготовка хроматографических колонок для очистки проб

# 7.1.6.1 Заполнение колонки силикагелем

Силикагель предварительно подвергают дезактивации. Для этого к 50 г силикагеля, прокаленного при температуре 180 °C—200 °C, добавляют 3 % (по массе) дистиллированной воды по капле и интенсивно встряхивают после добавления каждой капли. Затем оставляют в эксикаторе на время не менее 18 ч для дезактивации. После дезактивации заполняют колонку силикагелем массой (10,0 ± 0,1) г, осторожно по стенке колонки заливают 25 см³ н-гексана, дают стечь н-гексану, не допуская высыхания верхнего слоя. Заполнять колонку необходимо очень аккуратно во избежание взмучивания и неравномерного заполнения колонки. Колонку готовят непосредственно перед очисткой и не используют повторно.

Каждую новую партию сорбента перед использованием необходимо проверить на качество деления. Для этого через колонку с подготовленным сорбентом пропускают 1 см³ градуировочного раствора № 2 или № 3 с добавлением очищенного экстракта рабочей пробы по 7.2, проводят процедуру очистки по 7.2.2, после чего анализируют с помощью высокоэффективной жидкостной хроматографии. Все индивидуальные ПАУ (особенно наиболее легкие и наиболее тяжелые), входящие в состав градуировочного раствора, не должны быть потеряны или перекрываться пиками мешающих их определению веществ. При неудовлетворительных результатах либо меняют партию сорбента, либо подбирают условия очистки, варьируя объем отбрасываемой фракции и элюата.

# 7.1.6.2 Заполнение хроматографической колонки сефадексом LH-20

(4,0 ± 0,1) г сефадекса марки LH-20 взвешивают на аналитических весах и заливают 50 см³ этилового спирта, выдерживают для набухания не менее 3 ч, после чего осторожно переносят в колонку. Колонку необходимо заполнять одномоментно, во избежание неравномерного заполнения колонки. Дают стечь спирту до высоты 1—2 мм над верхним слоем сорбента, после чего вносят экстракт.

Заполненную колонку допускается хранить и использовать повторно. Для повторного использования необходимо промыть колонку 50 см<sup>3</sup> этилового спирта. Для хранения необходимо заполнить колонку этиловым спиртом, закупорить колонку пробкой и не допускать высыхания сорбента. В случае высыхания сефадекса рекомендуется приготовить новую колонку.

# 7.1.6.3 Приготовление раствора гидроокиси калия в этиловом спирте

В колбу вместимостью 150—200 см<sup>3</sup> помещают (8,0 ± 0,1) г гидроксида калия, добавляют 2 см<sup>3</sup> дистиллированной воды и 98 см<sup>3</sup> этилового спирта, перемешивают до полного растворения.

## 7.2 Проведение испытаний

## 7.2.1 Выделение ПАУ из продукта

Навеску продукта массой 10,0-20,0 г, взвешенную с точностью до 0,01 г, помещают в плоскодонную колбу вместимостью 250 см3, добавляют 50 см3 спиртового раствора гидроокиси калия. Содержимое колбы перемешивают встряхиванием. Затем в пробу продукта и пробу контрольного опыта вносят по 10 мкл внутреннего стандарта — рабочего раствора бенз(b)хризена, приготовленного по 7.1.2 массовой концентрацией 5 мкг/см3. Колбу соединяют с обратным холодильником и нагревают на водяной бане при температуре 85 °C-90 °C в течение 3 ч. Затем в колбу через холодильник добавляют 100 см<sup>3</sup> дистиллированной воды. Реакционную смесь охлаждают до комнатной температуры и после охлаждения переносят в делительную воронку вместимостью 250 cm<sup>3</sup>. В случае если после гидролиза в реакционной массе остался нерастворимый осадок, его отделяют на воронке Бюхнера, промывая на фильтре 30 см3 горячего этилового спирта. Спирт после промывки добавляют в делительную воронку с реакционной смесью. В делительную воронку также добавляют 30 см3 н-гексана. Содержимое воронки встряхивают в течение 2 мин и оставляют для расслаивания. В случае образования эмульсии к смеси в делительной воронке добавляют 10—20 см<sup>3</sup> этилового спирта. После расслаивания нижнюю водно-спиртовую фазу сливают в колбу, а верхний гексановый слой переливают в другую делительную воронку. Затем повторяют экстракцию ПАУ из водно-спиртовой фракции н-гексаном еще два раза по см<sup>3</sup>. Гексановые экстракты объединяют в делительной воронке и промывают дистиллированной водой трижды по 30 см3, после чего экстракт фильтруют через слой безводного сульфата натрия в грушевидную колбу вместимостью 100 см3. Раствор выпаривают на ротационном испарителе до объема 50 см3 при температуре водяной бани не выше 50 °C.

Упаренный экстракт переносят в делительную воронку вместимостью 250 см<sup>3</sup> и добавляют к нему 50 см<sup>3</sup> смеси диметилформамида с водой в соотношении 9:1. Интенсивно встряхивают смесь в течение 1 мин, после расслаивания фаз нижнюю сливают в плоскодонную колбу, а верхний гексановый слой снова подвергают экстракции, добавляя 50 см<sup>3</sup> смеси диметилформамида и воды. Гексановый слой отбрасывают, объединенный диметилформамидный экстракт переносят в делительную воронку вместимостью 500 см<sup>3</sup>, добавляют 100 см<sup>3</sup> дистиллированной воды, встряхивают и проводят экстракцию из водной фазы н-гексаном трижды по 50 см<sup>3</sup>. Водную фазу отбрасывают, а гексановый экстракт промывают водой три раза по 30 см<sup>3</sup>, переносят в плоскодонную колбу, добавляют 10 г безводного сульфата натрия и выдерживают в течение 1 ч, после чего фильтруют в круглодонную колбу, н-Гексан выпаривают на ротационном испарителе до объема 1,0 см<sup>3</sup> и остаток очищают на колонке с дезактивированным силикагелем (см. 7.2.2) или осторожно упаривают досуха потоком воздуха через вакуумный аллонж, соединенный с водоструйным насосом, остаток в колбе растворяют в 0,5 см<sup>3</sup> этилового спирта и очищают на колонке с сефадексом (см. 7.2.3).

Одновременно проводят холостой опыт, проводя все стадии анализа с использованием реактивов по 7.2, но без навески продукта.

# 7.2.2 Очистка экстракта на хроматографической колонке с силикагелем

На подготовленную по 7.1.6.1 колонку с дезактивированным силикагелем пипеткой количественно переносят гексановый экстракт, полученный по 7.2.1, трижды промывая колбу гексаном по 0,5 см<sup>3</sup>. Первую фракцию элюируют 25 см<sup>3</sup> гексана и отбрасывают, вторую фракцию (ПАУ) элюируют 60 см<sup>3</sup> смеси гексана и хлористого метилена в объемном соотношении 1:4. Полученный элюат упаривают на роторном испарителе до объема 2,0 см<sup>3</sup> (но не менее 1,5 см<sup>3</sup>) при температуре не выше 50 °C, оставшийся растворитель удаляют потоком воздуха через вакуумный аллонж, соединенный с водоструйным насосом. Сухой остаток растворяют в 0,5 см<sup>3</sup> ацетонитрила.

Далее выполняют количественный анализ с помощью высокоэффективной жидкостной хроматографии.

# 7.2.3 Очистка экстракта на хроматографической колонке с сефадексом LH-20

На подготовленную по 7.1.6.2 колонку пипеткой наносят экстракт, полученный по 7.2.1 в 0,5 см<sup>3</sup> этилового спирта, трижды смывая его из колбы этиловым спиртом порциями по 0,5 см<sup>3</sup>. Элюирование из колонки ПАУ проводят этиловым спиртом, первую фракцию 15 см<sup>3</sup> отбрасывают, собирают следующую фракцию объемом 40 см<sup>3</sup> в грушевидную колбу объемом 100 см<sup>3</sup>. Спирт упаривают на роторном испарителе до объема не менее 0,5 см<sup>3</sup> при температуре не выше 50 °C, а остаток удаляют в потоке воздуха или азота. Сухой остаток растворяют в 0,5 см<sup>3</sup> ацетонитрила.

Далее выполняют количественный анализ с помощью высокоэффективной жидкостной хроматографии.

# 7.2.4 Определение содержания индивидуальных ПАУ методом высокоэффективной жидкостной хроматографии

## 7.2.4.1 Условия хроматографии

Условия проведения хроматографического анализа подбираются в зависимости от вида применяемого жидкостного хроматографа и хроматографической колонки. Хроматографическая колонка должна быть специально предназначена для разделения ПАУ. Критерием возможности применения можно считать разделение на колонке таких пар индивидуальных ПАУ, как бенз(а)антрацен и хризен, а также бенз(g, h, i)перилен и индено(1,2,3-cd)пирен, которые на обычных колонках не делятся.

В качестве примера могут быть приведены следующие условия хроматографического определения ПАУ, выполненного на жидкостном хроматографе Shimadzu 2010A колонке ChromSep CP EcoSpher 4 PAH 250 × 3,0.

Подвижная фаза: ацетонитрил, вода.

Градиент: 3 мин ацетонитрил:вода (60:40), следующие 12 мин ацетонитрил от 60 % до 100 % и далее 100 % ацетонитрил до окончания анализа.

Режим программирования по времени длин волн возбуждающего света и регистрации пиков приведен в таблице 2.

Таблица 2

| Время, мин | Дляна волны возбуждения нм | Длина волны регистрации, нм<br>320 |  |
|------------|----------------------------|------------------------------------|--|
| 0,0—16,0   | 230                        |                                    |  |
| 16,1-23,0  | 250                        | 370                                |  |
| 23,1-40,0  | 255                        | 420                                |  |

Объем вводимой пробы: 20 мкл.

### 7.2.4.2 Проведение измерений

Пробу продукта и пробу контрольного опыта хроматографируют дважды и рассчитывают среднеарифметическое значение площади пиков анализируемых полициклических ароматических углеводородов, включая внутренний стандарт.

# 8 Обработка результатов испытаний

На основании полученных данных рассчитывают массовую концентрацию  $X_n$  каждого индивидуального ПАУ, мг/кг, в продукте по формуле

$$X_n = \frac{m_{cT}K}{M} \left( \frac{S_1}{S_3} - \frac{S_2}{S_4} \right), \qquad (2)$$

- где  $m_{\rm cr}$  масса внутреннего стандарта, введенного в пробу продукта и пробу контрольного образца, мкг;
  - К градуировочный коэффициент, установленный экспериментально в процессе градуировки и рассчитанный по формуле (1);
  - S<sub>1</sub> площадь пика индивидуального ПАУ на хроматограмме пробы продукта, усл. ед.;
  - $S_2$  площадь пика индивидуального ПАУ на хроматограмме пробы контрольного образца, усл. ед.;
  - М масса навески, взятая для анализа, г.
  - S<sub>3</sub> площадь пика внутреннего стандарта на хроматограмме пробы продукта, усл. ед.;
  - $S_4^-$  площадь пика внутреннего стандарта на хроматограмме пробы контрольного образца, усл. ед. Результат анализа представляют в виде ( $X \pm \Delta$ ), мг/кг при P = 0.95,
- где X среднеарифметическое двух параллельных определений;
  - $\Delta$  граница интервала, в котором абсолютная погрешность измерений находится с доверительной вероятностью P = 0.95.

Характеристику погрешности вычисляют по формуле

$$\Delta = 0.01\delta \cdot X, \tag{3}$$

где  $\delta$  — граница интервала, в котором относительная погрешность измерений находится с доверительной вероятностью P = 0,95 %.

Расхождение между результатами двух параллельных определений не должно превышать следующей разности

$$X_1 - X_2 \le 0.01 \cdot r \cdot X,$$
 (4)

где  $X_1$ ,  $X_2$  и X — результаты двух параллельных определений и их среднеарифметическое значение; r — предел повторяемости, %.

В противном случае испытания повторяют до получения удовлетворительных результатов. Результаты округляют до второй значащей цифры. За окончательный результат испытания X принимают среднеарифметическое значение двух параллельных определений  $X_1$  и  $X_2$  с тем же числом значащих цифр.

# 9 Метрологические характеристики

Метод обеспечивает получение результатов измерения с метрологическими характеристиками, не превышающими значений, приведенных в таблице 3.

Таблица 3

В процентах

| Наименование<br>определяемого компонента | Граница интервала, в котором<br>относительная погрешность находится с<br>доверительной вероятностью $P$ = 0,95, $\delta$ | Предел<br>повторяемости г | Предел<br>воспроизводимости <i>R</i> |  |
|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------------------------------|--|
| Нафталин                                 | 42                                                                                                                       | 40                        | 62                                   |  |
| Аценафтилен                              | 34                                                                                                                       | 33                        | 50                                   |  |

Окончание таблицы 3 В процентах

| Наименование<br>определяемого компонента | Граница интервала, в котором<br>относительная погрешность находится с<br>доверительной вероятностью $P=0.95, \delta$ | Предел<br>повторяемости <i>г</i> | Предел<br>воспроизводимости <i>R</i> |
|------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------------|
| Флуорен                                  | 35                                                                                                                   | 34                               | 50                                   |
| Аценафтен                                | 37                                                                                                                   | 36                               | 55                                   |
| Фенантрен                                | 40                                                                                                                   | 38                               | 57                                   |
| Антрацен                                 | 42                                                                                                                   | 40                               | 60                                   |
| Флуорантен                               | 35                                                                                                                   | 34                               | 50                                   |
| Пирен                                    | 38                                                                                                                   | 37                               | 55                                   |
| Хризен                                   | 40                                                                                                                   | 38                               | 57                                   |
| Бенз(а)антрацен                          | 38                                                                                                                   | 36                               | 55                                   |
| Бенз(b)флуорантен                        | 35                                                                                                                   | 34                               | 50                                   |
| Бенз(к)флуорантен                        | 35                                                                                                                   | 34                               | 50                                   |
| Бенз(а)пирен                             | 40                                                                                                                   | 38                               | 57                                   |
| Дибенз(a,h)антрацен                      | 40                                                                                                                   | 38                               | 57                                   |
| Бенз(g,h,i)перилен                       | 40                                                                                                                   | 38                               | 57                                   |
| Индено(1,2,3-c,d)пирен                   | 40                                                                                                                   | 38                               | -57                                  |

# 10 Протокол испытаний

Протокол испытаний должен содержать следующую информацию:

- всю информацию, необходимую для исчерпывающей идентификации пробы;
- метод испытаний и определяемый элемент со ссылкой на настоящий стандарт;
- результаты испытаний с указанием единиц измерений;
- дату отбора пробы и способ отбора (если он известен);
- дату окончания проведения испытаний;
- информацию о выполнении требований к повторяемости результатов;
- все детали проведения испытаний, не оговоренные в настоящем стандарте или не считающиеся обязательными, а также все инциденты, наблюдавшиеся при проведении испытаний, которые могли повлиять на конечный результат.

УДК 664.854:537.635:006.354

MKC 67.080.10

Ключевые слова: пищевые продукты, определение содержания, полициклические ароматические углеводороды, высокоэффективная жидкостная хроматография

Редактор О.В. Рябиничева Технический редактор В.Н. Прусакова Корректор М.С. Кабашова Компьютерная верстка И.А. Налейкиной

Сдано в набор 27.11.2019. Подлисано в печать 06.12.2019. Формат 60×84<sup>1</sup>/<sub>8</sub>. Гарнитура Ариал. Усл. печ. л. 1,40. Уч.-изд. л. 1,24. Подготовлено на основе электронной версии, предоставленной разработчиком стандарта

# Поправка к ГОСТ 31745—2012 Продукты пищевые. Определение содержания полициклических ароматических углеводородов методом высокоэффективной жидкостной хроматографии

| В каком месте                          | Напечатано | Должно быть |    |                                         |
|----------------------------------------|------------|-------------|----|-----------------------------------------|
| Предисловие. Таблица согла-<br>сования | -          | Армения     | AM | Минэкономразвития<br>Республики Армения |

(ИУС № 6 2019 г.)