ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ ΓΟCT P 54751— 2011

СОЛЬ ПОВАРЕННАЯ ПИЩЕВАЯ

Расчетный метод определения основного вещества по солевому составу

Издание официальное

Предисловие

Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. № 184-ФЗ «О техническом регулировании», а правила применения национальных стандартов Российской Федерации — ГОСТ Р 1.0—2004 «Стандартизация в Российской Федерации. Основные положения»

Сведения о стандарте

- РАЗРАБОТАН Закрытым акционерным обществом «Всероссийский научно-исследовательский институт Галургии» (ЗАО «ВНИИ Галургии»)
- 2 ВНЕСЕН Техническим комитетом по стандартизации ТК 154 «Пищевые добавки и ароматизаторы»
- 3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 13 декабря 2011 г. № 938-ст
 - 4 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячно издаваемых информационных указателях «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

© Стандартинформ, 2013

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

Содержание

1	Область применения
2	Нормативные ссылки
3	Сущность метода
4	Требования к квалификации оператора
5	Определение массовой доли хлористого натрия ,
6	Проверка правильности результатов определения
7	Метрологические характеристики
П	риложение А (справочное) Примеры расчетов

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

СОЛЬ ПОВАРЕННАЯ ПИЩЕВАЯ

Расчетный метод определения основного вещества по солевому составу

Food common salt. Calculation method for determination (measurement) of the principal substance by saline composition

Дата введения — 2013-01-01

1 Область применения

Настоящий стандарт распространяется на пищевую поваренную соль и устанавливает расчетный метод определения массовой доли основного вещества (хлористого натрия) в диапазоне определения от 97,0 % до 99,9 % по солевому составу.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ Р 51574—2000 Соль поваренная пищевая. Технические условия

ГОСТ Р 54345—2011 Соль поваренная пищевая. Определение массовой доли нерастворимого в воде остатка гравиметрическим методом

ГОСТ Р 54351—2011 Соль поваренная пищевая. Определение массовой доли хлор-иона меркуриметрическим методом

ГОСТ Р 54352—2011 Соль поваренная пищевая. Определение массовой доли магний-иона и кальций-иона комплексонометрическим методом

ГОСТ Р 54353—2011 Соль поваренная пищевая. Определение массовой доли сульфат-иона гравиметрическим методом

ГОСТ Р 54730—2011 Соль поваренная пищевая. Определение массовой доли калий-иона пламенно-фотометрическим методом

П р и м е ч а н и е — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодно издаваемому информационному указателю «Национальные стандарты», который опубликован по состоянию на первое января текущего года, и по соответствующим ежемесячно издаваемым информационным указателям, опубликованным в текущем году. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Сущность метода

Метод основан на пересчете химического состава соли, измеренного в массовых долях ионов, в переводе их в определенной последовательности в солевой состав с последующим вычислением массовой доли хлористого натрия. Массовые доли ионов определяются в соответствии с ГОСТ Р 54345, ГОСТ Р 54351, ГОСТ Р 54352, ГОСТ Р 54353, ГОСТ Р 54730.

4 Требования к квалификации оператора

К выполнению расчетов допускается специалист, имеющий высшее или среднее специальное химическое образование.

5 Определение массовой доли хлористого натрия

5.1 Для вычисления массовой доли хлористого натрия X_{NaCi} , %, проводят пересчет результатов измерений массовых долей отдельных ионов соли в последовательности (1-7), указанной в таблице 1.

Таблица 1

Анион	Катион			
	Ca²⁺	Mg ²⁺	K*	Na*
SO ₄ -	1 - CaSO ₄	2 - MgSO ₄	(1 -)	3 - Na ₂ SO ₄
CI-	4 - CaCl ₂	5 - MgCl ₂	6 – KCI	7 - NaCl

Массовую долю ј-компонента Х_і, %, вычисляют по формуле

$$X_{j} = X_{i} \cdot K_{\text{nep}}, \tag{1}$$

где X_i — известная массовая доля i-компонента, определяемая по ГОСТ Р 54345, ГОСТ Р 54351, FOCT P 54352, FOCT P 54353, FOCT P 54730, %;

 $K_{
m nep}$ — коэффициент пересчета. 5.2 Для пересчета используют коэффициенты, приведенные в таблице 2.

Таблица 2

N∕z n/n	Наименование і-компонента	Наименование ј-компонента	Knep
1	Ca	SO ₄	2,3966
2	Ca	CaSO ₄	3,3966
3	SO4	CaSO ₄	1,4172
4	SO ₄	Ca	0,4172
5	Mg	SO ₄	3,9522
6	Mg	MgSO ₄	4,9522
7	SO ₄	Mg	0,2530
8	SO ₄	MgSO ₄	1,2530
9	SO ₄	Na ₂ SO ₄	1,4787
10	Ca	2CI	1,7691
11	Ca	CaCl ₂	2,7691
12	Mg	2CI	2,9173
13	Mg	MgCl ₂	3,9173
14	К	CI	0,9067
15	к	ксі	1,9067
16	CI	Na	0,6485
17	CI	NaCl	1,6485
18	MgCl ₂	2CI	0,7447

5.3 Схема расчетов массовой доли хлористого натрия в соли

В зависимости от содержания иона SO₄2- в соли используют ту или иную схему расчета.

Все схемы расчетов начинаются с вычисления отношения массовых долей ионов сульфата и кальция $\frac{SO_4^{2^-}}{Ca^{2^+}}$.

 Π р и м е ч а н и е — Схема расчетов сцелью упрощения приведена без обозначения массовой доли X и единицы измерения %.

Схема І

Eсли $\frac{SO_4^2}{Ca^{2*}} > 2,3966$, то весь Ca^{2+} связан с SO_4^{2-} в $CaSO_4$, а оставшиеся ионы SO_4^2 связываются последовательно с Mg^{2*} в $MgSO_4$, и если SO_4^{2-} хватает, то и с Na^+ в Na_2SO_4 .

а) Вычисляют CaSO₄ в соли:

$$CaSO_4 = Ca^{2*} \cdot 3,3966.$$

б) Вычисляют SO₄²⁻, связанные с Mg²⁺ и Na⁺

$$SO_{4-(Mg, Na)}^2 = SO_4^2 - Ca^{2+} \cdot 2,3966.$$

в) Находят SO_4^2 , связанный с Mg^{2+3}

$$SO_4^2$$
 (Mg) = $Mg^{2+} \cdot 3,9522$

и сравнивают с SO₄ (Mg, Na)-

1 вариант схемы 1

 $EслиSO_{4(Mq,Na)}^2 > SO_{4(Mq)}^2$, то весь Mg^{2+} в виде $MgSO_4$, а оставшаяся часть SO_4^2 связана в Na_2SO_4 .

а) Вычисляют MgSO₄ в соли:

$$MgSO_4 = Mg^{2+} \cdot 4,9522;$$

 $SO_{4(Na)}^2 = SO_4^{2-} - [Ca^{2+} \cdot 2,3968 + Mg^{2+} \cdot 3,9522].$

б) Вычисляют Na₂SO₄ в соли:

$$Na_2SO_4 = SO_{4(Na)}^2 \cdot 1,4787.$$

в) Вычисляют КСІ в соли:

г) Вычисляют катион Na⁺

$$Na^{+} = (Cl^{-} - Cl^{-}_{(x)}) 0,6485,$$

где $Cl^{-}_{(\kappa)} = K^{+} \cdot 0,011.$

д) Вычисляют массовую долю

$$NaCl = (Cl^- - Cl^-_{(K)}) 1,6485.$$

2 вариант схемы 1

Eсли $SO_{4(Mg,Na)}^2 < SO_{4(Mg)}^2$, то часть Mg^{2*} связана SO_4^2 в $MgSO_4$, оставшаяся часть Mg^{2*} связана с CI^- в $MgCI_2$, Na_2SO_4 в соли отсутствует.

а) Вычисляют Mg²⁺, связанных с SO₄²⁻ в MgSO₄:

$$Mg^{2+}(SO_4) = [SO_4^2 - Ca^{2+} \cdot 2,3966] \cdot 0,2530;$$

 $MgSO_4$ в соли

$$MgSO_4 = [SO_4^2 - Ca^{2+} \cdot 2,3968] \cdot 1,2531.$$

б) Вычисляют СГ, связанных с Mg²⁺ в MgCl₂:

$$2Cl^{-}(M_0) = [Mg^{2+} - Mg^{2+}(SO_4)] \cdot 2,9173;$$

MgCl₂ в соли

$$MgCl_2 = [Mg^{2+} - (SO_4^2 - Ca^{2+} \cdot 2,3966) \cdot 0,2530] \cdot 3,9173.$$

ГОСТ P 54751—2011

в) Вычисляют СІ-, связанных с К+ в КСІ

 $CI_{(K)} = K^* \cdot 0,9067;$

KCI в соли

KCI = K+ 1,9067.

вычисляют СІ-, связанных с Na+ в NaCI

$$Na^+ = Cl^-_{(Na)} \cdot 0,6485;$$

 $NaCl = [Cl^- - Cl^-_{(Mq)} - Cl^-_{(K)}] \cdot 1,6485.$

Схема II

Если $\frac{SO_4^{2^-}}{Co^{2^+}}$ < 2,3966, то все сульфаты связаны с Ca^{2^+} в $CaSO_4$, а оставшиеся ионы связаны с Cl^- в

CaCl₂.

а) Вычисляют СаSO₄ в соли:

$$CaSO_4 = SO_4^2 \cdot 1,4172.$$

Вычисляют $\text{Cl}^-_{(\text{Ca})}$ — хлорид-ионов, связанных с Ca^{2+} : $\text{Cl}^-_{(\text{Ca})}$ = $[\text{Ca}^{2+} - \text{SO}_4^2 \quad 0.4172] \cdot 1.7691$.

$$Cl_{(Ca)} = [Ca^{2+} - SO_4^2 \cdot 0,4172] \cdot 1,7691.$$

Вычисляют СаСІ, в соли:

$$CaCl_2 = [Ca^{2+} - SO_4^2 \cdot 0.4172] \cdot 2.7691.$$

б) Вычисляют СІ--ионов, связанных с Mg²⁺:

Вычисляют MgCl₂ в соли:

$$MgCl_2 = Mg^{2+} \cdot 3,9173.$$

в) Вычисляют СГ-ионов, связанных с К

$$CI_{(K)} = K^+ \cdot 0,9067.$$

Вычисляют КСІ в соли:

г) Вычисляют СГ-, связанных с Na*:

$$Cl^{-}_{(Na)} = [Cl^{-}_{(o6u_i)} - Cl^{-}_{(Ca)} - Cl^{-}_{(Mg)} - Cl^{-}_{(K)}].$$

Вычисляют NaCl в соли:

NaCI =
$$[Cl_{(o6w)} - Cl_{(Ca)} - Cl_{(Ma)} - Cl_{(K)}] \cdot 1,6485.$$

Схема III

Если $\frac{SO_4^2}{Ca^{2+}}$ = 2,3966, то все сульфаты связаны с Ca^{2+} в $CaSO_4$ без остатка.

а) Вычисляют CaSO₄ в соли:

б) Вычисляют СІ⁻, связанных с Mg²⁺

$$2Cl^{-}_{(Mg)} = Mg^{2+} \cdot 2,9173.$$

Вычисляют MgCl, в соли:

в) Вычисляют СГ, связанных с К*

$$CI_{(K)}^{+} = K^{+} \cdot 0,9067.$$

Вычисляют КСІ в соли:

г) Вычисляют NaCl в соли:

NaCI =
$$[Cl^{-}_{(o6\mu)} - Cl^{-}_{(Mq)} - Cl^{-}_{(K)}] \cdot 1,6485.$$

За результат определения массовой доли хлористого натрия принимают значение, вычисленное до четвертого десятичного знака и округленное до второго десятичного знака.

6 Проверка правильности результатов определения

Проверку проводят путем сравнения суммы массовых долей ионов $\Sigma X_{\text{монов}}$ и суммы массовых долей солей $\Sigma X_{\text{солев}}$ -

Полученные значения сумм округляют до первого десятичного знака.

Результат проверки признают удовлетворительным, если $\Sigma X_{ионов} = \Sigma X_{солей}$.

7 Метрологические характеристики

Метрологические характеристики метода определений приведены в таблице 3.

Т а б л и ц а 3 — Метрологические характеристики метода определений массовой доли хлористого натрия

В процентах

Диапазон измерения массовой доли хлористого натрия X_{NaCl}	Показатель точности (границы абсолютной погрешности при $P=0.95)\pm \Delta$
От 97,0 до 99,9 включ.	0,6

П р и м е ч а н и е — Диапазоны и показатели точности измерения хлористого натрия соответствуют его нормируемым значениям по ГОСТ Р 51574.

Приложение A (справочное)

Примеры расчетов

Пример 1

При анализе пробы соли получены следующие результаты:

Массовая доля: нерастворимый остаток (H.O.)= 0.21 %; $Ca^{2+} = 0.34$ %; $Mg^{2+} = 0.02$ %; $K^{+} = 0.011$ %; $SO_4^{2-} = 0.94$ %; $C\Gamma = 59.54$ %.

$$\frac{SO_4^{2+}}{Ca^{2+}} = \frac{0.94}{0.34} = 2,7647 > 2,3966.$$

CaSO_a = 0,34 · 3,3966 = 1,15 %.

$$SO_{4(Mg,Na)}^{2} = 0.94 - 0.34 \cdot 2.3966 = 0.125.$$

$$SO_{4(Mg)}^{2-} = 0.02 \cdot 3.9522 = 0.079.$$

 $SO_{4(Mg,Na)}^{2-} > SO_{4(Mg)}^{2-}$, поэтому рассчитываем

 $MgSO_a = 0.02 \cdot 4.9512 = 0.099 \%$.

 $Na_2SO_4 = [0,125-0,079] \cdot 1,4787 = 0,07 \%$

KCI = 0,011 · 1,9067 = 0,021 %.

 $Na^{+} = (Ci^{-} - Ci^{-}_{(K)}) \cdot 0,6485 = [59,54 - 0,011 \cdot 0,9067] \cdot 0,6485 = 38,61 \%.$

NaCI = $(CI_{06m}^{-}, CI_{(K)}^{-}) \cdot 1,6485 = [59,54 - 0,011 \cdot 0,9067] \cdot 1,6485 = 98,14 \% = 98,1 \%$.

Проверка:

 $\Sigma X_{\text{MOHOB}} = 0.34 + 0.02 + 0.011 + 0.94 + 59.54 + 38.61 = 99.46 \% = 99.5 \%$.

 $\Sigma X_{\text{cone}\,\ddot{\mu}} = 1.15 + 0.099 + 0.07 + 0.021 + 98.14 = 99.48 \% = 99.5 \%.$

 $\Sigma X_{\text{ирнов}} = \Sigma X_{\text{солей}}$, результат проверки удовлетворительный.

Пример 2

При анализе пробы соли получены следующие результаты:

Массовая доля: H.O. = 0.76 %; Ca²⁺ = 0.43 %; Mg²⁺ = 0.04 %; K⁺ = 0.87 %; SO₄²⁻ = 1.07 %; CI⁻ = 58.95 %.

$$\frac{SO_4^{2-}}{Ca^{2+}} = \frac{107}{0.43} = 2.4884 > 2.3968.$$

CaSO₄ = 0,43 · 3,3966 = 1,46 %.

 $SO_{4(Mg,Na)}^{2-} = 1,07 - 0,43 \cdot 2,3966 = 0,039.$

 $SO_{4(Mo)}^{2} = 0.04 \cdot 3.9522 = 0.158.$

 $SO_{4(Ma)}^{2-} > SO_{4(MaNa)}^{2-}$, поэтому рассчитываем MgSO₄ исходя из содержания оставшегося SO_4^{2-}

 $MgSO_A = 0.04 \cdot 1.2530 = 0.05 \%$.

 $Mg_{(SO_A)}^{2+} = 0.04 \cdot 0.2530 = 0.010.$

$$Mg_{(CI)}^{2+} = 0.04 - 0.01 = 0.03.$$

MgCl₂ = 0.03 · 3.9173 = 0.12 %.

KCI = 0,87 · 1,9067 = 1,66 %.

 $\text{Na}^+ = (\text{CIT}_{\text{o}6\text{u}_i} - \text{CIT}_{(\text{Mg})} - \text{CIT}_{(\text{K})}) \, 0.6485 = [58.95 - 0.03 \cdot 2.9173 - 0.87 \cdot 0.9067] \, 0.6485 = 37.66 \, \%.$

NaCI = [58,95 - 0,09 - 0,79] 1,6485 = 95,73 %.

Проверка:

 $\Sigma X_{MOHOB} = 0.43 + 0.04 + 0.87 + 1.07 + 58.95 + 37.66 = 99.02 \% = 99.0 \%.$

 $\Sigma X_{\text{cone}\tilde{u}} = 1.46 + 0.05 + 0.12 + 1.66 + 95.73 = 99.02 \% = 99.0 \%$.

 $\Sigma X_{\text{ионов}} = \Sigma X_{\text{солей}}$, результат проверки удовлетворительный.

УДК 664.41.001.4:006.354	OKC 67.220.20	H95	OKIT 91 9203
			91 9220
			91 9230
			91 9240

Ключевые слова: соль поваренная пищевая, расчетный метод, определение, массовая доля хлористого натрия, основное вещество

Редактор Л.В. Коретникова Технический редактор Н.С. Гришанова Корректор И.А. Королева Компьютерная верстка А.Н. Золотаревой

Сдано в набор 16.01.2013. Подписано в печать 23.01.2013. Формат 60 × 84 🔏.

Гарнитура Ариал.

Усл. печ. п. 1,40. Уч.-изд. л. 0,70. Тираж 188 экз. Зак. 75.

ФГУП «СТАНДАРТИНФОРМ», 123995 Москва, Гранатный пер., 4. www.gostinfo.ru info@gostinfo.ru

Набрано во ФГУП «СТАНДАРТИНФОРМ» на ПЭВМ.
Отлечатано в филиале ФГУП «СТАНДАРТИНФОРМ» — тип. «Московский печатник», 105062 Москва, Лялин пер., 6.