ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ ΓΟCT P 54491— 2011

Консервы фруктовые

МЕТОД ОПРЕДЕЛЕНИЯ НАЛИЧИЯ ХИНОЛИНОВЫХ, ТРИАРИЛМЕТАНОВЫХ И АЗОКРАСИТЕЛЕЙ

Издание официальное

Предисловие

Цели и принципы стандартизации Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. № 184-ФЗ «О техническом регулировании», а правила применения национальных стандартов Российской Федерации — ГОСТ Р 1.0—2004 «Стандартизация в Российской Федерации. Основные положения»

Сведения о стандарте

- 1 PAЗPAБОТАН Государственным научным учреждением «Всероссийский научно-исследовательский институт пищевых ароматизаторов, кислот и красителей» Российской академии сельскохозяйственных наук (ГНУ «ВНИИПАКК» Россельхозакадемии)
- 2 ВНЕСЕН Техническим комитетом по стандартизации ТК 154 «Пищевые добавки и ароматизаторы»
- 3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 9 ноября 2011 г. № 535-ст
 - 4 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячно издаваемых информационных указателях «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

Содержание

1	Область применения
2	Нормативные ссылки
3	Сущность метода
4	Требования безопасности
5	Средства измерений, вспомогательное оборудование, посуда, реактивы и материалы
6	Подготовка к проведению анализа
7	Проведение анализа

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Консервы фруктовые

МЕТОД ОПРЕДЕЛЕНИЯ НАЛИЧИЯ ХИНОЛИНОВЫХ, ТРИАРИЛМЕТАНОВЫХ И АЗОКРАСИТЕЛЕЙ

Canned fruits. Method for determination of quinoline, triarylmethane and azo colours presence

Дата введения — 2013-01-01

1 Область применения

Настоящий стандарт распространяется на фруктовые консервы: компоты из фруктов и ягод (далее — консервы) и устанавливает хроматографический метод определения наличия и идентификации пищевых синтетических хинолиновых, триарилметановых и азокрасителей (далее — красителей).

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ Р 12.1.019—2009 Система стандартов безопасности труда. Электробезопасность. Общие требования и номенклатура видов защиты

ГОСТ Р 53228—2008 Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания

ГОСТ 12.0.004—90 Система стандартов безопасности труда. Организация обучения безопасности труда. Общие положения

ГОСТ 12.1.004—91 Система стандартов безопасности труда. Пожарная безопасность. Общие требования

ГОСТ 12.1.005—88 Система стандартов безопасности труда. Общие санитарно-гигиенические требования к воздуху рабочей зоны.

ГОСТ 12.1.007—76 Система стандартов безопасности труда. Вредные вещества. Классификация и общие требования безопасности

ГОСТ 12.2.007.0—75 Система стандартов безопасности труда. Изделия электротехнические. Общие требования безопасности

ГОСТ 12.4.009—83 Система стандартов безопасности труда. Пожарная техника для защиты объектов. Основные виды. Размещение и обслуживание

ГОСТ 12.4.021—75 Система стандартов безопасности труда. Системы вентиляционные. Общие требования

ГОСТ 12.4.103—83 Система стандартов безопасности труда. Одежда специальная защитная, средства индивидуальной защиты ног и рук. Классификация

ГОСТ 61—75 Реактивы. Кислота уксусная. Технические условия

ГОСТ 427—75 Линейки измерительные металлические. Технические условия

ГОСТ 1770—74 Посуда мерная лабораторная стеклянная. Цилиндры, мензурки, колбы, пробирки. Общие технические условия

ГОСТ 2603—79 Реактивы. Ацетон, Технические условия

ГОСТ 3760—79 Реактивы. Аммиак водный. Технические условия

ГОСТ 4517—87 Реактивы. Методы приготовления вспомогательных реактивов и растворов, применяемых при анализе

ГОСТ 5830—79 Реактивы. Спирт изоамиловый. Технические условия

FOCT P 54491-2011

ГОСТ 6006—78 Реактивы. Бутанол-1. Технические условия

ГОСТ 6016—77 Реактивы. Спирт изобутиловый. Технические условия

ГОСТ 6709—72 Вода дистиллированная. Технические условия

ГОСТ 8756.0—70 Продукты пищевые консервированные. Отбор проб и подготовка их к испытанию

ГОСТ 9875—88 Диэтиламин технический. Технические условия

ГОСТ 13647—78 Реактивы. Пиридин. Технические условия

ГОСТ 14919—83 Электроплиты, электроплитки и жарочные электрошкафы бытовые. Общие технические условия

ГОСТ 18300—87 Спирт этиловый ректификованный технический. Технические условия

ГОСТ 20015—88 Хлороформ. Технические условия

ГОСТ 21241—89 Пинцеты медицинские. Общие технические требования и методы испытаний

ГОСТ 25336—82 Посуда и оборудование лабораторные стеклянные. Типы, основные параметры и размеры

ГОСТ 26671—85 Продукты переработки плодов и овощей, консервы мясные и мясорастительные. Подготовка проб для лабораторных анализов

ГОСТ 29169—91 (ИСО 648—77) Посуда лабораторная стеклянная. Пипетки с одной отметкой

ГОСТ 29227—91 (ИСО 835-1—81) Посуда лабораторная стеклянная. Пипетки градуированные. Часть 1. Общие требования

П р и м е ч а н и е — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодно издаваемому информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по соответствующим ежемесячно издаваемым информационным указателям, опубликованным в текущем году. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Сущность метода

Хроматографический метод идентификации красителей основан на их водно-спиртовой экстракции из измельченной твердой части консервов, сорбции красителей из полученного экстракта и жидкой части консервов твердыми сорбентами, десорбции аммиаком, удалении последнего выпариванием и хроматографировании в тонком слое сорбента (TCX).

Идентификацию красителей проводят методом сравнения значений R_f^* (отношение расстояния от центра пятна обнаруженного красителя до линии старта к расстоянию линии миграции элюента до линии старта) каждого обнаруженного красителя со значениями R_f (отношение расстояния от центра пятна стандартного красителя до линии старта к расстоянию линии миграции элюента до линии старта) контрольных образцов красителей (КО).

4 Требования безопасности

- 4.1 При выполнении анализов необходимо соблюдать требования техники безопасности при работе с химическими реактивами по ГОСТ 12.1.007 и ГОСТ 12.4.103.
- 4.2 Помещение, в котором проводят измерения, должно быть оборудовано общей приточно-вытяжной вентиляцией по ГОСТ 12.4.021.
- 4.3 Электробезопасность при работе с электроустановками по ГОСТ 12.2.007.0 и по ГОСТ Р 12.1.019.
 - 4.4 Организация обучения работающих безопасности труда по ГОСТ 12.0.004.
- 4.5 Помещение лаборатории должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004 и иметь средства пожаротушения по ГОСТ 12.4.009.
- 4.6 Содержание вредных веществ в воздухе рабочей зоны не должно превышать норм, установленных ГОСТ 12.1.005.

5 Средства измерений, вспомогательное оборудование, посуда, реактивы и материалы

Для проведения анализа применяют следующие средства измерений, вспомогательное оборудование, посуду, реактивы и материалы:

- 5.1 Весы по ГОСТ 53228, обеспечивающие точность взвешивания с пределами абсолютной допускаемой погрешности ± 0,0001 г и ± 0,01 г.
 - 5.2 Воронка лабораторная типа В-36—80 ХС по ГОСТ 25336.
- 5.3 Пластина для тонкослойной хроматографии с силикагелем на полимерной подложке размером 10 x 10 см.
 - 5.4 Камера хроматографическая размером 12 × 12 × 5 см.
 - Б.5 Патрон для твердофазной экстракции с сорбентом оксида алюминия.
- 5.6 Алюминия оксид активированный кислый, $(4,5\pm0,5)$ ед. pH, зернением от 0.05 до 0,15 мм, удельной поверхностью 155 м²/г для колоночной хроматографии.
 - 5.7 Шприц медицинский инъекционный вместимостью от 10 до 20 см³.
- 5.8 Микрошприц типа МШ-1 или Газохром-101 вместимостью 1,0 мм³ (1 мкл) с ценой деления не более 0,02 мм³ (0,02 мкл).
 - 5.9 Пипетки с одной меткой вместимостью 1, 5, 25 см³ 1-го класса точности по ГОСТ 29169.
 - 5.10 Пипетки градуированные вместимостью 1, 5, 10 см³ 1-го класса точности по ГОСТ 29227.
 - Стаканы термостойкие вместимостью 50, 200 см³ по ГОСТ 25336.
- 5.12 Колбы мерные с пришлифованной пробкой вместимостью 10, 25, 50, 100 см³ 1-го класса точности по ГОСТ 1770.
 - 5.13 Пробки стеклянные с конусом 29/32 по ГОСТ 1770.
 - 5.14 Чашка выпарная круглодонная вместимостью 100 см³ по ГОСТ 25336.
 - 5.15 Палочка стеклянная с оплавленным концом.
 - 5.16 Термостат или водяная баня.
 - 5.17 Электроплитка бытовая по ГОСТ 14919.
 - 5.18 Линейка металлическая по ГОСТ 427.
 - 5.19 Пинцет медицинский по ГОСТ 21241.
 - 5.20 Мешалка магнитная с максимальной скоростью вращения магнитного ротора 1400 об/мин.
- 5.21 рН-метр со стеклянным электродом с диапазоном измерения от 1 до 14 ед. рН, с абсолютной допускаемой погрешностью измерений ± 0,05 ед. рН.
 - 5.22 Фильтры бумажные обеззоленные «красная лента».
- 5.23 Цилиндр мерный вместимостью 100 см³, с ценой наименьшего деления 1 см³, 1-го класса точности по ГОСТ 1770.
 - 5.24 Воронка фильтрующая ВФ-1-32-ПОР 160 XC по ГОСТ 25336.
- 5.25 Стандартные синтетические красители с массовой долей красящих веществ не менее 80 % по 3.4.4.1.
 - 5.26 Пиридин по ГОСТ 13647, ч. д. а.
- 5.27 Кислота уксусная по ГОСТ 61, х. ч., ледяная, раствор массовой концентрацией 10 г/дм³ готовят по ГОСТ 4517.
 - 5.28 Спирт этиловый ректификованный технический высшего сорта по ГОСТ 18300.
 - 5.29 Спирт изоамиловый по ГОСТ 5830, ч. д. а.
 - 5.30 Спирт изобутиловый по ГОСТ 6016, ч. д. а.
 - 5.31 Аммиак водный по ГОСТ 3760, ч. д. а., раствор массовой концентрацией 250 г/дм³.
 - 5.32 Бутанол-1 технический по ГОСТ 6006.
 - 5.33 Диэтиламин технический по ГОСТ 9875.
 - 5.34 Хлороформ по ГОСТ 20015.
 - 5.35 Вода дистиллированная по ГОСТ 6709.

Допускается применение других средств измерений и вспомогательного оборудования, не уступающих вышеуказанным по метрологическим и техническим характеристикам и обеспечивающих необходимую точность измерения, а также реактивов по качеству не хуже вышеуказанных.

6 Подготовка к проведению анализа

6.1 Отбор проб

Отбор проб — по ГОСТ 8756.0.

6.2 Подготовка проб

Подготовка проб — по ГОСТ 26671 с дополнением. При подготовке проб жидкую и измельченную твердую части не объединяют.

6.3 Условия проведения анализа

Помещение, где проводят работы с реактивами, должно быть оснащено приточно-вытяжной вентиляцией.

Все операции с реактивами следует проводить в вытяжном шкафу.

6.4 Приготовление раствора аммиака массовой концентрации 125 г/дм³

В мерную колбу (с пришлифованной пробкой) вместимостью 10 см³ вносят пипеткой 5 см³ водного аммиака (см. 5.31). Доводят объем раствора аммиака в колбе до метки дистиллированной водой, закрывают колбу пробкой и тщательно перемешивают.

Раствор аммиака хранят в плотно закрытой таре при температуре от 15 °C до 25 °C — не более 1 мес.

6.5 Приготовление элюентов

6.5.1 Приготовление элюента 1

В мерную колбу вместимостью 50 см³ вносят пипетками, индивидуальными для каждого реактива, 3 см³ пиридина (см. 5.26), 3 см³ изоамилового спирта (см. 5.29), 3 см³ изобутилового спирта (см. 5.30), 4 см³ этилового ректификованного технического спирта (см. 5.28) и 4 см³ водного аммиака (см. 5.31). Колбу закрывают стеклянной пробкой и тщательно перемешивают.

6.5.2 Приготовление элюента 2

В мерную колбу вместимостью 50 см³ вносят пипетками, индивидуальными для каждого реактива, 3 см³ пиридина, 3 см³ изоамилового спирта, 3 см³ изобутилового спирта, 4 см³ этилового ректификованного технического спирта и 8 см³ водного аммиака. Колбу закрывают стеклянной пробкой и тщательно перемешивают.

6.5.3 Приготовление элюента 3

В мерную колбу вместимостью 50 см³ вносят пипетками, индивидуальными для каждого реактива, 6 см³ диэтиламина технического (см. 5.33), 5 см³ хлороформа (см. 5.34), 6 см³ этилового ректификованного технического спирта и 3 см³ раствора аммиака (см. 6.4). Колбу закрывают стеклянной пробкой и тщательно перемешивают.

6.5.4 Приготовление элюента 4 (для идентификации красителя Зеленый S)

В мерную колбу вместимостью 50 см³ вносят пипетками, индивидуальными для каждого реактива, 6 см³ бутанола-1 технического (см. 5.32), 3 см³ этилового ректификованного технического спирта, 3 см³ пиридина и 6 см³ дистиллированной воды. Колбу закрывают стеклянной пробкой и тщательно перемешивают.

Все элюенты готовят за один час до начала анализа. Не допускается повторное использование элюентов.

6.6 Приготовление водно-спиртового раствора

В мерную колбу вместимостью 250 см³ отмеряют цилиндром 50 см³ этилового спирта и 50 см³ дистиллированной воды. Закрывают колбу пробкой и тщательно перемешивают.

Раствор готовят непосредственно перед анализом.

6.7 Приготовление растворов КО

6.7.1 В необходимое число стаканов вместимостью 50 см³ каждый взвешивают на весах по ГОСТ Р 53228 по 0,025 г стандартных красителей с записью результата взвешивания до третьего десятичного знака в соответствии с таблицей 1.

Таблица 1 — Значения Р, стандартных красителей

Наименование стандартного	Номер красителя*	Номер пищевой добавки**	Значения R_I для элюента			
красителя			1	2	3	4
Синтетические красители, р	азрешенные	в Российской (Редерации <u>д</u>	ля производс	гва пищевых г	родуктов
Тартразин	CI 19140	E102	0,27	0,49	0,37	1
Желтый хинолиновый	CI 47005	E104	0,74 0,83	0,65 0,69	0,47 0,65	1 1
Желтый «Солнечный закат»	CI 15985	E110	0,39	0,68	0,64	1
Азорубин	CI 14720	E122	0,34	0,67	0,54	-
Понсо 4R	CI 16255	E124	0,24	0,65	0,48	_
Красный очаровательный АС	CI 16035	E129	0.50	0,67	0,66	-
Зеленый S	CI 44090	E142	0,16	0,54 0,63	0,55	0.75
Синтетические красители, з	апрещенные	в Российской Ф	Федерации д	ля производс	тва пищевых г	родуктов
Амарант	CI 16185	E123	0,29	0,64	0,43	-
Красный 2G	CI 18050	E128	0,49	0,51	0,48	1
Желтый 2G	CI 18965	E107	0.32	0.65	0.31	-

^{*} Номер красителя в соответствий с международным каталогом красителей Colour Index.

6.7.2 В каждый стакан с пробой стандартного красителя, подготовленного по 6.7.1, добавляют 5 см³ дистиллированной воды и перемешивают стеклянной палочкой до полного растворения. Для интенсификации растворения допускается нагревание раствора в стакане на водяной бане до температуры не более 90 °C. Затем раствор переносят количественно в мерную колбу (с пришлифованной пробкой) вместимостью 50 см³, доводят объем раствора в колбе до метки дистиллированной водой, закрывают колбу пробкой и тщательно перемешивают.

Полученный раствор КО хранят в склянке из темного стекла с завинчивающейся пробкой при комнатной температуре — не более 6 мес.

6.8 Приготовление экстрагента

В мерную колбу (с пришлифованной пробкой) вместимостью 100 см³ вносят пипеткой 0,1 см³ раствора аммиака по 6.4 и отмеряют цилиндром 50 см³ этилового спирта. Доводят объем раствора в колбе до метки дистиллированной водой, закрывают колбу пробкой и тщательно перемешивают.

Раствор готовят непосредственно перед анализом.

6.9 Извлечение красителей из анализируемых консервов методом твердофазной экстракции

6.9.1 Приготовление экстракта твердой части консервов

В стакане вместимостью 50 см³ взвешивают на весах по ГОСТ Р 53228 5—10 г измельченного продукта, полученного по 6.2, с записью результата взвешивания до первого десятичного знака. Мерным цилиндром отмеряют экстрагент, полученный по 6.8 из расчета не менее 8 см³ на 1 г измельченного продукта, и добавляют в стакан с анализируемой пробой. Затем содержимое стакана перемешивают на магнитной мешалке (см. 5.20) в течение 10 мин.

^{**} Номер красителя в соответствии с европейской кодификацией пищевых добавок.

FOCT P 54491-2011

Полученную суспензию фильтруют на фильтрующей воронке (см. 5.24) или на бумажном фильтре (см. 5.22), твердую часть промывают экстрагентом по 6.8 из расчета не менее 10 см³ на 1 г измельченной твердой части продукта.

6.9.2 Подготовка патрона для твердофазной экстракции красителей

Медицинским шприцем (см. 5.7) набирают от 10 до 20 см³ раствора ледяной уксусной кислоты массовой концентрацией 10 г/дм³ (см. 5.26), соединяют шприц с патроном для твердофазной экстракции, заполненным оксидом алюминия (см. 5.6). Патрон промывают раствором ледяной уксусной кислоты массовой концентрацией 10 г/дм³ со скоростью от 10 до 20 капель в минуту. Объем пропускаемого через патрон раствора ледяной уксусной кислоты должен быть не менее 25 см³. Затем патрон отсоединяют от шприца.

6.9.3 Сорбция красителей из экстракта

Измеряют при температуре 20 °C на pH-метре (см. 5.21) значение pH экстракта, полученного по 6.9.1. При отклонении измеренного значения кислотности от заданного интервала (от 2,5 до 3,5 ед. pH) pH доводят до нормы добавлением ледяной уксусной кислоты.

Медицинским шприцем набирают по 20 см³ экстракта и соединяют шприц с патроном, подготовленным по 6.9.2. Пропускают анализируемый экстракт через патрон по одной капле со скоростью от 10 до 20 капель в минуту. По достижении окрашенным слоем основания патрона экстракт пропускают через второй патрон. Объем пропускаемого через патрон экстракта должен быть не менее 40 см³. При необходимости применяют от 1 до 3 патронов, подготовленных по 6.9.2. После этого промывают каждый патрон с сорбированным красителем 25 см³ раствора ледяной уксусной кислоты по одной капле со скоростью от 10 до 20 капель в минуту.

6.9.4 Десорбция красителей из патронов водным аммиаком

Медицинским шприцем набирают 10 см³ водного аммиака и соединяют шприц с патроном, содержащим сорбированный из экстракта краситель по 6.9.3. Пропускают водный аммиак через патрон по одной капле со скоростью от 10 до 20 капель в минуту. При необходимости промывание патрона водным аммиаком повторяют до полного обесцвечивания сорбента (оксида алюминия) в патроне. Элюат (раствор водного аммиака с красителем, извлеченным из патрона) собирают в выпарную чашку (см. 5.14) и выпаривают досуха на водяной бане с температурой от 80 °C до 90 °C. Сразу после испарения раствора аммиака чашку с сухим остатком (красителем) охлаждают.

Краситель растворяют в чашке, добавляя пипеткой от 0,5 до 1,0 см³ раствора, приготовленного по 6.6.

6.9.5 Сорбция красителей из жидкой части консервов

Измеряют при температуре 20 °C на pH-метре со стеклянным электродом значение pH жидкой части компота, полученной по 6.2. При отклонении измеренного значения активной кислотности от заданного интервала (от 2,5 до 3,5 ед. pH) pH доводят до нормы добавлением ледяной уксусной кислоты.

Медицинским шприцем набирают от 5 до 10 см³ анализируемой жидкой части пробы и соединяют шприц с патроном, подготовленным по 6.9.2. Пропускают анализируемую жидкую часть пробы через патрон по одной капле со скоростью от 10 до 20 капель в минуту. По достижении уровня окрашенного слоя основания патрона жидкую часть пропускают через второй патрон. При необходимости используют от 1 до 2 патронов, подготовленных по 6.9.2. После этого промывают каждый патрон с сорбированным красителем 25 см³ раствора ледяной уксусной кислоты по одной капле со скоростью от 10 до 20 капель в минуту.

6.9.6 Десорбция красителей из патронов водным аммиаком

Медицинским шприцем набирают 10 см³ водного аммиака и соединяют шприц с патроном, содержащим сорбированный из жидкой части компота краситель по 6.9.5. Десорбцию красителей из патронов проводят водным аммиаком по 6.9.4.

Краситель растворяют в чашке, добавляя пипеткой от 0,5 до 1,0 см³ раствора, приготовленного по 6.6.

6.10 Подготовка хроматографической камеры

В хроматографическую камеру вносят элюент 1 по 6.5.1 в количестве, необходимом для погружения хроматографической пластины на глубину не более 0,5 см от нижнего края пластины. Камеру плотно закрывают и выдерживают в течение 1 ч.

6.11 Подготовка пластин для TCX анализа

На хроматографическую пластину по 5.3 карандашом наносят линию старта на расстоянии 1 см от края пластины и линию границы элюента — на расстоянии 7 см от линии старта (параллельно рискам на обратной стороне пластины). На линию старта карандашом наносят точки с интервалом не менее 1 см.

7 Проведение анализа

7.1 Получение хроматографических карт КО

На пластину, подготовленную по 6.11, микрошприцем наносят на линию старта в несколько приемов с промежуточным подсушиванием на воздухе от 0,3 до 1,0 мм³ растворов КО, приготовленных по 6.7. После нанесения раствора пластину подсушивают в течение от 3 до 4 мин и затем пинцетом по 5.19 помещают в хроматографическую камеру, подготовленную по 6.10, под углом примерно 45°. Камеру плотно закрывают. Элюирование заканчивают при достижении элюентом линии границы элюента 7,0 см от линии старта. По окончании элюирования пластину вынимают пинцетом и подсушивают.

Аналогично получают хроматографические карты с использованием элюентов 2, 3 и 4.

7.2 Обработка хроматографических карт

Линейкой измеряют расстояние от центра каждого пятна стандартного красителя и линии границы элюента до линии старта.

Значение R, стандартного синтетического красителя вычисляют по формуле

$$R_f = \frac{I_k}{I_0},$$
(1)

где I_k — расстояние до линии старта от центра пятна синтетического красителя, см;

– расстояние до линии старта от линии границы элюента, см.

7.3 Обнаружение и идентификация красителей

На хроматографическую пластину, подготовленную по 6.11, микрошприцем наносят на линию старта в несколько приемов с промежуточным подсушиванием на воздухе от 0,3 до 1.0 мм³ раствора КО (или нескольких КО отдельно), приготовленных по 6.7.2, и от 0,5 до 3,0 мм³ анализируемых растворов по 6.9.4 и 6.9.6. После нанесения растворов пластину подсушивают в течение от 3 до 4 мин и затем пинцетом помещают в хроматографическую камеру, подготовленную по 6.10, под углом примерно 45°. Камеру плотно закрывают. Элюирование заканчивают при достижении элюентом линии границы элюента 7,0 см от линии старта. По окончании элюирования хроматографическую пластину вынимают пинцетом и подсушивают.

При отсутствии разделения пятен красителей на хроматограмме анализ повторяют, используя элюент 2, 3 или 4.

Если на полученных хроматограммах присутствует не менее одного окрашенного пятна выше стартовой линии, делают заключение о наличии водорастворимого красителя в анализируемых консервах.

Линейкой измеряют расстояние от центра каждого пятна красителя и линии границы элюента до линии старта.

Значение R' обнаруженного красителя вычисляют по формуле

$$R'_f = \frac{l'_\kappa}{l_*}$$
, (2)

где I'_k — расстояние до линии старта от центра пятна синтетического красителя, см;

/ — расстояние до линии старта от линии границы элюента, см.

Визуально сравнивают цвет и положение пятен обнаруженных красителей с хроматографическими картами, полученными по 7.1.

При совпадении цвета и положения хотя бы одного из пятен обнаруженных красителей с одним из пятен КО идентифицируют обнаруженные красители, сравнивая значения R_i , рассчитанные по формуле 2, со значениями R_i КО, вычисленными по формуле 1 и приведенными в таблице 1.

УДК: 663/664:667.28:006.354

OKC 67.180

H09

OKCTY 9109

Ключевые слова: фруктовые консервы, синтетические водорастворимые красители, идентификация, метод тонкослойной хроматографии

Редактор М.Е. Никулина
Технический редактор В.Н. Прусакова
Корректор И.А. Королева
Компьютерная верстка Л.А. Круговой

Сдано в набор 13.08.2012. Подписано в печать 27.08.2012. Формат 60 × 84 $\frac{1}{8}$. Гарнитура Ариал. Усп. печ. л. 1,40. Уч.-изд. л. 1,20. Тираж 186 экз. Зак. 724.

ФГУП «СТАНДАРТИНФОРМ», 123995 Москва, Гранатный пер., 4. www.gostinfo.ru info@gostinfo.ru