МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ (МГС)

INTERSTATE COUNCIL FOR STANDARDIZATION, METROLOGY AND CERTIFICATION (ISC)

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ **ΓΟCT** 8.558— 2009

Государственная система обеспечения единства измерений

ГОСУДАРСТВЕННАЯ ПОВЕРОЧНАЯ СХЕМА ДЛЯ СРЕДСТВ ИЗМЕРЕНИЙ ТЕМПЕРАТУРЫ

Издание официальное

Предисловие

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены в ГОСТ 1.0—2015 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2—2015 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены»

Сведения о стандарте

- 1 РАЗРАБОТАН Федеральным государственным унитарным предприятием «Всероссийский научно-исследовательский институт метрологии им. Д.И. Менделеева» (ФГУП «ВНИИМ им. Д.И. Менделеева») Федерального агентства по техническому регулированию и метрологии
 - 2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии
- 3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 11 ноября 2009 г. № 36)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004—97	Код страны по МК (ИСО 3166) 004—97	Сокращенное наименование национального органа по стандартизации	
Армения	AM	Минэкономики Республики Армения	
Беларусь	ВҮ Госстандарт Республики Беларусь		
Казахстан	KZ	Госстандарт Республики Казахстан	
Киргизия	KG	Кыргызстандарт	
Молдова	MD	Молдова-Стандарт	
Россия	RU	Росстандарт	
Украина	UA Минэкономразвития Украины		

- 4 Приказом Федерального агентства по техническому регулированию и метрологии от 29 декабря 2010 г. № 1146 межгосударственный стандарт ГОСТ 8.558—2009 введен в действие в качестве национального стандарта Российской Федерации с 1 июля 2012 г.
 - 5 B3AMEH FOCT 8.558-93
 - 6 ПЕРЕИЗДАНИЕ. Февраль 2019 г.

Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

© Стандартинформ, оформление, 2012, 2019

В Российской Федерации настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

Государственная система обеспечения единства измерений

ГОСУДАРСТВЕННАЯ ПОВЕРОЧНАЯ СХЕМА ДЛЯ СРЕДСТВ ИЗМЕРЕНИЙ ТЕМПЕРАТУРЫ

State system for ensuring the uniformity of measurements. State verification schedule for means measuring temperature

Дата введения — 2012—07—01

1 Область применения

- 1.1 Настоящий стандарт распространяется на государственную поверочную схему для средств измерений температуры (приложение A) в диапазонах от 0,3 до 273,16 K (от минус 272,85 °C до 0,01 °C) и от 273,15 до 3273,15 K (от 0 °C до 3000 °C) и устанавливает порядок передачи единиц температуры кельвина (K) и градуса Цельсия (°C) от государственного первичного эталона рабочим средствам измерений с помощью вторичных и рабочих эталонов с указанием погрешности и основных методов аттестации и поверки.
- 1.2 Государственная поверочная схема для средств измерений температуры состоит из трех частей:
- Часть 1. Поверочная схема для контактных термометров в диапазоне от 0,3 до 273,16 К (от минус 272,85 °C до 0,01 °C) (рисунок А.1 приложения А);
- Часть 2. Поверочная схема для контактных термометров в диапазоне от 273,15 до 3273,15 К (от 0 °C до 3000 °C) (рисунок А.2 приложения А);
 - Часть 3. Поверочная схема для радиационных термометров (рисунок А.3 приложения А).
- 1.3 Государственную поверочную схему для средств измерений температуры возглавляет государственный первичный эталон единицы температуры, состоящий из двух комплексов: ГПЭ-I и ГПЭ-II и предназначенный для воспроизведения, хранения и передачи единицы температуры в соответствии с Положением о Международной температурной шкале МТШ-90.
- 1.4 Температурная шкала, воспроизводимая ГПЭ-I в диапазоне от 0,3 до 273,16 K (от минус 272,85 °C до 0,01 °C), непрерывно переходит в точке 273,16 K (0,01 °C) в шкалу с диапазоном от 273,15 до 1234,93 K (от 0 °C до 961,78 °C), воспроизводимую ГПЭ-II.
- 1.5 Температурная шкала, воспроизводимая ГПЭ-II в диапазоне от 273,15 до 1234,93 K (от 0 °C до 961,78 °C), непрерывно переходит в точке 1234,93 K (961,78 °C) в шкалу с диапазоном от 1234,93 до 3273,15 K (от 961,78 °C до 3000,0 °C), воспроизводимую ГПЭ-II.
- 1.6 Для всех рабочих средств измерений допускается проводить поверку (калибровку) с помощью эталонов более высокой точности, чем предусмотрено настоящим стандартом.

2 Часть 1. Поверочная схема для контактных термометров в диапазоне от 0,3 до 273,16 K (от минус 272,85 °C до 0,01 °C)

2.1 Государственный первичный эталон ГПЭ-І

2.1.1 Государственный первичный эталон единицы температуры ГПЭ-I (далее — ГПЭ-I), представляет собой набор термопреобразователей сопротивления*, помещенных в три устройства сравнения.

^{*} Далее по тексту — «термопреобразователи».

ГПЭ-І включает в себя:

- устройства для точных измерений сопротивления и давления;
- комплект установок для реализации температуры реперных точек МТШ-90;
- газовый интерполяционный термометр;
- криостаты сравнения.

Передача Международной температурной шкалы МТШ-90 вторичным эталонам осуществляется приведением их в тепловой контакт с блоком сравнения и сличением в криостате.

- 2.1.2 Диапазон значений температуры, воспроизводимых ГПЭ-I, составляет от 0,3 до 273,16 К (от минус 272,85 °C до 0,01 °C).
- 2.1.3 ГПЭ-I обеспечивает воспроизведение единицы со средним квадратическим отклонением результата измерений S: не более $0.3 \cdot 10^{-3}$ K в точке 0.3 K (минус 272.85 °C) и $1.0 \cdot 10^{-3}$ K в точке 273.16 K (0.01 °C) при пяти независимых измерениях*.

Неисключенная систематическая погрешность θ — не более $0,2\cdot10^{-3}$ K в точке 0,3 K (минус 272,85 °C) и $0,9\cdot10^{-3}$ K в точке 273,16 K (0,01 °C).

Стандартная неопределенность, оцениваемая по типу A, u_A : не более $0.3 \cdot 10^{-3}$ K в точке 0.3 K (минус 272,85 °C) и $1.0 \cdot 10^{-3}$ K в точке 273,16 K (0.01 °C) при пяти независимых измерениях.

Стандартная неопределенность, оцениваемая по типу B, u_B : не более $0,20\cdot10^{-3}$ K в точке 0,3 K (минус 272,85 °C) и $0,9\cdot10^{-3}$ K в точке 273,16 K (0,01 °C).

2.1.4 ГПЭ-І применяют для передачи единицы температуры вторичным эталонам непосредственным сличением.

2.2 Вторичные эталоны

- 2.2.1 В качестве эталона-копии применяют платиновые и родий-железные термопреобразователи в диапазоне измерений от 0,3 до 273,16 K (от минус 272,85 °C до 0,01 °C) и ампулу плавления галлия 302,9146 K (29,7646 °C), аттестуемую по государственному первичному эталону ГПЭ-II (далее $\Gamma\Pi$ Э-II) (рисунок A.2 приложения A).
- 2.2.2 В качестве эталона сравнения применяют платиновые и родий-железные термопреобразователи в диапазоне температуры от 0,3 до 273,16 К (от минус 272,85 °C до 0,01 °C).
- $2.2.3\,$ В качестве рабочих эталонов применяют родий-железные термопреобразователи в диапазоне температуры от $0.3\,$ до $303\,$ K (от минус $272.85\,$ °C до $29.85\,$ °C) и платиновые термопреобразователи в диапазоне температуры от $13.8\,$ до $303\,$ K (от минус $259.35\,$ °C до $29.85\,$ °C).
- 2.2.4 Суммарные средние квадратические отклонения погрешности вторичных эталонов S_{Σ} при пяти независимых измерениях: не более значений, указанных в таблице 1.

Таблица 1 — Суммарные средние квадратические отклонения вторичных эталонов и границы доверительной погрешности δ рабочих эталонов 0-го разряда

Диапазон измерений	Эталон-копия	Эталон сравнения	Рабочий эталон 0-го разряда		
			Родий-железные термопреобразователи	Платиновые термопреобразователи	
K (°C)	мК				
От 0,3 до 273,16 (от минус 272,85 до 0,01)	0,3 1,3	0,3 1,3	0,3 1,3	_	
302,9146 (29,7646)	0,3	_	-	_	
От 0,3 до 303,0 (от минус 272,85 до 29,85)	_	-	0, 5 2,0	_	

^{*} Здесь приведен диапазон значений погрешностей и неопределенностей, которые не обязательно относятся к верхней и нижней границам диапазона температуры ГПЭ-I. Максимальные значения в основном относятся к поддиапазону температуры 13,8...30 К (минус 259,35 °С... минус 243,15 °С), где из-за сильного понижения чувствительности платиновых термометров — носителей шкалы возрастают погрешности электрических измерений и погрешности из-за возрастания нестабильности сопротивления.

Окончание таблицы 1

Диапазон измерений	Эталон-копия	Эталон сравнения	Рабочий эталон 0-го разряда		
			Родий-железные термопреобразователи	Платиновые термопреобразователи	
K (°C)	мК				
От 24,5 до 303, от минус 248,65 до 29,85)	_	_	_	0,8 1,4	
От 77,0 до 303,0 (от минус 196,15 до 29,85)	_	_	_	1,0 1,5	

- 2.2.5 Эталоны-копии применяют для передачи единицы температуры рабочим эталонам 0-го разряда непосредственным сличением или калибровкой в реперных точках температурной шкалы МТШ-90.
- 2.2.6 Эталоны сравнения применяют при проведении сличений эталонов, которые по объективным причинам (например, из-за несоответствия размеров) невозможно сличать непосредственно друг с другом.

2.3 Рабочие эталоны

2.3.1 Рабочие эталоны 0-го разряда

- 2.3.1.1~B качестве рабочих эталонов 0-го разряда применяют родий-железные термопреобразователи в диапазоне температуры от 0,3 до 303,0 K (от минус 272,85 °C до 29,85 °C) и платиновые термопреобразователи в диапазоне температуры от 24,5 до 303,0 K (от минус 248,65 °C до 29,85 °C).
- 2.3.1.2 Границы доверительной погрешности δ рабочих эталонов 0-го разряда при доверительной вероятности 0,95 с учетом нестабильности за межаттестационный интервал: не более значений, указанных в таблице 1.
- 2.3.1.3 Рабочие эталоны 0-го разряда применяют для передачи единицы температуры рабочим эталонам 1-го разряда непосредственным сличением.
- 2.3.1.4 Отношение границ доверительной погрешности рабочих эталонов 0-го и 1-го разрядов: не более 0,33 (1:3).

2.3.2 Рабочие эталоны 1-го разряда

- $2.3.2.1\,$ В качестве рабочих эталонов 1-го разряда применяют родий-железные термопреобразователи в диапазоне температуры от 0,3 до 303,0 K (от минус 272,85 °C до 29,85 °C) и платиновые термопреобразователи в диапазоне температуры от 13,8 до 303,0 K (от минус 259,35 °C до 29,85 °C).
- 2.3.2.2 Границы доверительной погрешности δ рабочих эталонов 1-го разряда при доверительной вероятности 0,95 с учетом нестабильности за межаттестационный интервал: не более 0,003 K в диапазоне температуры от 0,3 до 13,8 K (от минус 272,85 °C до минус 259,35 °C); 0,005 K в точке 77 K (минус 196,15 °C); 0,01 K в точке 303,0 K (29,85 °C).
- 2.3.2.3 Рабочие эталоны 1-го разряда применяют для передачи единицы температуры рабочим эталонам 2-го разряда непосредственным сличением.
- 2.3.2.4 Отношение границ доверительной погрешности рабочих эталонов 1-го и 2-го разрядов: не более 0,33 (1:3).

2.3.3 Рабочие эталоны 2-го разряда

- 2.3.3.1~B качестве рабочих эталонов 2-го разряда применяют родий-железные термопреобразователи в диапазоне температуры от 0,8 до 303,0 K (от минус 272,35 °C до 29,85 °C), платиновые термопреобразователи в диапазоне температуры от 13,8 до 303,0 K (от минус 259,35 °C до 29,85 °C) и меры температуры в диапазоне от 90 до 303,0 K (от минус 183,15 °C до 29,85 °C).
- 2.3.3.2 Границы доверительной погрешности δ рабочих эталонов 2-го разряда при доверительной вероятности 0,95 с учетом нестабильности за межаттестационный интервал, не более:
 - для родий-железных и платиновых термопреобразователей: 0,015 K в диапазоне температуры от 0,8 до 77,0 K (от минус 272,35 °C до минус 196,15 °C); 0,05 K в точке 303,0 K (29,85 °C);
 - для мер температуры:
 - 0,05 К в диапазоне температуры от 90 до 303,0 К (от минус 183,15 °C до 29,85 °C).

- 2.3.3.3 Рабочие эталоны 2-го разряда применяют для передачи единицы температуры рабочим эталонам 3-го разряда и высокоточным рабочим средствам измерений непосредственным сличением.
- 2.3.3.4 Отношение границ доверительной погрешности рабочих эталонов 2-го и 3-го разрядов: не более 0,63 (1:1,6).

2.3.4 Рабочие эталоны 3-го разряда

- 2.3.4.1 В качестве рабочих эталонов 3-го разряда применяют родий-железные термопреобразователи в диапазоне температуры от 0.8 до 303.0 K (от минус 272.35 °C до 29.85 °C), платиновые термопреобразователи в диапазоне температуры от 13.8 до 303.0 K (от минус 259.35 °C до 29.85 °C), термоэлектрические термометры в диапазоне температуры от 73.0 до 303.0 K (от минус 200.15 °C до 29.85 °C) и жидкостные термометры в диапазоне температуры от 240.0 до 273.16 K (от минус 33.15 °C до 0.01 °C).
- 2.3.4.2 Границы доверительной погрешности δ рабочих эталонов 3-го разряда при доверительной вероятности 0,95 с учетом нестабильности за межаттестационный интервал, не более:
 - для родий-железных термопреобразователей:
 - 0,03 К в точке 0,8 К (минус 272,35 °C);
 - 0,10 K в точке 303,0 K (29,85 °C);
 - для платиновых термопреобразователей:
 - 0,03 K в точке 13,8 K (минус 259,35 °C);
 - 0,08 К в точке 303,0 К (29,85 °C),
 - для термоэлектрических термометров:
 - 0,10 К в диапазоне от 73,0 до 303,0 К (от минус 200,15 °C до 29,85 °C),
 - для жидкостных термометров:
 - 0,02 К в точке 240 К (минус 33,15 °C);
 - 0,10 K в точке 273,16 K (0,01 °C).
- 2.3.4.3 Рабочие эталоны 3-го разряда применяют для передачи единицы рабочим средствам измерений непосредственным сличением.
- 2.3.4.4 Отношение границ доверительной погрешности рабочих эталонов 3-го разряда и предела допускаемой погрешности рабочих средств измерений не более 0,8 (1:1,25).

2.4 Рабочие средства измерений

- 2.4.1 В качестве рабочих средств измерений применяют платиновые и железо-родиевые термопреобразователи, термоэлектрические преобразователи и жидкостные термометры повышенной точности; термопреобразователи, термоэлектрические, пьезокварцевые, манометрические, жидкостные и другие термометры.
- $2.4.2\,$ Пределы допускаемой абсолютной погрешности Δ рабочих средств измерений составляют от 0,005 до 5 К.

3 Часть 2. Поверочная схема для контактных термометров в диапазоне от 273,15 до 3273,15 K (от 0 °C до 3000 °C)

3.1 Государственный первичный эталон ГПЭ-II

- 3.1.1 Государственный первичный эталон ГПЭ-II (далее ГПЭ-II) в части воспроизведения, хранения и передачи единицы температуры контактным способом включает в себя следующие средства измерений:
- группу платиновых термопреобразователей для диапазона температуры от 273,15 до 933,473 К (от 0 °C до 660,323 °C);
- группу платиновых термопреобразователей для диапазона температуры от 692,677 до 1234,93 K (от 419,527 °C до 961,78 °C);
- комплект установок для реализации температур реперных точек МТШ-90, термостаты сравнения, средства для точных измерений сопротивления и напряжения, аппаратура для воспроизведения, хранения и передачи единицы температуры неконтактным способом в соответствии с 4.1.1.
- $3.1.2\,$ Диапазон значений температуры, воспроизводимых ГПЭ-II контактным способом, составляет от 273,15 до 1234,93 K (от 0 °C до 961,78 °C).

3.1.3 ГПЭ-II обеспечивает воспроизведение и передачу единицы со средним квадратическим отклонением результата измерений S: не более $0.03\cdot10^{-3}$ K в точке 273.15 K (0 °C) и $1.2\cdot10^{-3}$ K в точке 1234.93 K (961.78 °C) при пяти независимых измерениях*.

Неисключенная систематическая погрешность θ : не более 0,04·10⁻³ K в точке 273,15 K (0 °C) и 1,7·10⁻³ K в точке 1234,93 K (961,78 °C).

Стандартная неопределенность, оцениваемая по типу A, u_A : не более $0.03 \cdot 10^{-3}$ K в точке 273,15 K (0 °C) и $1.2 \cdot 10^{-3}$ K в точке 1234,93 K (961,78 °C) при пяти независимых измерениях.

Стандартная неопределенность, оцениваемая по типу B, u_B : не более $0.03 \cdot 10^{-3}$ K в точке 273,15 K (0 °C) и $1.2 \cdot 10^{-3}$ K в точке 1234,93 K (961,78 °C).

- 3.1.4 ГПЭ-II применяют для передачи единицы температуры эталону-копии непосредственным сличением.
- 3.1.5 Передача единицы температуры при температурах выше 1234,93 К (961,78 °C) осуществляется с помощью излучателей АЧТ и температурных ламп.

3.2 Вторичные эталоны

- 3.2.1 В качестве эталона-копии применяют аппаратуру для воспроизведения реперных точек температурной шкалы МТШ-90 в диапазоне температуры от 273,15 до 2042,15 K (от 0 °C до 1769 °C), а также платиновые термопреобразователи в диапазоне температуры от 273,15 до 1357,77 K (от 0 °C до 1084,62 °C) и термоэлектрические преобразователи в диапазоне температуры от 273,15 до 2042,15 K (от 0 °C до 1769 °C).
- 3.2.2 Суммарное среднее квадратическое отклонение результата сличений эталона-копии с ГПЭ-II при пяти независимых измерениях: не более $0,1\cdot10^{-3}$ K в точке 273,15 K (0 °C) и 0,5 K в точке 2042,15 K (1769 °C).
- 3.2.3 Эталон-копию применяют для передачи единицы температуры рабочим эталонам 0 разряда непосредственным сличением и методом прямых измерений.

3.3 Рабочие эталоны

3.3.1 Рабочие эталоны 0-го разряда

- $3.3.1.1\,$ В качестве рабочих эталонов 0-го разряда применяют платиновые термопреобразователи в диапазоне температуры от 273,15 до 1358,15 K (от 0 °C до 1085 °C), термоэлектрические преобразователи в диапазоне температуры от 273,15 до 2042,15 K (от 0 °C до 1769 °C), аппаратуру для воспроизведения основных и вторичных реперных точек температурной шкалы МТШ-90, а также рабочий эталон 0-го разряда из третьей части поверочной схемы (раздел 4).
- 3.3.1.2 Суммарное среднее квадратическое отклонение результата сличений эталона-копии с рабочими эталонами 0-го разряда в диапазоне температуры от 273,15 до 1358,15 К (от 0 °C до 1085 °C) при трех независимых измерениях с:
- платиновыми термопреобразователями и аппаратурой для воспроизведения реперных точек температуры МТШ-90: не более $0.3\cdot10^{-3}$ K в точке 273,15 K (0 °C) и 45·10⁻³ K в точке 1358,15 K (1085 °C);
- термоэлектрическими преобразователями и реперными точками МТШ-90: не более 0,01 K в точке 273,15 K (0 °C) и 1,0 K в точке 2073,15 K (1800 °C).
- 3.3.1.3 Рабочие эталоны 0-го разряда применяют для передачи единицы температуры рабочим эталонам 1, 2 и 3-го разрядов и рабочим средствам измерений методом прямых измерений и непосредственным сличением в реперных точках температурной шкалы МТШ-90.

3.3.2 Рабочие эталоны 1-го разряда

- 3.3.2.1 В качестве рабочих эталонов 1-го разряда применяют:
- аппаратуру для воспроизведения основных и вторичных реперных точек температурной шкалы МТШ-90 в диапазоне температуры от 273,15 до 1358,15 К (от 0 °C до 1085 °C);
- платиновые термопреобразователи в диапазоне температуры от 273,15 до 1358,15 K (от 0 $^{\circ}$ C до 1085 $^{\circ}$ C):
- термоэлектрические преобразователи в диапазоне температуры от 573,15 до 2073,15 K (от $300~^{\circ}\text{C}$ до $1800~^{\circ}\text{C}$).

^{*} Здесь и далее: интерполяция погрешности в промежуточных значениях температуры осуществляется с учетом линейной зависимости от измеряемой температуры.

- 3.3.2.2 Границы доверительной погрешности рабочих эталонов 1-го разряда при доверительной вероятности 0,95 с учетом нестабильности за межаттестационный интервал: не более 0,002 K в точке 273,15 K (0 °C) и 2,0 K в точке 2073,15 K (1800 °C).
- 3.3.2.3 Рабочие эталоны 1-го разряда применяют для передачи единицы температуры рабочим эталонам 2-го разряда и рабочим средствам измерений непосредственным сличением в термостатах и в реперных точках МТШ-90.
- 3.3.2.4 Отношение границ доверительной погрешности рабочих эталонов 1-го и 2-го разрядов: не более 0,7.

3.3.3 Рабочие эталоны 2-го разряда

- 3.3.3.1~B качестве рабочих эталонов 2-го разряда применяют меры температуры (аппаратуру для реализации реперных точек температурной шкалы МТШ-90, калибраторы температуры) и термопреобразователи в диапазоне температуры от 273,15 до 1358,15 K (от 0 °C до 1085 °C), жидкостные термометры для измерений разности температур в диапазоне от 273,15 до 423,15 K (от 0 до 150 °C), термоэлектрические термометры, кварцевые термометры и другие средства измерений температуры в диапазоне температуры от 273,15 до 2773,15 K (от 0 °C до 2500 °C).
- 3.3.3.2 Доверительные границы абсолютной погрешности δ рабочих эталонов 2-го разряда при доверительной вероятности 0,95 с учетом нестабильности за межаттестационный интервал: не более 0,01 K в точке 273,15 K (0 °C) и 10 K в точке 2773,15 K (2500 °C).
- 3.3.3.3 Рабочие эталоны 2-го разряда применяют для передачи единицы рабочим эталонам 3-го разряда и рабочим средствам измерений методом прямых измерений или непосредственным сличением в термостате.
- 3.3.3.4 Отношение границ доверительной погрешности рабочих эталонов 2-го и 3-го разрядов: не более 0,5 (1:2).

3.3.4 Рабочие эталоны 3-го разряда

- 3.3.4.1~B качестве рабочих эталонов 3-го разряда применяют меры температуры (аппаратуру для реализации реперных точек температурной шкалы МТШ-90, калибраторы температуры), термопреобразователи, стеклянные, кварцевые, термоэлектрические термометры и другие средства измерений температуры в диапазоне температуры от 273,15 до 2073,15 K (от 0 °C до 1800 °C).
- 3.3.4.2 Доверительные границы абсолютной погрешности δ рабочих эталонов 3-го разряда при доверительной вероятности 0,95 с учетом нестабильности за межаттестационный интервал: не более 0,05 K в точке 273,15 K (0 °C) и 6 K в точке 2073,15 K (1800 °C).
- 3.3.4.3 Рабочие эталоны 3-го разряда применяют для передачи единицы рабочим средствам измерений непосредственным сличением в термостате или методом прямых измерений по мерам температуры.
- 3.3.4.4 Отношение границ доверительной погрешности рабочего эталона 3-го разряда и предела допускаемой погрешности рабочего средства измерений не более 0,5 (1:2).

3.5 Рабочие средства измерений

- 3.5.1 В качестве рабочих средств измерений применяют термометры для измерений разности температуры, температуры поверхности, а также различные типы термопреобразователей и термоэлектрических преобразователей, используемых для измерений температуры в статическом режиме путем погружения внутрь объема объекта измерений.
- 3.5.2 Пределы допускаемой абсолютной погрешности рабочих средств измерений составляют от 0,003 K в точке 273,15 K (0 °C) до 30 K в точке 3273,15 K (3000 °C) при линейной зависимости от значения измеряемой величины.

4 Часть 3. Поверочная схема для радиационных термометров

4.1 Государственный первичный эталон

4.1.1 ГПЭ-II в части воспроизведения, хранения и передачи единицы температуры неконтактным способом включает в себя следующие средства измерений: группу температурных ламп, излучатели — модели абсолютно черного тела (далее — АЧТ), предназначенные для воспроизведения температур затвердевания серебра, золота и меди, средства для точных измерений напряжения и сопротивления.

В состав ГПЭ-ІІ также входят установка для реализации температур реперных точек МТШ-90 (серебра, золота и меди), фотоэлектрический компаратор яркостей тепловых излучателей, аппаратура

для воспроизведения, хранения и передачи единицы температуры контактным способом в соответствии с 3.1.1.

- 4.1.2 Диапазон температуры, в котором воспроизводится единица, составляет 961,78 °С...3000 °С (1234,93...3273,15 K).
- 4.1.3 ГПЭ-II обеспечивает воспроизведение и передачу единицы температуры со средним квадратическим отклонением результата измерений S: не более 0,10 °C в точке 1234,93 K (961,78 °C) и 1,4 °C в точке 3273,15 K (3000 °C) при пяти независимых измерениях.

Неисключенная систематическая погрешность θ : не более 0,12 °C в точке 1234,93 K (961,78 °C) и 0,42 °C в точке 3273,15 K (3000 °C).

Стандартная неопределенность, оцениваемая по типу A, u_A : не более 0,1 °C в точке 1234,93 K (961,78 °C) и 1,4 °C в точке 3273,15 K (3000 °C) при пяти независимых измерениях.

Стандартная неопределенность, оцениваемая по типу B, u_B : не более 0,05 °C в точке 1234,93 K (961,78 °C) и 0,18 °C в точке 3273,15 K (3000 °C).

- 4.1.4 ГПЭ-II применяют для передачи единицы температуры неконтактным способом эталонукопии сличением с помощью компаратора по спектральной плотности яркости теплового излучения.
- 4.1.5 Передачу единицы температуры при температуре ниже 1234,93 К (961,78 °C) осуществляют с помощью платиновых термопреобразователей.

4.2 Вторичные эталоны

- 4.2.1~B качестве эталонов-копий используют температурные лампы, калиброванные в видимой, ближних ультрафиолетовой и инфракрасной областях спектра, а также излучатели АЧТ на основе фазовых переходов чистых веществ и/или эвтектик в диапазоне температуры от 1234,93 3273,15 K (от 961,78 °C до 3000 °C).
- 4.2.2 Суммарное среднее квадратическое отклонение S_{Σ} результата сличений эталона-копии с ГПЭ-II при трех независимых измерениях: не более 0,10 °C в точке 273,15 K (0 °C) и 2,0 °C в точке 3273,15 K (3000 °C).
- 4.2.3 Эталоны-копии применяют для передачи единицы температуры рабочим эталонам 0-го разряда сличением с помощью компаратора (спектрокомпаратора или радиометра-компаратора).

4.3 Рабочие эталоны

4.3.1 Рабочие эталоны 0-го разряда

- 4.3.1.1 В качестве рабочих эталонов 0-го разряда применяют:
- излучатели АЧТ с ампулами, реализующими фазовые переходы чистых веществ и/или эвтектик, а также с регулируемой температурой излучающих полостей со встроенным контактным или бесконтактным термометром или без него, градуированные (аттестованные) по яркостной температуре в видимой, в ближних ультрафиолетовой и/или инфракрасной областях спектра в диапазоне температуры от 220 до 3273,15 К (от минус 53,15 °C до 3000 °C);
- монохроматические пирометры в диапазоне температуры от 1073,15 до 3273,15 K (от 800 °C до 3000 °C), градуированные (аттестованные) по яркостной температуре в рабочей эффективной длине волны;
- температурные лампы, градуированные (аттестованные) по яркостной температуре в эффективной длине волны видимой, в ближних ультрафиолетовой и/или инфракрасной областях спектра в диапазоне температуры от 1073,15 до 2373,15 К (от 800 °C до 2100 °C);
- излучатели в микроволновой области спектра в диапазоне температуры от 5273,15 до $100\ 273,15$ K (от $5000\ ^{\circ}$ C до $100\ 000\ ^{\circ}$ C).
- 4.3.1.2 Контактные термометры, входящие в состав рабочих эталонов 0-го разряда, поверяют по эталонам-копиям первой и второй частей поверочной схемы (разделы 2 и 3).
- 4.3.1.3 Суммарное среднее квадратическое отклонение S_Σ результата сличений рабочих эталонов 0-го разряда с эталоном-копией в диапазоне температуры от 273,15 до 1358,15 K (от 0 °C до 1085 °C) при трех независимых измерениях не более:
 - для излучателей АЧТ:
 - 0,25 °C в диапазоне температуры от 220 до 273,15 К (от минус 53,15 °C до 0 °C);
 - 3,0 °С в точке 3273,15 К (3000 °С),
 - для монохроматических пирометров:
 - 1,0 °C в точке 1073,15 K (800 °C);
 - 3,0 °С в точке 2373,15 К (2100 °С),

- для температурных ламп:
- 1,0 °C в точке 1073,15 К (800 °C);
- 2,2 °С в точке 2373,15 К (2100 °С),
- для излучателей в микроволновой области спектра:
- 30 °C в точке 773,15 К (500 °C);
- 300 °С в точке 100273,15 К (100000 °С).
- 4.3.1.4 Рабочие эталоны 0-го разряда применяют для передачи единицы рабочим эталонам 1-го разряда и рабочим средствам измерений методом прямых измерений и сличением с помощью компаратора яркостей (спектрокомпаратора, радиометра-компаратора или компаратора спектрального отношения яркостно-цветового компаратора).

4.3.2 Рабочие эталоны 1-го разряда

- 4.3.2.1 В качестве рабочих эталонов 1-го разряда применяют:
- пирометры монохроматические в диапазоне от 523,15 до 3073,15 К (от 250 °C до 2800 °C);
- пирометры полного и частичного излучения в диапазоне от 273,15 до 3273,15 K (от 0 $^{\circ}$ C до 3000 $^{\circ}$ C);
 - тепловизоры в диапазоне от 220 до 3273,15 K (от минус 53,15 °C до 3000 °C);
 - излучатели АЧТ в диапазоне от 220 до 3273,15 K (от минус 53,15 °C до 3000,0 °C);
 - температурные лампы в диапазоне от 1073,15 до 3073,15 K (от 800 °C до 2800 °C);
 - плазменные излучатели в диапазоне от 2773,15 до 100273,15 K (от 2500 °C до 100000 °C);
- широкоапертурные излучатели с регулируемой температурой в диапазоне от 1273,15 до 100273,15 К (от 1000 °C до 100000 °C) для микроволновой области спектра.
- 4.3.2.2 Доверительные границы абсолютной погрешности δ рабочих эталонов 1-го разряда при доверительной вероятности 0.95 с учетом нестабильности за межаттестационный интервал не более:
 - для излучателей АЧТ и пирометров:
 - $0.6~{\rm K}$ в диапазоне температуры от 220 до 273,15 K (от минус 53,15 °C до 0 °C);
 - $5 \, ^{\circ}$ C в точке 3273,15 K (3000 $^{\circ}$ C),
 - для тепловизоров:
 - $0.6~{\rm K}$ в диапазоне температуры от 220 до 273,15 K (от минус 53,15 °C до 0 °C);
 - 7,5 °C в точке 3273,15 К (3000 °C),
 - для температурных ламп:
 - 3,3 °С в точке 1073,15 К (800 °С);
 - 10 °C в точке 3073, 15 К (2800 °C),
 - для плазменных излучателей:
 - 30 °C в точке 2773,15 К (2500 °C);
 - 400 °С в точке 100273,15 К (100000 °С),
 - для излучателей в микроволновой области спектра:
 - 80 °С в точке 1273,15 К (1000 °С);
 - 800 °С в точке 100273,15 К (100000 °С).
- 4.3.2.3 Рабочие эталоны 1-го разряда применяют для передачи единицы рабочим эталонам 2-го разряда и рабочим средствам измерений методом прямых измерений или сличением с помощью компаратора (спектрокомпаратора, радиометра-компаратора или компаратора спектрального отношения яркостно-цветового компаратора).
- 4.3.2.4 Соотношение доверительных границ погрешностей рабочих эталонов 1-го и 2-го разрядов не более 0,67 (1:1,5).

4.3.3 Рабочие эталоны 2-го разряда

- 4.3.3.1 В качестве рабочих эталонов 2-го разряда применяют излучатели-модели АЧТ и температурные лампы, а также тепловизоры и пирометры полного и частичного излучения в диапазоне температуры от 220 до 3273,15 К (от минус 53,15 °C до 3000 °C).
- 4.3.3.2 Доверительные границы абсолютной погрешности δ рабочих эталонов 2-го разряда при доверительной вероятности 0.95 с учетом нестабильности за межаттестационный интервал не более:
 - для излучателей АЧТ:
 - 1,0 К в диапазоне температуры от 220 до 273,15 К (от минус 53,15 °C до 0 °C);
 - 7,5 °C в точке 3273,15 K (3000 °C),
 - для тепловизоров:
 - 1,0 К в диапазоне температуры от 220 до 273,15 К (от минус 53,15 °C до 0 °C);

- 1,0 °C в точке 273,15 K (0 °C); 15 °C в точке 3273,15 K (3000 °C),
- для пирометров полного и частичного излучения:
- 1,0 °С в точке 273,15 К (0 °С);
- 7,5 °C в точке 3273,15 K (3000 °C),
- для температурных ламп:
- 5 °C в точке 1173,15 К (900 °C);
- 17 °C в точке 3073, 15 К (2800 °C).
- 4.3.3.3 Рабочие эталоны 2-го разряда применяют для передачи единицы рабочим средствам измерений методом прямых измерений или сличением с помощью компаратора (спектрокомпаратора или радиометра-компаратора).
- 4.3.3.4 Соотношение границ доверительной погрешности рабочих эталонов 1-го и 2-го разрядов: не более 0,67 (1:1,5).

4.4 Рабочие средства измерений

- 4.4.1 В качестве рабочих средств измерений применяют пирометры полного и частичного излучения, в том числе сканирующие, пирометры спектрального отношения и монохроматические пирометры, в том числе с исчезающей нитью, тепловизоры, радиопирометры для микроволнового излучения.
 - 4.4.2 Пределы допускаемой абсолютной погрешности Δ рабочих средств измерений составляют:
 - для пирометров полного и частичного излучения:
 - От 1 до 4 K в диапазоне температуры от 220 до 273,15 K (от минус 53,15 °C до 0 °C); до 80 K в точке 3273,15 K (3000 °C),
 - для монохроматических пирометров:
 - от 5 до 600 К в диапазоне температуры от 523,15 до 15273,15 К (от 250 °C до 15000 °C),
 - для радиопирометров в микроволновой области спектра: от 120 до 12000 К — в диапазоне температуры от 1273,15 до 100273,15 К (от 1000 °C до 100000 °C).

УДК 681.2.089:006.354 MKC 17.200.20

Ключевые слова: государственная поверочная схема, государственный первичный эталон, вторичный эталон, эталон-копия, рабочий эталон, рабочее средство измерений, температура, доверительные границы погрешности средства измерений, метод передачи единицы

Редактор *Н.Е. Рагузина*Технический редактор *В.Н. Прусакова*Корректор *Л.С. Лысенко*Компьютерная верстка *Л.А. Круговой*

Сдано в набор 22.02.2019. Подписано в печать 06.03.2019. Формат 60×84¹/₈. Гарнитура Ариал. Усл. печ. л. 1,40 + вкл. 1,40. Уч.-изд. л. 1,25 + вкл. 1,20. Подготовлено на основе электронной версии, предоставленной разработчиком стандарта

Приложение А (обязательное)

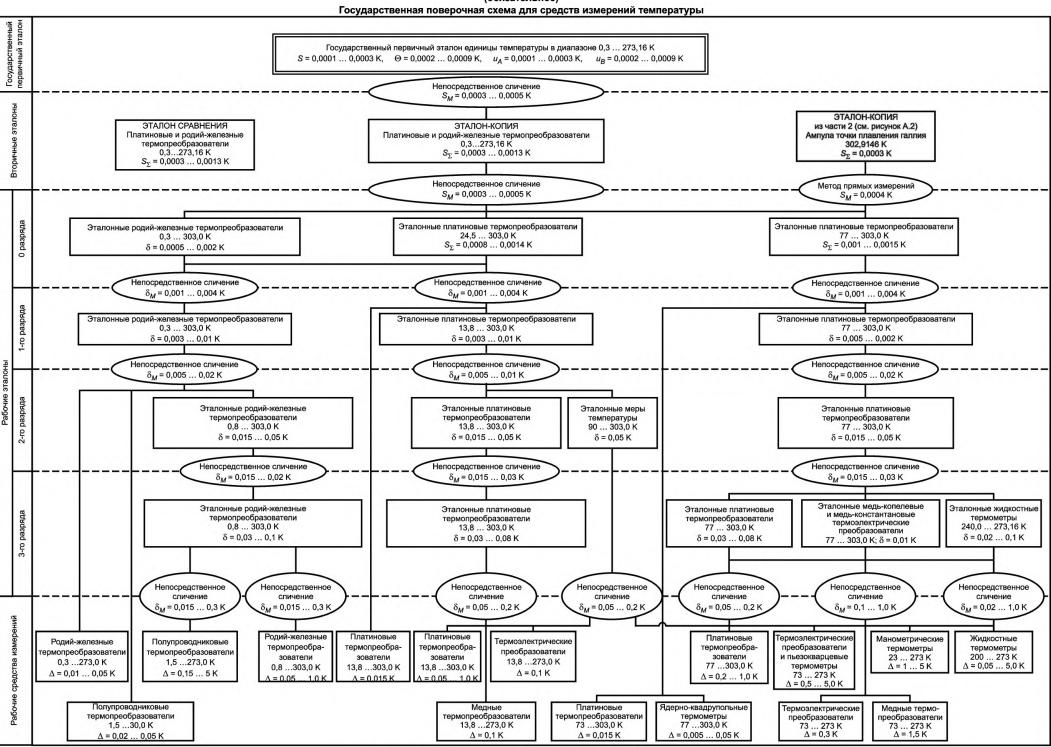


Рисунок А.1 – Поверочная схема для контактных термометров в диапазоне 0,3 К ... 273,16 K

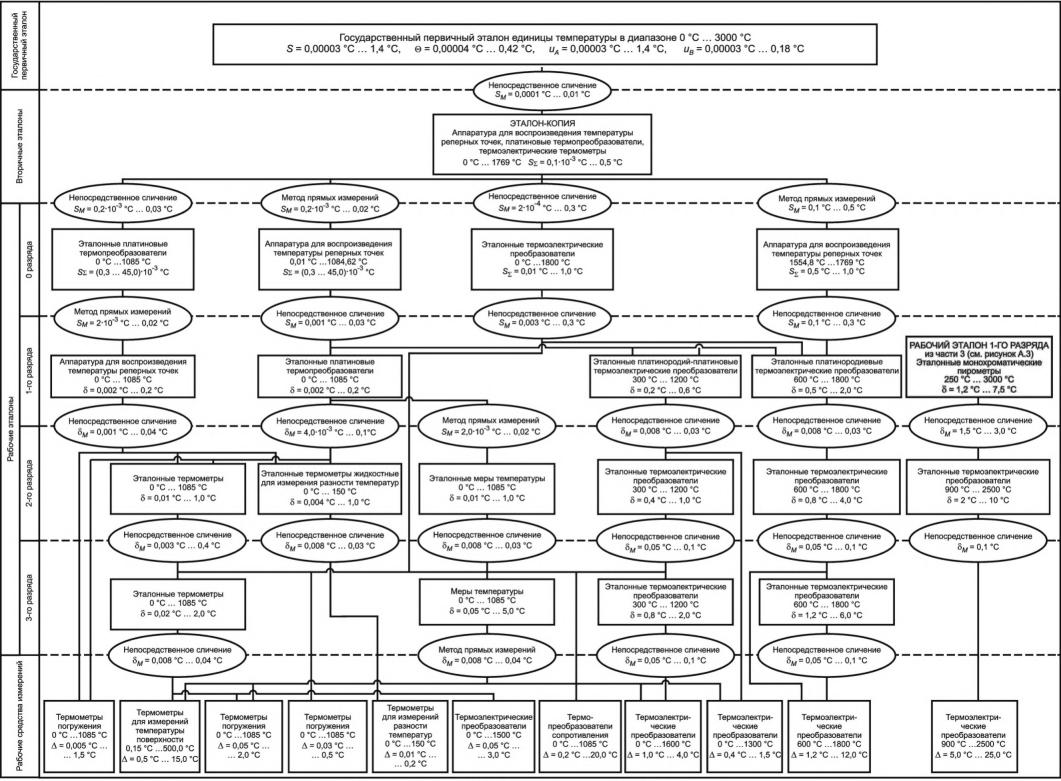


Рисунок A.2 – Поверочная схема для контактных термометров в диапазоне 0 °C ... 3000 °C

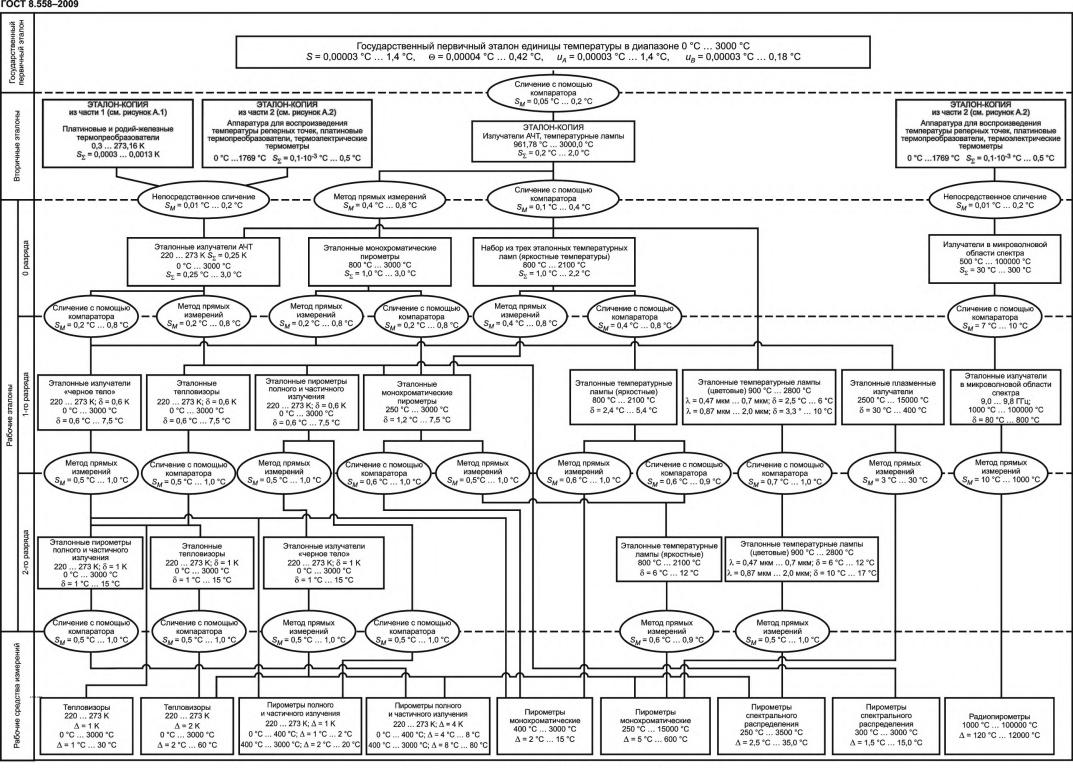


Рисунок А.3 – Поверочная схема для радиационных термометров