# ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ



НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ ΓΟCT P 54206— 2010

# РЕСУРСОСБЕРЕЖЕНИЕ ПРОИЗВОДСТВО ИЗВЕСТИ

Наилучшие доступные технологии повышения энергоэффективности

Издание официальное



#### Предисловие

Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. № 184-ФЗ «О техническом регулировании», а правила применения национальных стандартов Российской Федерации — ГОСТ Р 1.0—2004 «Стандартизация в Российской Федерации. Основные положения»

#### Сведения о стандарте

- 1 РАЗРАБОТАН Федеральным государственным унитарным предприятием «Всероссийский научно-исследовательский центр стандартизации, информации и сертификации сырья, материалов и веществ» (ФГУП «ВНИЦСМВ») и Автономной некоммерческой организацией «Московский экологический регистр» (АНО «МЭР»)
  - 2 ВНЕСЕН Техническим комитетом по стандартизации ТК 349 «Обращение с отходами»
- 3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 23 декабря 2010 г. № 986-ст
- 4 Настоящий стандарт разработан с учетом основных положений Справочника ЕС по наилучшим доступным технологиям «Европейская комиссия. Комплексное предупреждение и контроль загрязнений. Производство цемента, извести и оксида магния. Май 2009 г.» («European Commission. Integrated Pollution Prevention and Control. Reference Document on Best Available Techniques in the Cement, Lime and Magnesium Oxide Manufacturing Industries. May 2009»)

#### 5 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячно издаваемых информационных указателях «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

© Стандартинформ, 2011

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

# Содержание

| 1 | Область применения                                                                                        |
|---|-----------------------------------------------------------------------------------------------------------|
| 2 | Нормативные ссылки                                                                                        |
| 3 | Термины и определения                                                                                     |
| 4 | Основные этапы производства извести                                                                       |
| 5 | Повышение энергоэффективности использования тепловой энергии                                              |
| 6 | Требования к применению наилучших доступных технологий повышения энергоэффективности производства извести |
| 7 | Порядок применения наилучших доступных технологий повышения энергоэффективности производства извести      |
| 8 | Характеристика наилучших доступных технологий повышения энергоэффективности                               |
|   | производства извести                                                                                      |
| Б | иблиография                                                                                               |

#### Введение

В Российской Федерации проводится активная работа по совершенствованию законодательной и нормативно-методической базы, направленная в том числе на стимулирование применения наилучших доступных технологий (НДТ) повышения энергоэффективности производства извести, адаптированных к российским условиям.

За рубежом внедрение НДТ эффективно осуществляется в течение последних лет во всех отраслях промышленности с момента вступления в силу Директивы Европейского парламента и Совета ЕС 96/61/ЕС от 24 сентября 1996 г. «О комплексном предупреждении и контроле загрязнений» (Council Directive 96/61/ЕС of 24 September 1996 concerning integrated pollution prevention and control) [1] и Директивы Европейского парламента и Совета ЕС 2008/1/ЕС от 15 января 2008 г. «О комплексном предупреждении и контроле загрязнений» (Directive 2008/1/ЕС of the European Parliament and of the Council of 15 January 2008 concerning integrated pollution prevention and control) [2]. Принятая в 2010 г. Директива 2010/75/ЕС о промышленных выбросах, отменяющая Директиву 96/61/ЕС [1] с 1 января 2016 г., сохранила положение о необходимости применения НДТ.

НДТ повышения энергоэффективности производства извести приведены в Справочнике ЕС «Европейская комиссия. Комплексное предупреждение и контроль загрязнений. Производство цемента, извести и оксида магния. Май 2009 г.» («European Commission. Integrated Pollution Prevention and Control. Reference Document on Best Available Techniques in the Cement, Lime and Magnesium Oxide Manufacturing Industries. May 2009») [3]. Их используют при проектировании новых предприятий по производству извести и реконструкции (модернизации) действующих, оценке воздействия на окружающую среду и проведении государственной экспертизы. Справочники ЕС не являются обязательными к применению документами, так как они не устанавливают предельные значения выброссов/сбросов ни для определенного промышленного сектора, ни для различных уровней применения НДТ: национального, регионального, местного. Комплекс справочных документов ЕС по НДТ включает «вертикальный» сектор специальных справочников ЕС, адресованных одной и более отраслям промышленности, перечисленным в приложениях 1 к директивам [1, 2], и «горизонтальный» сектор предметных справочников ЕС, имеющих сквозной характер и адресованных всем отраслям промышленности.

Настоящий стандарт разработан для адаптации отраслевых европейских справочников по НДТ к российским условиям.

В настоящем стандарте приведены рекомендации по практическому применению НДТ повышения энергоэффективности производства извести.

#### НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

# РЕСУРСОСБЕРЕЖЕНИЕ ПРОИЗВОДСТВО ИЗВЕСТИ

#### Наилучшие доступные технологии повышения энергоэффективности

Resources saving. Production of lime. Best available techniques for improving energy efficiency

Дата введения — 2012-01-01

# 1 Область применения

- 1.1 Настоящий стандарт содержит практические рекомендации по применению и использованию НДТ, приведенных в Справочнике ЕС по НДТ [3]. В настоящем стандарте приведены основные характеристики адаптированных к российским реалиям НДТ повышения энергоэффективности производства извести.
- 1.2 Настоящий стандарт распространяется на проектирование новых предприятий по производству извести и реконструкцию (модернизацию) действующих, проведение процедуры оценки воздействия на окружающую среду и государственной экспертизы соответствующей документации.

## 2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ Р ИСО 9001—2008 Системы менеджмента качества. Основные положения и словарь

ГОСТ Р ИСО 14050-2009 Менеджмент окружающей среды. Словарь

ГОСТ Р 51387—99 Энергосбережение. Нормативно-методическое обеспечение. Основные положения

ГОСТ Р 51750—2001 Энергосбережение. Методика определения энергоемкости при производстве продукции и оказании услуг в технологических энергетических системах. Общие положения

ГОСТ Р 52104—2003 Ресурсосбережение. Термины и определения

ГОСТ Р 54097—2010 Ресурсосбережение. Наилучшие доступные технологии. Методология идентификации

П р и м е ч а н и е — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодно издаваемому информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по соответствующим ежемесячно издаваемым информационным указателям, опубликованным в текущем году. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

### 3 Термины и определения

В настоящем стандарте использованы термины по ГОСТ Р ИСО 9001, ГОСТ Р ИСО 14050, ГОСТ Р 51387, ГОСТ Р 51750, ГОСТ Р 52104, а также следующие термины с соответствующими определениями:

3.1 наилучшая доступная технология; НДТ: Технологический процесс, технический метод, основанный на современных достижениях науки и техники, направленный на снижение негативного воздействия хозяйственной деятельности на окружающую среду и имеющий установленный срок практического применения с учетом экономических, технических, экологических и социальных факторов.

Примечания

- 1 НДТ означает наиболее эффективную и передовую стадию в развитии производственной деятельности и методов эксплуатации объектов, которая обеспечивает практическую пригодность определенных технологий для предотвращения или, если это практически невозможно, обеспечения общего сокращения выбросов/сбросов и образования отходов. Учет воздействий на окружающую среду производится на основе предельно допустимых выбросов/сбросов [1].
- При реализации НДТ, имеющей установленный срок практического применения с учетом экономических, технических, экологических и социальных факторов, достигается наименьший уровень негативного воздействия на окружающую среду в расчете на единицу произведенной продукции (работы, услуги).
- 3 «Наилучшая» означает технологию, наиболее эффективную для выпуска продукции с достижением установленного уровня звщиты окружающей среды.
- 4 «Доступная» означает технологию, которая разработана настолько, что она может быть применена в конкретной отрасли промышленности при условии подтверждения экономической, технической, экологической и социальной целесообразности ее внедрения. «Доступная» применительно к НДТ означает учет затрат на внедрение технологии и преимуществ ее внедрения, а также означает, что технология может быть внедрена в экономически и технически реализуемых условиях для конкретной отрасли промышленности.
- 5 В отдельных случаях часть термина «доступная» может быть заменена словом «существующая», если это определено законодательством Российской Федерации.
- 6 «Технология» означает как используемую технологию, так и способ, метод и прием, которым объект спроектирован, построен, эксплуатируется и выводится из эксплуатации перед его ликвидацией с утилизацией обезвреженных частей и удалением опасных составляющих.
  - 7 К НДТ относятся, как правило, малоотходные и безотходные технологии.
  - 8 Как правило, НДТ вносят в государственный реестр НДТ.

[ГОСТ Р 54097-2010, пункт 3.1]

3.2 государственный реестр НДТ: Систематизированный банк данных о наилучших доступных технологиях, содержащий характеристики технологий и соответствующие технологические, экологические, социальные нормы и нормативы.

[ГОСТ Р 54097-2010, пункт 3.9]

3.3 технологический показатель: Показатель, характеризующий технологию с точки зрения ее соответствия НДТ. Технологические нормативы воздействия на окружающую среду для НДТ определены и установлены в государственном реестре НДТ.

## 4 Основные этапы производства извести

- 4.1 Производство извести энергоемкая отрасль промышленности с потреблением энергии до 60 % общей стоимости производства. Печи используют газообразное топливо (например, природный газ), твердое топливо (уголь, кокс/антрацит) и жидкое топливо (тяжелое/легкое нефтяное топливо).
  - 4.2 Производство извести включает следующие процессы:
  - добыча/подготовка соответствующего известняка;
  - складирование известняка, складирование и подготовка топлива;
  - обжиг известняка:
  - обработка негашеной извести;
  - гидратация и гашение негашеной извести;
  - другая обработка извести;
  - хранение, обработка и транспортирование извести.
- 4.3 Процесс производства извести состоит из обжига карбонатов кальция и магния с высвобождением диоксида углерода и получением свободного оксида кальция ( $CaCO_3 \rightarrow CaO + CO_2$ ). Оксид кальция из печи в основном дробят, размалывают и/или подвергают просеиванию (грохочению) перед направлением в силос для хранения. Из силоса обожженную известь доставляют потребителю для

использования в виде негашеной извести или транспортируют на предприятие по гидратации, где она взаимодействует с водой с образованием гашеной извести.

4.4 Основными выбросами в окружающую среду при производстве извести являются загрязняющие воздух примеси: пыль, оксиды азота (NO<sub>x</sub>), диоксид серы (SO<sub>2</sub>) и оксид углерода (CO). Полихлорсодержащие дибензолдиоксины (ПХДД) и дибензолфураны (ПХДФ), общий углерод, содержащийся в органических соединениях, металлы, хлорид водорода (HCI) и фторид водорода (HF) в зависимости от состава используемых сырьевых материалов и топлива также могут входить в состав примесей.

Главный источник выбросов и одновременно наиболее энергоемкий процесс — обжиг извести. Также энергоемкими являются вторичные процессы гашения извести и измельчения.

В зависимости от специфики производственного процесса предприятия по производству извести осуществляют выбросы загрязняющих веществ в воздух, сточных вод в водные объекты; их деятельность приводит к образованию твердых отходов, на окружающую среду воздействуют шум и неприятные запахи.

#### 5 Повышение энергоэффективности использования тепловой энергии

НДТ повышения энергоэффективности производства извести позволяют снизить расход тепла на обжиг с помощью комплекса следующих решений:

- применение улучшенной и оптимизированной печной системы и плавного, стабильного процесса эксплуатации печи в соответствии с установленными параметрами, с использованием:
  - оптимизации системы контроля процесса, включая компьютерный автоматический контроль;
  - рекуперации тепла отходящих газов (в тех случаях, когда это возможно);
  - современной весовой системы подачи топлива;
- применение топлива с характеристиками, способствующими уменьшению расхода тепла на обжиг;
  - 3) ограничение коэффициента избытка воздуха при сжигании топлива.

В большинстве случаев устаревшие печи заменяют новыми, но некоторые действующие печи для снижения расхода топлива допустимо модернизировать. При этом в зависимости от особенностей конструкции, финансовых затрат и поставленных задач может проводиться модернизация как второстепенных деталей, так и основных элементов конструкции печи. Например:

- для регенерации тепла из дымовых газов или для использования более широкой номенклатуры топлива осуществляют установку к длинной вращающейся печи теплообменника;
- использование тепла дымовых газов для сушки известняка или для других процессов, например измельчения известняка;
- шахтную печь можно подвергнуть модернизации, переоборудовав в кольцевую шахтную печь или объединив пару шахтных печей в регенеративную печь с параллельным потоком материала;
- в исключительных случаях для сокращения расхода топлива экономически целесообразно сократить длину вращающейся печи, соединив ее с запечным теплообменником;
  - для снижения затрат электроэнергии используют энергосберегающее оборудование.

Положительно влияют на энергопотребление следующие мероприятия по повышению энергоэффективности:

- контроль технологического процесса (коэффициента избытка воздуха и скорости его течения);
- техническое обслуживание оборудования (ликвидация подсосов воздуха, нарушений огнеупорной футеровки);
  - оптимизация гранулометрического состава сырья.

# 6 Требования к применению наилучших доступных технологий повышения энергоэффективности производства извести

- 6.1 При внедрении НДТ повышения энергоэффективности в производство извести необходимо обеспечить:
- комплексный подход к предотвращению и (или) минимизации техногенного воздействия, базирующийся на сопоставлений эффективности мероприятий по охране окружающей среды с затратами,

#### **FOCT P 54206-2010**

которые должен при этом нести хозяйствующий субъект для предотвращения и (или) минимизации оказываемого при производстве извести на окружающую среду техногенного воздействия в обычных условиях хозяйствования:

- комплексную защиту окружающей среды, с тем чтобы решение одной проблемы не создавало другую и не были нарушены установленные нормативы качества окружающей среды на конкретных территориях.
- 6.2 Методология и алгоритмы оценки аспектов комплексного воздействия хозяйственной деятельности на окружающую среду и экономической целесообразности их внедрения при идентификации НДТ гармонизированы с Директивой [2] и Справочником ЕС [3]. Идентификация НДТ включает четыре последовательно реализуемых этапа выбора НДТ по ГОСТ Р 54097.

НДТ повышения энергоэффективности производства извести следует выбирать из государственного реестра НДТ с учетом следующих сведений о конкретной НДТ:

- наименование НДТ;
- технологические нормативы, которые могут быть обеспечены при применении НДТ в расчете на единицу производимой энергии, или предельно допустимые выбросы;
- потребление ресурсов на единицу производимой энергии с учетом объемов производимой энергии;
- особенности применения НДТ в различных климатических и географических условиях и иных условиях;
  - сроки практического внедрения НДТ;
  - организация производственного экологического контроля (мониторинга);
- соответствие НДТ, выбираемой для определенного хозяйствующего субъекта, следующим основным требованиям:
  - оправданность применения данной технологии с точки зрения охраны окружающей среды,
     т.е. с учетом минимизации антропогенного воздействия на окружающую среду;
  - соответствие внедряемой технологии новейшим отечественным и зарубежным разработкам в данной отрасли промышленности;
    - экономическая и социальная приемлемость данной технологии для предприятия.
- 6.3 Документированная информация о негативном воздействии производства извести на окружающую среду должна включать:
- сведения об объемах негативного воздействия на окружающую среду (включая показатели масс выбросов/сбросов веществ на окружающую среду по соответствующему регулируемому перечню веществ, масс образования, хранения и захоронения отходов производства и потребления, показатели доли использования и обезвреживания образуемых отходов);
- сведения о качественном составе годовых масс (объемов) негативного воздействия на окружающую среду при производстве извести;
- сведения о соответствии нормативам допустимого воздействия на окружающую среду (материалы обоснования установления объемов выбросов/сбросов, размещения отходов);
  - сведения о программах производственного экологического контроля;
  - сведения о подтверждении соответствия НДТ.

Объемы выбросов/сбросов загрязняющих веществ, размещения (хранения) отходов производства определяют юридические лица самостоятельно, отдельно по каждому объекту, оказывающему негативное воздействие на окружающую среду.

# 7 Порядок применения наилучших доступных технологий повышения энергоэффективности производства извести

- 7.1 Применение НДТ повышения энергоэффективности производства извести осуществляется при реконструкции (модернизации) действующих объектов и (или) строительстве вновь вводимых объектов.
- 7.2 Сведения о НДТ, применяемой для повышения энергоэффективности производства извести, должны включать:
  - наименование НДТ;

- технологические нормативы, которые могут быть обеспечены при применении НДТ в расчете на единицу производимой энергии;
- потребление ресурсов на единицу производимой энергии с учетом объемов производимой энергии;
  - сроки практического применения НДТ;
  - организацию производственного экологического контроля (мониторинга).
- 7.3 Указанные сведения в составе проектной документации представляются на государственную экспертизу в установленном порядке [4, 5].

# 8 Характеристика наилучших доступных технологий повышения энергоэффективности производства извести

НДТ включают как используемую технологию, так и способ проектирования, строительства, эксплуатации и вывода из эксплуатации предприятия. В таблице 1 представлены обобщенные сведения о НДТ повышения энергоэффективности производства извести, а также приведены подходы, отнесенные к НДТ повышения энергоэффективности производства извести.

Таблица 1 — НДТ повышения энергоэффективности производства извести

| Наименование НДТ                                                              | Краткое резюме НДТ для известковой промышленности                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Системы экологического<br>менеджмента (СЭМ)                                   | Реализация и выполнение определенных требований СЭМ, которые включают, в соответствии с теми или иными местными особенностями, основные положения, перечисленные в Справочнике ЕС [3]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| Основные технические<br>решения, интегрированные<br>в технологический процесс | Достижение ровного и стабильного процесса обжига в печи в соответствии с установленными параметрами, что является полезным с точки зрения всех выбросов из печи, а также потребления энергии путем применения следующих технических решений:  а) оптимизация процесса контроля, включая компьютерный автоматический контроль;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
|                                                                               | <ul> <li>б) использование современных весовых систем лодачи твердого топлива.</li> <li>Осуществление тщательного отбора и контроля всех веществ, поступающих в печь, чтобы предотвратить и/или снизить количество выбросов.</li> <li>Выполнение на постоянной основе мониторинга и измерений параметров процесса и выбросов, включая: <ul> <li>а) непрерывные измерения параметров, характеризующих устойчивость процесса, таких, как температура, содержание О<sub>2</sub>, скорость газового потока и выбросы СО;</li> <li>б) мониторинг и стабилизация таких критических параметров процесса, как расход топлива, дозировка и избыток кислорода;</li> <li>в) непрерывные или периодические (по крайней мере раз в месяц или во время наибольших выбросов) измерения выбросов пыли, NO<sub>2</sub>, оксиды серы (SO<sub>2</sub>), HCI и HF, а также проскоков NH<sub>3</sub> при использовании селективного некаталитического восстановления оксидов азота (SNCR);</li> <li>г) периодические измерения выбросов ПХДД/ПХДБФ, металлов и общего органического углерода</li> </ul> </li> </ul> |  |  |  |
| Энергопотребление                                                             | Снижение расхода тепла на обжиг путем применения комплекса мероприятий: а) применение улучшенной и оптимизированной печной системы и плавного, стабильного процесса эксплуатации печи в соответствии с установленными параметрами, используя: - оптимизацию контроля процесса, включая компьютерный автоматический контроль, - рекуперацию тепла отходящих газов (если это возможно); - современную весовую систему подачи топлива; б) использование топлива с характеристиками, которые оказывают положительное влияние на расход тепла на обжиг; с) ограничение коэффициента избытка воздуха.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|                                                                               | В этом контексте следует обратиться к документу, рассматривающему использо-<br>вание наилучшего доступного технического решения повышения энергоэффектив-<br>ности.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |

# **FOCT P 54206—2010**

Продолжение таблицы 1

| Наименование НДТ                                                        | Краткое резюме НДТ для известковой промышлен                                                                                                                                                                                                                                                                                                                                                                                | ности                                                                                         |  |
|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--|
| Энергопотребление                                                       | В случае применения указанных выше НДТ могут быть достигнуты следующие<br>уровни потребления тепловой энергии:                                                                                                                                                                                                                                                                                                              |                                                                                               |  |
|                                                                         | Тип печи                                                                                                                                                                                                                                                                                                                                                                                                                    | Потребление<br>тепловой энергии,<br>ГДж/т <sup>1)</sup>                                       |  |
|                                                                         | Длинные вращающиеся печи                                                                                                                                                                                                                                                                                                                                                                                                    | 6,0—9,0                                                                                       |  |
|                                                                         | Вращающиеся с запечным теплообменником                                                                                                                                                                                                                                                                                                                                                                                      | 5,1—7,8                                                                                       |  |
|                                                                         | Регенеративные с параллельным потоком материала                                                                                                                                                                                                                                                                                                                                                                             | 3,2-4,2                                                                                       |  |
|                                                                         | Кольцевые шахтные                                                                                                                                                                                                                                                                                                                                                                                                           | 3,3-4,9                                                                                       |  |
|                                                                         | Шахтные пересыпные                                                                                                                                                                                                                                                                                                                                                                                                          | 3,4—4,7                                                                                       |  |
|                                                                         | Прочих конструкций                                                                                                                                                                                                                                                                                                                                                                                                          | 3,5—7,0                                                                                       |  |
|                                                                         | 1) На энергопотребление влияют вид продукции, ее качество, условия<br>технологического процесса и качество сырья.                                                                                                                                                                                                                                                                                                           |                                                                                               |  |
|                                                                         | Минимизация использования электроэнергии путем примен<br>нических решений:  а) использование систем управления потреблением элект<br>б) использование известняка с оптимальной гранулометри<br>в) использование высокоэффективного помольного обор<br>энергоэффективного оборудования, основанного на использования                                                                                                         | роэнергии;<br>лей;<br>рудования и другого                                                     |  |
| Потребление известняка                                                  | Минимизация расхода известняка применением следующи<br>ний, по отдельности или в сочетании: а) специальная система добычи и дробления и использова<br>том его гранулометрии и качества; б) подбор печей с широким диапазоном гранулометрии,<br>полно использовать добытый известняк                                                                                                                                         | ние известняка с уче-                                                                         |  |
| Выбор топлива                                                           | Осуществление тщательного подбора и контроля поступающего в печь топлива с целью обеспечить использование малосернистого топлива (в частности, для вращающихся печей) с низким содержанием азота и хлора, чтобы исключить или снизить соответствующие выбросы                                                                                                                                                               |                                                                                               |  |
| Неорганизованные вы-<br>бросы пыли                                      | <ul> <li>Минимизация/предотвращение неорганизованных выбросов пыли путем применения отдельно или совместно технических решений:</li> <li>а) для процессов, связанных с пылением;</li> <li>б) для процессов хранения насыпных материалов</li> </ul>                                                                                                                                                                          |                                                                                               |  |
| Организованные выбро-<br>сы пыли при операциях,<br>связанных с пылением |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                               |  |
| Выбросы пыли при обжи-<br>ге в печи                                     | Снижение выбросов пыли из отходящих из печи газов путем газа с помощью фильтра. При использовании рукавных фильвеличина выбросов — менее 10 мг/нм <sup>3</sup> . При применении электих фильтров среднесуточная величина выбросов — менее 20 в исключительных случаях, когда пыль характеризуется вы ем, уровень выбросов при использовании НДТ может оказатьствым среднесуточных измерений достигать 30 мг/нм <sup>3</sup> | этров среднесуточная<br>грофильтров или дру-<br>0 мг/нм <sup>3</sup> .<br>соким сопротивлени- |  |

| Наименование НДТ                                                            | Краткое резюме НДТ для известковой пр                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | омышленнос                               | ти                                                                                          |  |
|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------------------|--|
| Первичные технические решения для снижения выбросов газообразных соединений | шения для снижения вы-<br>осов газообразных сое-<br>применения отдельно или совместно следующих технических решений.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                          |                                                                                             |  |
| Выбросы NO <sub>x</sub>                                                     | Снижение выбросов NO <sub>x</sub> в отходящих лечных газах достигается путем при ния отдельно или совместно НТД. При использовании НДТ могут быть достигнуты следующие уровни выброс                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                          |                                                                                             |  |
|                                                                             | Тип печи                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Единица<br>измерения                     | Суточный<br>уровень<br>выбросов NO <sub>x</sub>                                             |  |
|                                                                             | Регенеративные с параллельным потоком ма-<br>териала, кольцевые, шахтные пересыпные, печи<br>другой конструкции                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | мг/нм <sup>3</sup>                       | 100-< 3501, 3}                                                                              |  |
|                                                                             | Длинные вращающиеся печи с запечным теп-<br>лообменником                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | мг/нм <sup>3</sup>                       | 200-5001, 2)                                                                                |  |
|                                                                             | 1) Наибольшие значения, присущие обжигу до ной извести. 2) Для вращающихся печей, производящих си Верхний предел достигает 800 мг/нм³. 3) В том случае, когда решений по перечисление мероприятия не достаточны для обеспече 350 мг/нм³, выбросы 500 мг/нм³ наблюдаются обожженной извести                                                                                                                                                                                                                                                                                                                                 | льно обожж<br>нию а) не до<br>эния выбро | сенную известь.<br>статочно и дру-                                                          |  |
| Выбросы SO <sub>x</sub>                                                     | Снижение выбросов SO <sub>x</sub> в отходящих печных газах путем применения отдел или совместно технических решений.  - использование решений, направленных на оптимизацию процесса, чтобы у личить поглощение диоксида серы, т.е. обеспечить эффективный контакт между мовыми газами и негашеной известью;  - по возможности для длинных вращающихся печей подбирать топливо с по женным содержанием серы;  - использовать дополнительный поглотитель (например, для очистки сухих мовых газов — фильтры, влажные скрубберы, активированный уголь). При использовании НДТ могут быть достигнуты следующие уровни выбросов |                                          | оцесса, чтобы уве<br>і контакт между ды<br>ть топливо с пони<br>очистки сухих ды<br>уголь). |  |
|                                                                             | Тил печи                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Единица<br>измерения                     | Среднесуточный<br>уровень выброса<br>SO <sub>x</sub> как SO <sub>2</sub> <sup>73</sup>      |  |
|                                                                             | Регенеративные с параллельным потоком материала, кольцевые, пересыпные, шахтные, другой колструкции, с запечным теплообменником                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ME/HM <sup>3</sup>                       | <50 — < 200                                                                                 |  |
|                                                                             | Длинные вращающиеся печи                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | мг/нм <sup>3</sup>                       | < 50 < 400                                                                                  |  |

# **FOCT P 54206-2010**

## Продолжение таблицы 1

| Наименование НДТ                          | Краткое резюме НДТ для известковой пр                                                                                                                                                                                                                                                                                                                                   | омышленнос                                             | ти                                                           |  |
|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------|--|
| Выбросы СО                                | Снижение выбросов СО в отходящих печных газа<br>или совместно следующих технических решений;<br>а) выбор (по возможности) сырьевых материалов<br>органического материала;<br>б) использование мероприятий по оптимизации л<br>ют устойчивое и полное горение.<br>При использовании НДТ могут быть достигнуты сл                                                         | в с понижен<br>роцесса, ко                             | иным содержание<br>торые обеспечива                          |  |
|                                           | Тип печи                                                                                                                                                                                                                                                                                                                                                                | Единица<br>измерения                                   | Среднесуточный<br>уровень<br>выброса <sup>1)</sup>           |  |
|                                           | Регенеративные с параллельным потоком ма-<br>териала, шахтные, другой конструкции, длинные<br>вращающиеся и с запечным теплообменником                                                                                                                                                                                                                                  | мг/нм <sup>3</sup>                                     | Менее 500                                                    |  |
|                                           | <ol> <li>Зависит от сырьевых материалов и вида про<br/>мер гидравлической</li> </ol>                                                                                                                                                                                                                                                                                    | изводимой                                              | извести, напри-                                              |  |
| Снижение проскока СО                      | При использовании электрофильтров снижение чется путем применения следующих технических мер качестве НДТ:  а) сокращение времени простоя электростатического осуществление непрерывного автоматического в) использование в системах мониторинга СО быс го оборудования, обеспечивающего быстрое перекры                                                                 | оприятий, р<br>кого осадите<br>измерения<br>тродейству | ассматриваемых<br>еля;<br>содержания СО;<br>ющего контрольно |  |
| Выбросы общего органи-<br>еского углерода | Снижение выбросов общего углерода с дымовыми печными газами путем искления использования в печной системе сырьевых материалов с повышенным держанием летучих органических соединений. В этом случае могут быть достигнуты следующие уровни выбросов:                                                                                                                    |                                                        |                                                              |  |
|                                           | Тип печи                                                                                                                                                                                                                                                                                                                                                                | Единица<br>измерения                                   | Среднесуточный<br>уровень выброса<br>ТОС                     |  |
|                                           | Длинные вращающиеся лечи <sup>1)</sup> и с запечным теплообменником <sup>1)</sup>                                                                                                                                                                                                                                                                                       | мг/нм <sup>3.</sup>                                    | Менее 10                                                     |  |
|                                           | Регенеративные с параллельным потоком ма-<br>териала <sup>2)</sup> , кольцевые <sup>1)</sup> , пересыпные <sup>1, 2)</sup>                                                                                                                                                                                                                                              | мг/нм <sup>3</sup>                                     | Менее 30                                                     |  |
|                                           | <ol> <li>Зависит от используемого сырья и вида про<br/>В исключительных случаях уровень может (</li> </ol>                                                                                                                                                                                                                                                              |                                                        | извести.                                                     |  |
| Выбросы металлов                          | Минимизация выбросов металлов с дымовыми газами печей путем испония по отдельности или совместно следующих технических мероприятий:  а) подбор топлива с пониженным содержанием металлов; б) ограничение содержания в поступающих в технологический процесс мах и топливе определенных металлов, особенно ртути; в) использование эффективных технологий удаления пыли. |                                                        |                                                              |  |
|                                           | Металлы                                                                                                                                                                                                                                                                                                                                                                 | Единица<br>измерения                                   | Выбросы при<br>измерениях с<br>интервалом 30<br>мин          |  |
|                                           | Hg                                                                                                                                                                                                                                                                                                                                                                      | мг/нм <sup>3</sup>                                     | Менее 0,05                                                   |  |
|                                           | ΣCd, Tí                                                                                                                                                                                                                                                                                                                                                                 | мг/нм <sup>3</sup>                                     | Менее 0,05                                                   |  |
|                                           | ΣAs, Sb, Pb, Cr, Co, Cu, Mn, Ni, V                                                                                                                                                                                                                                                                                                                                      | мг/нм3                                                 | Менее 0,50                                                   |  |

#### Окончание таблицы 1

| Наименование НДТ                    | Краткое резюме НДТ для известковой промышленности                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Производственные поте-<br>ри/отходы | Повторное использование собранной пыли/особого, характерного для процесса материала. Использование пыли производства негашеной и гашеной извести в определенной товарной продукции                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Шум                                 | Снижение/минимизация уровня шума при производстве извести путем использования по отдельности или совместно технических решений:  а) соответствующий выбор места для проведения связанных с шумом операций; б) отказ от шумных операций/устройств; в) использование виброизоляции устройств; г) использование виброизоляции устройств; д) установка для защиты от шума противошумных барьеров и строительство защитных стен, а также использование зеленых насаждений; е) звукоизоляция машинного оборудования; ж) звукоизоляция машинного оборудования; и) установка глушителей на выпуске воздуха, например обеспыленного воздуха; к) снижение скорости газового потока в трубах; л) использование звукоизоляции труб; м) установка глушителей на выпуске труб отходящих газов; н) использование звукоизоляции труб; м) установка глушителей на колуске труб отходящих газов; н) использование звукоизолирующих строений для проведения операций, связанных с оборудованием для изменения материала; п) окна и двери должны быть закрыты |

Детальное описание НДТ, разработанных и апробированных в государствах — членах EC, приведено в Справочнике EC [3].

При применении в Российской Федерации информацию Справочника ЕС по наилучшим доступным технологиям производства цемента, извести и оксида магния [3] следует использовать с учетом местных экономических и экологических условий и требований действующего законодательства Российской Федерации.

#### Библиография

- Директива 96/61/ЕС
   от 24 сентября 1996 г.
   иконтроле загрязнений» (Council Directive 96/61/ЕС of 24 September 1996 concerning integrated pollution prevention and control)
- [2] Директива 2008/1/EC Директива Европейского парламента и Совета EC «О комплексном предупреждении и контроле загрязнений» (Directive 2008/1/EC of the European Parliament and of the Council of 15 January 2008 concerning integrated pollution prevention and control)
- [3] Справочник ЕС по наилучшим доступным технологиям «Европейская комиссия. Комплексное предупреждение и контроль загрязнений. Производство цемента, извести и оксида магния. Май 2009 г. » («European Commission. Integrated Pollution Prevention and Control, Reference Document on Best Available Techniques in the Cement, Lime and Magnesium Oxide Manufacturing Industries. May 2009»)
- [4] Постановление Правительства Российской Федерации от 5 марта 2007 г. № 145 «О порядке организации и проведения государственной экспертизы проектной документации и результатов инженерных изысканий»
- [5] Постановление Правительства Российской Федерации от 16 февраля 2008 г. № 87 «О составе разделов проектной документации и требованиях к их содержанию»

УДК 666.92:620.9 OKC 13.020.01 91.100.10

Ключевые слова: известь, выбросы, энергетическая эффективность, наилучшие доступные технологии

Редактор П.М. Смирнов Технический редактор В.Н. Прусакова Корректор Р.А. Ментова Компьютерная верстка П.А. Круговой

Сдано в набор 26.10.2011. Подписано в печать 18.11.2011. Формат 60 × 84 ½. Гарнитура Ариал. Усл. печ. л. 1,86. Уч. изд. л. 1,35. Тираж 146 экз. Зак. 1098.

ФГУП «СТАНДАРТИНФОРМ», 123995 Москва, Гранатный пер., 4.

www.gostinfo.ru info@gostinfo.ru

Набрано во ФГУП «СТАНДАРТИНФОРМ» на ПЭВМ.

Отпечатано в филиале ФГУП «СТАНДАРТИНФОРМ» — тип. «Московский печатник», 105062 Москва, Лялин пер., 6.