ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОСТ Р ИСО 11943— 2010

гидропривод объемный

Интерактивные автоматические системы подсчета частиц в жидкости. Методы калибровки и аттестации

ISO 11943:1999

Hydraulic fluid power — On-line automatic particle-counting systems for liquids — Methods of calibration and validation (IDT)

Издание официальное

Предисловие

Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. № 184-ФЗ «О техническом регулировании», а правила применения национальных стандартов Российской Федерации — ГОСТ 1.0—2004 «Стандартизация в Российской Федерации. Основные положения»

Сведения о стандарте

- 1 ПОДГОТОВЛЕН Автономной некоммерческой организацией «Научно-исследовательский центр контроля и диагностики технических систем» (АНО «НИЦ КД») и Самарским государственным аэрокосмическим университетом им. академика С.П. Королева (СГАУ) на основе аутентичного перевода на русский язык международного стандарта, указанного в пункте 4
 - 2 ВНЕСЕН Техническим комитетом по стандартизации ТК 457 «Качество воздуха»
- 3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 30 ноября 2010 г. № 618-ст
- 4 Настоящий стандарт идентичен международному стандарту ИСО 11943:1999 «Гидропривод объемный. Интерактивные автоматические системы подсчета частиц в жидкости. Методы калибровки и аттестации» (ISO 11943:1999 «Hydraulic fluid power On-line automatic particle-counting systems for liquids Methods of calibration and validation»)
 - 5 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячно издаваемых информационных указателях «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

© Стандартинформ, 2011

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

Содержание

1 Область пр	име	
2 Нормативны	ые (ссылки
3 Термины и	опр	ределения
4 Единицы из	ме	рений
5 Необходим	ые	условия
6 Испытатель	нон	е оборудование.
7 Погрешност	гь и	змерительных приборов и параметров условий испытания
8 Калибровка	ва	автономном режиме
		гановки для подготовки проб в интерактивном режиме и определение эталона калибровки
10 Методика	вто	ричной калибровки и проверки в интерактивном режиме
11 Аттестаци:	я ус	становки для разбавления пробы в интерактивном режиме
12 Меры пред	дос	торожности ,
13 Идентифи	кац	ионное положение
Приложение	A	(справочное) Руководство по разработке типового испытательного стенда для калибровки и аттестации автоматических счетчиков частиц в интерактивном режиме
Приложение	В	(справочное) Руководство по разработке гидравлической схемы подсоединения интерактивного автоматического счетчика частиц к стенду для многопроходных испытаний фильтров
Приложение	С	(справочное) Результаты международного анонимного исследования ИСО по калибровке и аттестации автоматических счетчиков частиц в интерактивном режиме
Приложение ,	ДА	(справочное) Сведения о соответствии ссылочных международных стандартов ссылочным национальным стандартам Российской Федерации

Введение

В гидросистемах объемных гидроприводов передача энергии и управление ей осуществляются с помощью жидкости под давлением внутри закрытой цепи. Жидкость является одновременно смазкой и средством передачи энергии.

Для надежной работы гидросистемы необходимо контролировать уровень чистоты жидкости. Качественное и количественное определение твердых загрязнителей в жидкости требует точности при получении пробы и определении распределения частиц загрязнителя по размерам.

Автоматические счетчики частиц являются общепринятыми средствами для определения размера твердых частиц и распределения частиц по размерам. Погрешность конкретного прибора определяют при калибровке.

При использовании автоматических счетчиков частиц, работающих в интерактивном режиме, не требуются контейнеры для проб, обеспечивается повышенная точность и более быстрый доступ к результатам подсчета частиц. Настоящий стандарт устанавливает общие положения по калибровке и аттестации интерактивных автоматических счетчиков частиц.

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

ГИДРОПРИВОД ОБЪЕМНЫЙ

Интерактивные автоматические системы подсчета частиц в жидкости. Методы калибровки и аттестации

Hydraulic fluid power. On-line automatic particle-counting systems for liquids.

Methods of calibration and validation

Дата введения — 2011—12—01

1 Область применения

Настоящий стандарт устанавливает основные положения по калибровке и аттестации интерактивных автоматических счетчиков частиц (АСЧ) для их последующего использования при подсчете твердых частиц, взвешенных в жидкости. В основном их применяют при многопроходном испытании фильтров по ИСО 16889.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ИСО 1000:1992 Единицы СИ и рекомендации по применению кратных дольных от них и некоторых других единиц (ISO 1000:1992, SI units and recommendations for the use of their multiples and of certain other units)

ИСО 1219-1:1991¹⁾ Гидроприводы объемные, пневмоприводы и их компоненты. Графические обозначения и принципиальные схемы. Часть 1. Графические обозначения для общепринятого использования и применительно к обработке данных (ISO 1219-1:1991, Fluid power systems and components — Graphic symbols and circuit diagrams — Part 1:Graphic symbols)

ИСО 4021:1992 Гидроприводы объемные. Гранулометрический анализ. Взятие проб жидкости из линий работающих гидросистем (ISO 4021:1992, Hydraulic fluid power Particulate contamination analysis — Extraction of fluid samples from lines of an operating system)

ИСО 5598:1985 Гидроприводы объемные, пневмоприводы и их компоненты. Словарь (ISO 5598:1985, Fluid power systems and components — Vocabulary)

ИСО 11171 Приводы гидравлические. Калибровка автоматических счетчиков для подсчета частиц в жидкостях (ISO 11171, Hydraulic fluid power — Calibration of automatic particle counters for liquids)

ИСО 12103-1:1997 Транспорт дорожный. Испытательная пыль для оценки фильтра. Часть 1. Испытательная пыль пустынь Аризоны (ISO 12103-1:1997, Road vehicles — Test dust for filter evaluation — Part 1: Arizona test dust)

ИСО 16889 Приводы гидравлические. Фильтры. Оценка производительности фильтрации фильтрующего элемента методом рециркуляции (ISO 16889, Hydraulic fluid power — Filters — Multi-pass method for evaluating filtration performance of a filter element)

3 Термины и определения

В настоящем стандарте применены термины по ИСО 5598.

¹⁾ Для однозначного соблюдения требований настоящего стандарта, выраженных в датированных ссылках, рекомендуется использовать только данный ссылочный стандарт.

4 Единицы измерений

В соответствии с ИСО 1000 используется международная система единиц (СИ).

В настоящем стандарте мкм(с) означает, что измерения размеров частиц проводятся с использованием АСЧ, откалиброванного по ИСО 11171.

5 Необходимые условия

Предполагается, что пользователи настоящей методики компетентны в работе с АСЧ и аппаратурой для испытания фильтров. Важно также, чтобы при этих испытаниях применялись соответствующие методики подготовки проб.

6 Испытательное оборудование

- 6.1 Автоматические счетчик(и) для подсчета частиц в жидкости или АСЧ с двумя независимыми датчиками.
 - 6.2 Материалы и оборудование для калибровки в соответствии с ИСО 11171.
- 6.3 Среднедисперсная тестовая пыль ИСО (ISO MTD)¹⁾ в соответствии с ИСО 12103-1, класса АЗ, высушенная при температуре от 110 °C до 150 °C в течение не менее одного часа, для использования в испытательном стенде, смешанная с испытательной жидкостью путем встряхивания, а затем суспензированная с помощью источника ультразвука при удельной мощности от 3000 до 10000 Вт/м².

П р и м е ч а н и е — В ИСО 16889 приведена методика испытания фильтров с использованием этой стандартной тестовой пыли. Для приобретения ISO MTD следует обращаться в секретариат ИСО или к членам ИСО.

- 6.4 Испытательная жидкость в соответствии с ИСО 16889.
- 6.5 Установка для подготовки пробы в интерактивном режиме, необходимая для смешивания и подачи жидкости для вторичной калибровки и аттестации, включает в себя:
- а) гидробак, насос, аппаратуру кондиционирования жидкости и измерительные приборы, отвечающие требованиям по аттестации раздела 9;
- очистительный фильтр, обеспечивающий уровень загрязненности исходной жидкости не более 5 частиц размером более 5 мкм(с) на миллилитр;
- с) схему компоновки оборудования в испытательном стенде, которая не будет изменять распределение твердых частиц в жидкости за ожидаемый период испытания (см. ИСО 16889);
 - d) устройство отбора проб жидкости в соответствии с ИСО 4021;
- е) устройство подачи загрязненной жидкости к АСЧ при постоянных расходе и температуре с отклонениями в пределах, указанных в таблице 1.

Примечания

- Может быть использован испытательный стенд для многопроходных испытаний фильтров (см. ИСО 16889) при условии, что он прошел аттестацию в соответствии с разделом 9.
 - 2 Другая типовая установка, признанная удовлетворительной, приведена в приложении А.
- 6.6 Гидравлическая цепь (при необходимости с устройством для разбавления пробы) для подсоединения интерактивного АСЧ к испытательному стенду многопроходного испытания фильтров.

Типовые схемы гидравлических цепей, признанные удовлетворительными, приведены в приложении В.

7 Погрешность измерительных приборов и параметров условий испытания

7.1 Используют измерительные приборы с погрешностью в пределах, указанных в таблице 1.

¹⁾ ISO MTD — ISO Medium Test Dust (Среднедисперсная тестовая пыль ИСО).

Параметр	Единицы СИ	Погрешность показаний прибора (±)	Допустимов отклонение параметра
Расход	л/мин	0,5 %	2 %
Кинематическая вязкость	MM ² /C	1 %	2 %
Давление	Паскаль (бар)	1 %	2 %
Температура	°C	0,5 °C	1 °C
Время	c	0,05 c	0,1 c
Объем	л	0,5 %	1 %
Macca	r	0,1 MF	1 %

Таблица 1 — Погрешность измерительных приборов и параметров условий испытания

ПРЕДУПРЕЖДЕНИЕ — Сохранение погрешности параметров условий проведения испытания в пределах, указанных в таблице 1, не обеспечивает выполнение требования по аттестации. Однако было доказано, что наилучший способ выполнения требований по аттестации — это сохранение погрешности параметров условий испытания (см. таблицу 1) при совместном применении соответствующих методик подсчета частиц и т. п.

8 Калибровка в автономном режиме

- 8.1 Проводят калибровку в отношении измерения размеров частиц в соответствии с указаниями изготовителя или ИСО 11171 при использовании новых АСЧ или после их очередного технического обслуживания.
- 8.2 Для каждого АСЧ или датчика АСЧ определяют диапазоны содержания частиц пыли по ИСО 11171 или используют рекомендованные изготовителем уровни содержания, полученные аналогичным образом.

9 Аттестация установки для подготовки проб в интерактивном режиме и определение эталона для вторичной калибровки

(См. рисунок 1).

- 9.1 При использовании двух АСЧ или АСЧ с двумя датчиками при аттестации установки для подготовки пробы в интерактивном режиме и определения эталона для вторичной калибровки приведенную ниже последовательность действий выполняют с использованием одного АСЧ и датчика.
- 9.2 Используют один АСЧ и датчик, калиброванные в соответствии с 8.1 и настроенные на интегральный режим и по крайней мере на шесть различных пороговых значений содержания частиц пыли, распределенных по всему рассматриваемому диапазону размеров частиц.
- 9.3 Регулируют общий объем жидкости (в литрах) в установке для подготовки пробы для достижения желаемого уровня и измеряют его с погрешностью в пределах \pm 1 %. Вязкость жидкости поддерживают в пределах (15 \pm 0,3) мм²/с.
- 9.4 Используют очистительный фильтр, обеспечивающий уровень загрязненности исходной жидкости не более 5 частиц размером более 5 мкм(с) на миллилитр.
- 9.5 Определяют содержание частиц пыли, используемой при калибровке и проверке АСЧ. Содержание должно быть таким, чтобы при наименьшем размере частиц отсчет был максимальным и соответствовал содержанию, составляющему приблизительно 50 % порогового значения, установленного в 8.2.
- 9.6 Добавляют в гидробак требуемое количество ISO MTD, подготовленной в соответствии с 6.3, и дают жидкости циркулировать в течение приблизительно 15 мин. Записывают номер партии ISO MTD.
- 9.7 Начинают испытание, запуская АСЧ в интерактивном режиме (рекомендуемый объем проб 25 мл), и регистрируют отсчеты в течение 1 ч с интервалом 2 мин или в течение самого длинного периода времени, при котором будет использоваться гидросистема, равномерно распределяя по нему 30 отсчетов.

Рисунок 1 — Блок-схема аттестации установки для подготовки пробы в интерактивном режиме и определения эталона для вторичной калибровки АСЧ

9.8 Заполняют таблицу 2, вписывая необходимые данные для каждого из полученных необработанных отсчетов частиц. Для каждого установленного порогового значения размера частиц вычисляют среднее значение \overline{x} и стандартное отклонение σ всех отсчетов по формуле

$$\sigma = \sqrt{\frac{n \sum_{i=1}^{n} (x_i^2) - \left(\sum_{i=1}^{n} x_i\right)^2}{n(n-1)}}$$

где x_i — содержание частиц пыли при каждом пороговом значении i;

п — общее число отсчетов частиц.

- 7	5 m 6	 2 2	English and	2011000011140	DODUGI TOTOR	DTODUUNOÑ	капибловки	ACULT	O DILIDIA

Номер партии ISO MTD:	Массовая к	онцентрация:	мг/л
Объем, в котором проводился п	одсчет частиц:	мл	
Оператор:	Дата:	Модель АСЧ	
Серийный номер датчика:	Результаты первичн	юй калибровки АСЧ по	ИСО 11171:

	1	 Размер, мкм (с)	>	,
Отсчет				
		Число частиц		
1				
2				
3				1=
4				
5				
6				
7				
8				
9				7 =
10				
11				
12				
13				
14				
15				
16				
17		7	7	
18				
19				
20				
21			7 = 31	
22				
23				
24				
25				
26				
27				1 =
28				
29			7 = 11	
30				
Среднее значение с				
опустимое σ				1

9.9 Вычисляют допустимое стандартное отклонение для каждого размера частиц по формуле

$$\sigma_{\text{допустимое}} = \sqrt{\overline{x} + 0.0004 \overline{x}^2}$$
.

П р и м е ч а н и е — Это допустимое стандартное отклонение равно удвоенному стандартному отклонению, полученному по результатам международного анонимного исследования (см. приложение С).

- 9.10 Если стандартное отклонение для каждого размера частиц меньше или равно допустимому стандартному отклонению для этого размера, то аттестацию признают успешной и переходят к 9.13.
- 9.11 Если стандартное отклонение для заданного размера частиц превышает допустимое стандартное отклонение, то проводят повторную проверку установки для подготовки пробы и методик, а также значений расхода и объема жидкости, при которых ведется подсчет частиц с помощью интерактивного АСЧ. Принимают соответствующие меры и повторяют испытание с 9.3 по 9.10.
- 9.12 Вычисляют содержание частиц пыли в мл для каждого порогового значения размера частиц путем деления среднего по отсчетам на объем жидкости (мл), в котором проводился подсчет частиц.
- 9.13 Пересчитывают отсчеты, полученные в 9.12, в число частиц на мкг (число частиц на мл при массовой концентрации 1 мг/л) путем деления на массовую концентрацию пробы, в миллиграммах на литр. Заносят эти эталонные отсчеты в третью графу таблицы 3.
- 9.14 Во вторую графу таблицы 3 заносят результаты отсчетов (число частиц на микрограмм) для пыли, использованной при первичной калибровке АСЧ по 8.1.
- 9.15 В четвертую графу таблицы 3 заносят значения допустимой погрешности калибровки АСЧ для каждого размера частиц, вычисленные по формуле.

Допустимая погрешность калибровки = 0,37 (отсчет по первичной калибровке во второй графе таблицы 3)^{0,85}.

П р и м е ч а н и е — Допустимая погрешность калибровки для соответствия была вычислена по 5 %-ному отклонению размера частиц и 1σ (Пуассоновское распределение), определенным по результатам международного анонимного исследования (приложение C).

9.16 Аттестуют установку для подготовки пробы, если разница между эталонными отсчетами и отсчетами для пыли, использованной при первичной калибровке АСЧ, указанными во второй графе таблицы 3, находится в пределах значений, указанных в четвертой графе, умноженных на 1,3.

П р и м е ч а н и е — Эти эталонные отсчеты определяют распределение частиц пыли по размерам, использованной для вторичной калибровки АСЧ (с номером партии, указанным в 9.5), и будут использованы в разделах 10 и 11 для вторичной калибровки и проверки.

9.17 Если используют несколько АСЧ или АСЧ с несколькими датчиками, то допустимый разброс значений, полученных на разных АСЧ или датчиках АСЧ для каждого размера частиц, вычисляют по формуле.

Допустимый разброс = 0,60 + 0,05 (отсчет по первичной калибровке из второй графы таблицы 3). Записывают результаты в пятую графу таблицы 3.

Максимально допустимый разброс отсчетов частиц, полученных на разных АСЧ, должен быть не более 10 % среднего отсчета частиц.

П р и м е ч а н и е — Разброс значений, полученных на разных АСЧ, вычислен по 2,5σ (Пуассоновское распределение), определенному по результатам международного анонимного исследования.

10 Методика вторичной калибровки и проверки в интерактивном режиме

(См. рисунок 2)

10.1 Проводят проверку калибровки АСЧ в интерактивном режиме после каждой первичной калибровки не реже одного раза в шесть месяцев или при появлении или подозрении отклонений при подсчете частиц.

П р и м е ч а н и е — Если используют два АСЧ (АСЧ с двумя датчиками), то калибровку и проверку проводят на одном АСЧ (датчике АСЧ) по 10.1—10.10, а затем второй АСЧ (датчик АСЧ) настраивают по 10.11 в соответствии с первым.

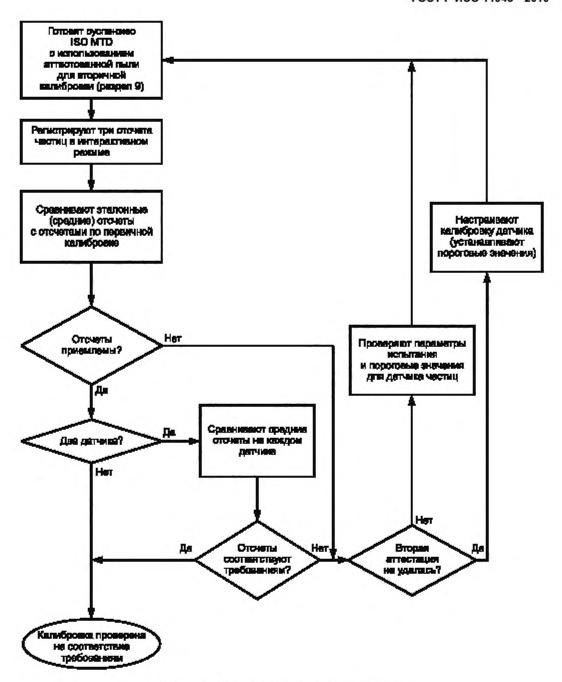


Рисунок 2 — Блок-схема проверки калибровки АСЧ в интерактивном режиме на соответствие требованиям

Т а б л и ц а 3 — Отсчеты частиц по ISO MTD [все отсчеты интегральные и полученные для 1 мкг ISO MTD (отсчеты для миллилитра при массовой концентрации 1 мг/л)]

Размер частиц, мкм(с) >	Отсчеты по пыли, использованной для первичной калибровки АСЧ (см. 9.14)	Эталонные отсчеты по ISO MTD, № партии (см. 9.13)	Допустимая погрешность калибровки АСЧ, (±) (см. 9,15)	Допустимый разброс значений, полученных на разных АСЧ (см. 9.17)
>1				
> 2				
> 3				
> 4			1	
> 5				
> 6				
> 7				
> 10				()
> 12				
> 14				
> 15				
> 20				
> 30				

Примечания

- Приведенные выше значения допустимой погрещности калибровки АСЧ для соответствия были вычислены по 5 %-ному отклонению размера частиц и 1σ (Пуассоновское распределение), определенным по результатам международного анонимного исследования.
- 2 Разброс значений, полученных на разных АСЧ, вычислен по 2,5σ (Пуассоновское распределение), определенному по результатам международного анонимного исследования, при максимально допустимом разбросе отсчетов частиц, не более 10 % среднего отсчета.
- 10.2 Установку для подготовки пробы в интерактивном режиме используют в течение 24 месяцев после аттестации в соответствии с разделом 9.
- 10.3 Используют ISO MTD только из партии, аттестованной для вторичной калибровки АСЧ в соответствии с разделом 9 (см. таблицу 3).
 - 10.4 Готовят суспензию ISO MTD для проверки калибровки АСЧ по 9.3-9.6.
- 10.5 Настраивают АСЧ на требуемые пороговые значения размера частиц, но только те, для которых были получены эталонные отсчеты частиц в соответствии с разделом 9 (см. таблицу 3).
- 10.6 Дают возможность суспензии для проверки калибровки АСЧ пройти через датчик АСЧ при том же значении расхода, что и при первичной калибровке.
- 10.7 Проводят реальную проверку АСЧ при нескольких значениях размера частиц, распределенных по диапазону, в котором он будет использован.

П р и м е ч а н и е — Допустима интерполяция, но не экстраполяция установленных пороговых значений между проверенными точками.

- 10.8 Получают минимум три последовательных отсчета частиц в интерактивном режиме (после стабилизации показаний).
- 10.9 Вычисляют средние значения отсчетов на микрограмм (число частиц на миллилитр при массовой концентрации 1 мг/л) для каждого установленного порогового значения размера частиц путем деления значения для среднего отсчета на объем пробы (мл) и на массовую концентрацию пробы (мг/л). Полученное значение заносят в таблицу 4.
- 10.10 Все отсчеты частиц, полученные в 10.9, должны быть равны эталонным отсчетам, приведенным в третьей графе таблицы 3, с учетом значений допустимой погрешности калибровки АСЧ, указанной в четвертой графе, для каждого сосчитанного размера частиц.

П р и м е ч а н и е — Приведенные выше значения допустимой погрешности калибровки АСЧ для соответствия были вычислены по 5 %-ному отклонению размера частиц и 1σ (Пуассоновское распределение), определенным по результатам международного анонимного исследования.

10.11 Если используют два АСЧ (или АСЧ с двумя датчиками), расположенных последовательно по потоку, то второй АСЧ должен быть калиброван с использованием такой же калибровочно-поверочной суспензии, что и первый, путем настройки пороговых значений таким образом, чтобы средние отсчеты на микрограмм (см. таблицу 4) совпадали со средними отсчетами первого АСЧ с допустимым отклонением, указанным в пятой графе таблицы 3 для каждого значения размера частиц.

Примечание — Рекомендуется повторить действия данного подраздела, поменяв местами датчики.

- 10.12 Если отсчеты частиц, полученные по 10.9, соответствуют установленным требованиям, то проверку можно считать выполненной и переходить к разделу 11.
- 10.13 Если отсчеты частиц, полученные в 10.9, не соответствуют установленным требованиям, то после выполнения корректирующих действий независимо готовят другую суспензию ISO MTD для вторичной калибровки АСЧ и повторяют проверку по 10.4—10.12.

Следует убедиться в том, что:

- а) правильно настроено значение расхода через датчик;
- правильно настроены пороговые значения размера частиц;
- с) жидкость полностью дегазирована;
- d) правильно определены масса, объем проб и пр.
- 10.14 Если после проверки по 10.13 отсчеты частиц не соответствуют установленным требованиям, то корректируют настройку АСЧ (пороговых значений) в соответствии с ИСО 11171, но при этом не используют жидкость для вторичной калибровки АСЧ, подаваемую в интерактивном режиме, а также эталонные отсчеты, указанные в третьей графе таблицы 3.
 - 10.15 Проверяют калибровку АСЧ, повторяя проверки с 10.4 по 10.12.

Таблица 4 — Бланк для занесе Номер партии ISO MTD:			
Объем, в котором подсчитывают ча	астицы: мл		
Оператор: Серийный № АСЧ:	Дата:	Modent AC4:	71-
Серияный не АСЧ	дата первичной ка	NAOPOBRA ACH IIG ACO TTT	
Размер, мим (с) >		Оточеты частиц	
Верхний по потоку датчик. модель и серийный №:			
Отсчет 1			
Отсчет 2			
Отсчет 3			
Среднее			
Среднее/мкг (10.9)			
Нижний по потоку датчик: модель и серийный №:			
Отсчет 1			
Отсчет 2			
Отсчет 3			
Среднее			
Среднее/мкг (10.9)			

11 Аттестация установки для разбавления пробы в интерактивном режиме

(См. рисунок 3)

- 11.1 Аттестацию установки для разбавления пробы в интерактивном режиме проводят с такой же периодичностью, как и проверку калибровки АСЧ.
- 11.2 Используют жидкость для разбавления пробы, отфильтрованную до уровня чистоты не более 5 частиц размером более 5 мкм(с) на мл, или жидкость для разбавления пробы другого уровня чистоты, если может быть доказано, что при этом погрешность результирующих отсчетов частиц составит не более 1 %.
- 11.3 Проводят аттестацию установки для разбавления пробы при минимальном коэффициенте разбавления.
- 11.4 Готовят суспензию ISO MTD для вторичной калибровки ACЧ в соответствии с 9.3 9.6 с содержанием частиц пыли, равным (50 ± 10) % предельного значения содержания (см. 8.2), умноженного на выбранный коэффициент разбавления.

П р и м е ч в н и е — Например, при двукратном разбавлении (1 часть растворителя на 1 часть суспензии) используют пробу с содержанием частиц пыли, равным 50 % порогового значения содержания для АСЧ, умноженного на 2.

- 11.5 Настраивают АСЧ на минимальное из шести пороговых значений размера частиц, распределенных по диапазону.
- 11.6 С выбранным коэффициентом разбавления получают минимум три последовательных отсчета частиц с интервалом в 1 мин (после стабилизации показаний) для каждого датчика и вычисляют среднее значение по отсчетам для разбавленной пробы при каждом размере частиц.
- 11.7 Вычисляют средние по отсчетам на миллилитр для каждого установленного порогового значения размера частиц путем деления среднего по отсчетам на объем жидкости (мл), в котором проводился подсчет частиц.
- 11.8 Пересчитывают значения, полученные по 11.7, в число частиц на микрограмм путем деления на массовую концентрацию пробы (мг/л) и умножения на коэффициент разбавления. Результаты заносят в таблицу 5. При использовании двух АСЧ для каждого составляют отдельный протокол.
- 11.9 Все отсчеты частиц, полученные по 11.8, должны совпадать с эталонными отсчетами из третьей графы таблицы 3 с учетом значений допустимой погрешности калибровки АСЧ из графы 4 таблицы 3 для каждого размера частиц. Кроме того, при использовании двух АСЧ (или АСЧ с двумя датчиками) средние по отсчетам этих двух АСЧ должны совпадать в пределах допустимого отклонения, приведенного в пятой графе таблицы 3, для каждого размера частиц.
- 11.10 Повторяют испытание с 11.4 по 11.9 при максимальном коэффициенте разбавления и по крайней мере двух других промежуточных значениях из общего применяемого диапазона коэффициентов разбавления.

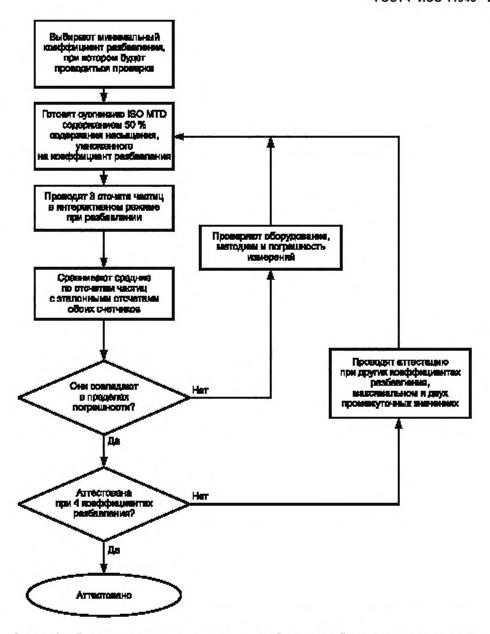


Рисунок 3 — Блок-схема аттестации установки для разбавления пробы в интерактивном режиме

12 Меры предосторожности

- 12.1 Подсчет частиц размером более 40 мкм(с) в интерактивном режиме с использованием ISO МТD требует внимательности, чтобы избежать их осаждения. Калибровку АСЧ при максимальных значениях размера частиц проверяют в интерактивном режиме (см. раздел 10).
- 12.2 Испытание фильтров грубой очистки с АСЧ в интерактивном режиме требует более высоких коэффициентов разбавления пробы и более точных измерений расхода.

- 12.3 Разбавление пробы необходимо, если значение содержания частиц пыли не попадает в диапазон, установленный для АСЧ. При наличии большого числа необнаруженных частиц наблюдаются отклонения отсчетов частиц при измеряемых размерах, в связи с чем используют большие коэффициенты разбавления.
- 12.4 При разбавлении пробы в интерактивном режиме жидкость для разбавления должна быть того же типа, что и испытательная жидкость, в которой ведется подсчет частиц.
- 12.5 Наличие свободной воды или воздуха в анализируемой испытательной жидкости будет оказывать неблагоприятное воздействие на результаты. Нужно предпринять меры предосторожности для устранения этих воздействий.
- 12.6 Предохраняют датчики АСЧ от механической вибрации для исключения погрешностей, связанных с ее воздействием.
 - 12.7 Изолируют АСЧ от другого крупного оборудования для предупреждения влияния шумов.
- 12.8 Пульсации потока, вызванные неравномерностью работы насоса, могут привести к ошибочным отсчетам частиц. Эти пульсации могут быть ослаблены с помощью небольших аккумуляторов, если их включают в проверку установки.
- 12.9 Сводят к минимуму длину всех трубопроводов и устанавливают максимальные значения расхода, чтобы получить малое время запаздывания (время с момента отбора пробы из многопроходного испытательного стенда до момента, когда проба воспринимается АСЧ). Время запаздывания отсчета должно быть не более 30 с. Разница между временем запаздывания верхнего и нижнего по потоку датчиков должна составлять не более 10 с.
- 12.10 Во время работы настройку клапана проводят по минимуму, чтобы уменьшить ошибки, обусловленные генерированием частиц клапаном.
- 12.11 Систематически промывают каждый датчик обратной струей жидкости для предотвращения засорения или частичной блокировки. Это необходимо, поскольку не все оборудование для счета частиц имеет встроенные надежные индикаторы обнаружения этих сбоев, а засоренные или частично заблокированные датчики будут выдавать ошибочные отсчеты частиц.

Т а б л и ц а 5 — Протокол для занесения результатов аттестации установки для разбавления пробы в интерак-

гивном режиме Номео партии ISO MTD:	Объем, в котором подсчитывают частицы:мл
	н до или после фильтра?
	Отсчеты частиц
Размер, мкм (c) >	
Массовая концентрация: мг/л Коэффициент разбавления:	
Отсчет 1	
Отсчет 2	
Отсчет 3	
Среднее/мкг (11.8)	
Массовая концентрация: мг/л Коэффициент разбавления:	
Отсчет 1	
Отсчет 2	
Отсчет 3	
Среднее/мкг (11.8)	
Массовая концентрация: мг/л Коэффициент разбавления:	
Отсчет 1	
Отсчет 2	
Отсчет 3	
Среднее/мкг (11.8)	

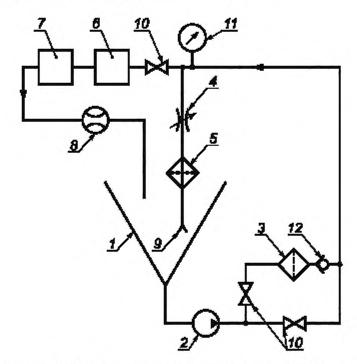
Окончание таблицы 5

Размер, мкм (c) >	Отсчеты частиц	
Размер, мим (c) >		
Массовая концентрация: мг/л Коэффициент разбавления:		
Отсчет 1		
Отсчет 2		
Отсчет 3		
Среднее/мкг (11.8)		

13 Идентификационное положение

Интерактивные системы подсчета частиц в жидкости калиброваны и проверены в соответствии с ГОСТ Р ИСО 11943—2010.

Приложение А (справочное)


Руководство по разработке типового испытательного стенда для калибровки и аттестации автоматических счетчиков частиц в интерактивном режиме

А.1 Общие положения

- А.1.1 Для калибровки и аттестации АСЧ в интерактивном режиме требуется методика определения пригодности оборудования для выполнения соответствующих функций.
- А.1.2 В настоящем приложении приведены основные рекомендации по подбору оборудования, отвечающего требованиям стандарта.
- А.1.3 Пользователь стандарта должен понимать, что в данном приложении содержатся только основные рекомендации по подбору оборудования, не гарантирующие успешную аттестацию АСЧ.

А.2 Установка для подготовки пробы в интерактивном режиме

Схема типового испытательного стенда приведена на рисунке А1.

точно ский гидробак (с углом конуса от 60° до 90°) с точно контролируемым объемом жидкости; 2 — центробежный насос;
 очистительный фильтр, 4 — клапан регулировки противодавления;
 б — теплообменник/нагреватель;
 б — датчик АСЧ;
 д — расходомер;
 9 — диффузор;
 10 — шаровой кран (не используют для регулирования потока).
 11 — манометр;
 12 — обратный клапан

П р и м е ч а н и е — Испытательный стенд для калибровки АСЧ может быть передвижным (на колесах), и его можно подвести к АСЧ, когда требуется их калибровка и/или проверка.

ПРЕДУПРЕЖДЕНИЕ — При последовательном соединении двух датчиков могут возникнуть проблемы из-за кавитации, если падение давления в первом датчике слишком велико.

Рисунок A.1 — Схема испытательного стенда для калибровки и аттестации ACЧ в интерактивном режиме

А.2.1 Трубопровод

Трубопровод должен быть такого размера, чтобы обеспечить турбулентный перемешивающийся поток. Следует избегать длинных прямолинейных участков.

А.2.2 Соединения

Соединения не должны иметь на внутренней стороне незащищенных витков резьбы или выступов, которые могут задерживать частицы пыли.

А.2.3 Трубопроводы и соединения

Трубопроводы и соединения располагают таким образом, чтобы избежать возникновения зон мертвого потока. Вертикальные участки предпочтительнее горизонтальных.

А.2.4 Краны

Шаровые краны предпочтительнее кранов других видов, поскольку они самоочищаются и не задерживают частицы пыли. Краны желательно использовать только в полностью открытом или полностью закрытом положении, но не для управления потоком.

А.2.5 Гидробак

Гидробак небольшого объема, обычно менее 10 л, с коническим дном, углом конуса не более 90°. Жидкость подается в гидробак ниже уровня ее поверхности. Следует отметить, что при использовании гидробака малого объема могут возникнуть проблемы с точным взвешиванием необходимого количества тестовой пыли.

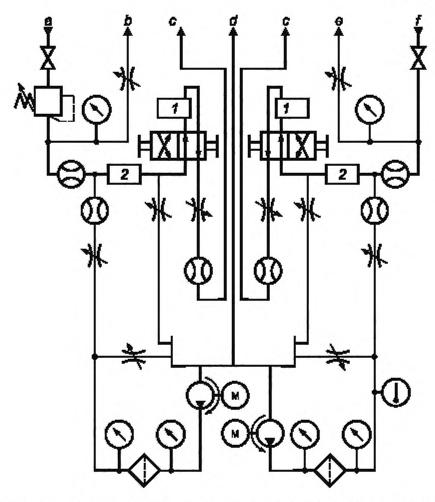
А.2.6 Очистительный фильтр

Очистительный фильтр должен обеспечивать первоначальный уровень загрязненности гидросистемы. Рекомендуется фильтр, рассчитанный на частицы размером ≤ 4,5 мкм(c) (β = 75).

А.2.7 Теплообменник/нагреватель

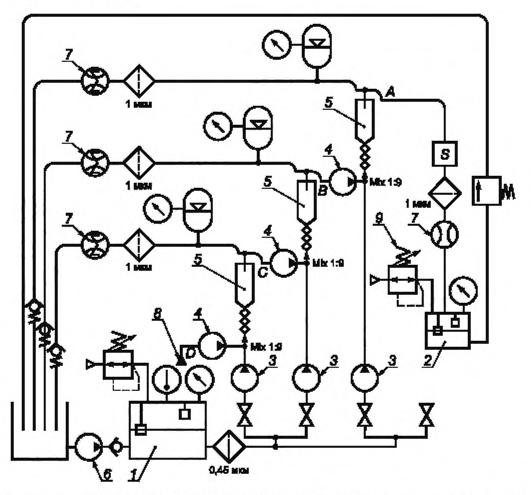
В зависимости от предполагаемого применения гидросистемы может потребоваться охлаждение или нагрев испытательной жидкости. Для охлаждения или нагрева испытательной жидкости рекомендуется использовать обычный трубчатый масляный теплообменник или сосуд с двумя рубашками, в котором циркулирует жидкость с контролируемой температурой. Это необходимо для уменьшения вероятности осаждения частиц.

Приложение В (справочное)


Руководство по разработке гидравлической схемы подсоединения интерактивного автоматического счетчика частиц к стенду для многопроходных испытаний фильтров

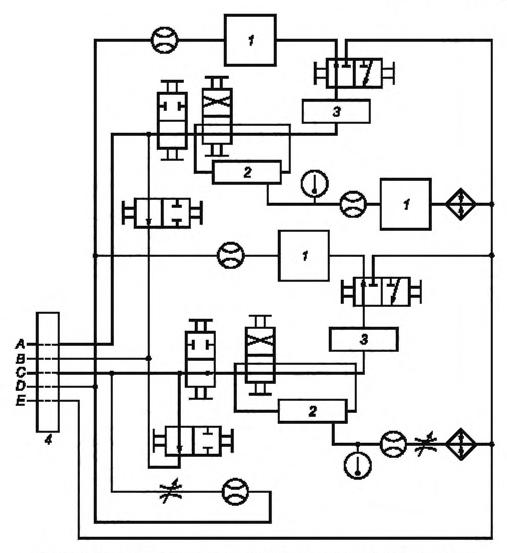
В.1 Общие положения

- В.1.1 Для подсчета частиц в интерактивном режиме (с разбавлением пробы или без него) при многопроходном испытании фильтров необходимо подсоединить АСЧ к испытательному стенду для многопроходного испытания и провести предварительную аттестацию настроек АСЧ с целью определения применимости оборудования для выполнения соответствующих функций.
- В.1.2 В настоящем приложении приведены основные рекомендации по подбору оборудования, отвечающего требованиям стандарта.
- В.1.3 Пользователь стандарта должен понимать, что в данном приложении содержатся только основные рекомендации по подбору оборудования, не гарантирующие успешную аттестацию АСЧ.
- В.1.4 Схемы трех испытательных стендов, доказавших свою эффективность, приведены на рисунках В.1 В.3.
- В.1.5 При подсчете частиц и разбавлении пробы в интерактивном режиме следуют рекомендациям по подбору компонентов установки для подготовки пробы в интерактивном режиме, приведенным в приложении А.


Последовательное тысячекратное разбавление пробы (см. рисунок В.2).

Предлагается: 4 насоса для пробы (обеспечивающие расход от 20 до 50 мл/мин), 3 насоса для разбавления (обеспечивающие расход от 180 до 240 мл/мин).

s- подача пробы выше по потоку; b- отвод пробы выше по потоку; c- отвод жидкости от датчиков АСЧ; d- слив; e- отвод пробы ниже по потоку, f- подача пробы ниже по потоку, f- датчик; 2- смеситель


Рисунок В.1 — Схема № 1 подсоединения интерактивного АСЧ к испытательному стенду для многопроходных испытаний фильтров

1,2 — камеры савтоматической настройкой уровня жидкости (герметичные); 3 — сдвоенные перистальтические насосы для разбавления: лробы; 4 — сдвоенные перистальтические насосы для пробы; 5 — статические смесители и камера расширения; 6 — перекачивающий насос (включающийся автоматически); 7 — суммирующие микрорасходомеры с овальными шестернями; 8 — подача жидкости от многопроходного стенда; 9 — регулируемая подача воздуха; S — датчик АСЧ; Міх 1:9 — разбавление пробы в соотношении 1:9

П р и м е ч в н и е — Установку, приведенную на схеме, применяют для отбора проб выше и ниже по потоку от АСЧ. Датчик АСЧ из точки А может быть перемещен в точку В или С для получения сто- или десятикратного разбавления пробы. Давление в точках А, В, С и D должно быть одинаковым.

Рисунок В.2 — Схема № 2 подсоединения интерактивного АСЧ к испытательному стенду для многопроходных испытаний фильтров

1 — регулятор расхода; 2 — смеситель; 3 — датчик АСЧ; 4 — подсоединение к испытательному стенду; A — отбор пробы выше по потоку; B — к гидробаку с испытательной жидкостью; C — отбор пробы ниже по потоку; D — к насосу; E — насос для жидкости при разбавлении пробы

Рисунок В.3 — Схема № 3 подсоединения интерактивного АСЧ к испытательному стенду для многопроходных испытаний фильтров

Приложение С (справочное)

Результаты международного анонимного исследования ИСО по калибровке и аттестации автоматических счетчиков частиц в интерактивном режиме

Ниже приведены выводы, сделанные на основе результатов международного анонимного исследования по калибровке и аттестации АСЧ в интерактивном режиме, проведенного ИСО/ТК 131 /ПК 8/РГ 9. Комментарии приведены по каждому основному этапу, а результаты и выводы — в конце. При статистической обработке результатов выбросы были исключены, но все результаты приведены в таблицах С.1 — С.8.

Каждому участнику был предоставлен набор суспензий для калибровки АСЧ, содержащих тонкодисперсную тестовую пыль для очистителей воздуха (АСРТD)1) с массовой концентрацией 2,5 мг/л в гидравлической жидкости МIL-H-5606, полученных в соответствии с ИСО 4402²). Они были предоставлены, чтобы обеспечить «одинаковость» первичной калибровки АСЧ. Затем каждая участвующая лаборатория проводила первичную калибровку имеющихся АСЧ с последующим выполнением методик проекта ИСО 11943 по калибровке и аттестации в интерактивном режиме. Все результаты были закодированы таким образом, чтобы нельзя было узнать, из какой лаборатории они поступили, и отправлены для анализа в Национальную ассоциацию производителей гидовалического оборудования³).

В международном анонимном исследовании участвовала 21 лаборатория из 8 стран.

Исходная калибровка ACЧ по ACFTD

Прежде чем проводить калибровку АСЧ по предоставленным суспензиям АСРТD, содержание частиц пыли в них было подсчитано с использованием существующей в лаборатории калибровки по ИСО 4402. Для этих результатов, включенных в таблицу С.1, был получен существенный разброс с CV⁴, изменяющимся от 12 % до 62 %, причем наибольший разброс имел место при размере 40 мкм.

Результаты калибровки AC4 по ACFTD

После калибровки АСЧ по предоставленным суспензиям ACFTD отклонения, приведенные в таблице С.1, стали значительно ниже, в основном с СV не более 10 % и от 2 % до 4 % — для частиц размером от 1 до 5 мкм. Отклонение отсчетов после калибровки от значений, опубликованных ИСО 4402, составило менее 9 %.

В целом можно заключить, что калибровка АСЧ была проведена успешно.

Вторичная калибровка

Вторичная калибровка АСЧ, результаты которой приведены в таблицах С.3 и С.4, была, в основном, успешной; 93 % результатов удовлетворяют требованиям, указанным в 9.9 и 9.10.

На рисунке С.1 приведены все результаты по подсчету частиц, полученные в рамках вторичной калибровки АСЧ во время коллективного анонимного исследования. Все эти результаты были получены в режиме интерактивного подсчета частиц и представлены в виде итоговых отсчетов до деления на массовую концентрацию суспензии или объем жидкости, в котором подсчитывают частицы. Зависимость типичного стандартного отклонения, приведенная на рисунке С.1 от итоговых средних отсчетов частиц \overline{x} , может быть выражена формулой:

$$\alpha_{\text{turn}} = \sqrt{x} + 0.0004 \overline{x}^2,$$

Допустимое стандартное отклонение при аттестации равно удвоенному типичному стандартному отклонению, вычисленному по вышеприведенной формуле.

Отсчеты частиц для ISO MTD

Средние эталонные отсчеты, полученные для ISO MTD и приведенные в таблице С.5, были очень близки к ранее сообщавшимся отсчетам (они были включены во вторую графу таблицы 3 в проекте ИСО 11943). Все эти отсчеты согласуются с отклонением не более 5 %.

После исключения явных выбросов, 97 % лабораторий соответствовали требованию, указанному в 9.16.

Проверка калибровки АСЧ в интерактивном режиме

Перечень лабораторий, услешно выполнивших проверку калибровки АСЧ в интерактивном режиме, приведен в таблице С.6. Приблизительно 90 % лабораторий выполнили проверку калибровки верхнего и нижнего датчиков АСЧ по потоку, а также проверку относительных отклонений между этими датчиками.

¹⁾ ACFTD — Air Cleaner Fine Test Dust (тонкодисперсная пыль для очистителей воздуха).

²⁾ Отменен и заменен на ISO 11171 (см. раздел 2).

³⁾ National Fluid Power Association.

⁴⁾ CV (Coefficient of Variation) — коэффициент вариации.

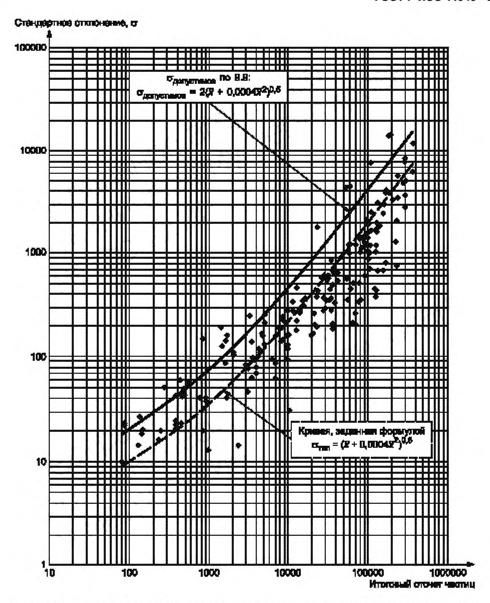


Рисунок С.1 — Стандартное отклонение в зависимости от отсчетов по вторичной калибровке АСЧ

На основе результатов международного анонимного исследования окончательная допустимая погрешность калибровки АСЧ была установлена равной 5 %-ному отклонению размера частиц плюс стандартное отклонение одного полного отсчета.

Аттестация установки для разбавления пробы в интерактивном режиме

Только шесть лабораторий предоставили результаты аттестации установки для разбавления пробы в интерактивном режиме (таблицы С.7 и С.8). В большинстве лабораторий при многопроходных испытаниях разбавление пробы не применялось, поэтому аттестацию установки для разбавления не проводили. Из тех лабораторий, которые предоставили результаты, приблизительно 90 % соответствуют требованиям, предъявляемым при аттестации. Если исключить лабораторию № 2, то этим требованиям соответствовало бы от 96 % до 98 % лабораторий.

В целом можно заключить, что аттестация установки для разбавления пробы была проведена успешно.

Выволы

Поскольку 90 % лабораторий, принимавших участие в анонимном исследовании, успешно прошли все его этапы, можно заключить, что методики, приведенные в настоящем стандарте, пригодны для калибровки интерактивных АСЧ.

Таблица С.1 — Результаты исходной калибровки АСЧ по ACFTD

No.			Сре	днее числ	о частиц ра	змером бо	лее (мкм)	в мл жидк	ости	A	
лаборатории	1	2	3	5	7	10	12	15	20	30	40
1	4458	1.5	2138	987		267	174	100	47.1	14,6	
1	4384		2014	967	1	256	167	96	43,8	14,3	
2			2346	1207	622	304			45,8		3,1
2			2321	1226	612	297			45,5		2,8
3	нет резу	льтатов									
3	нет резу	льтатов									
4	не пров	одилось								I C. III	
5	4270	3250	2360	1271		394	247		71,0	20,0	
6		3546	2108	1066	607	252		77	34,4	10,4	
6		3298	2048	1020	568	238		66	33,0	9,5	
8		4061	2660	1427	796	381	243	131	58,6	18,2	7,7
8		4337	2821	1496	806	371	234	125	53,9	15,7	7,0
9	4455	3278	2655	1400	758	388	273	164	74,5	38,5	19,3
10				1880	828	373	253	140	65,0	20,0	10,0
11		3638		1376		404		162	73,0		11,0
11		3696		1366		402		154	69,0		10,0
12			2836	2177	1042	479	357	212	88,0	35,0	23,0
12			2821	2209	1027	478	342	217	89,0	34,0	20,7
13		4730		1808		491		189	93,7		11,1
13	5839	4698	3307	1688	946	444	329	198	95,9	21,4	7,0
14		3121	2025	1075		308		99	36,9	5,1	
15	4973	2914		1103		280		103	63,3		
15	4170	2785		1008		265		92	46,5		
16		3899	2932	1875		670		283	137,3	22,4	4,3
19	4764	3665	2469	1267	747	370	248	138	56,8	15,0	5,5
22		3866	2597	1356		369		131	59,7	18,5	7,2
22		3789	2535	1313		354		124	56,7	17,2	6,9
24			3078	1234	696	299				16,5	
24		11 . []	3267	1236	648	316				15,2	
26			2935	1391		355		214	58,3		4,9
26			2575	1397		382		141	64,9		5,6
27		4145	2492	1094		280			57,0		8,0
27	-	3930	2406	1098		299			59,0		8,0
28		4409	2970	1425	765	357	229	129	55,4	14,6	5,1
28		4238	2863	1398	763,2	357,5	228,3	128,7	55,7	14,9	5,5
Среднее	4664	3776	2599	1370	764	359	256	145	63,0	18,6	8,8
CV, %	12	14	14	24	19	25	23	35	34	44	62

Таблица С.2 — Результаты первичной калибровки по ACFTD

' 1											L										
Среднее число ча	днее чи	*	cno 4a	стиц ра	стиц размером болев (мкм) в мл жидкости	болев (я	MKM) B I	ил жидк	ости					Отклон	зние от	Отклонение от значений ИСО 4402.	и исо	4402.%			
2 3	9		9	7	10	12	16	50	30	40	-	2	ъ	5	2	10	12	15	20	8	40
3492 2480	_	_	1292	735	360	238	138	63,7	18,8	7,2											
2332			1282		350	241	140	64.6	20,5		ī		9	1		-3	1	1	1	8	
2388	2388		1287		353	247	146	62,1	20,2		1		4	0		2-	4	9	-3	8	
2417	2417		1252	653	291			43,6		3,8			3	-3	11-	61-			-32		-47
2402	2402		1287	637	279			412		3,3			గ	0	-13	-22			-35		-54
4963 3308 2409	2408	200	1220	695	314		137	92,0	18.7	11.9	13	-5	-3	9-	2	-13		-1	44	-1	67
4910 3209 2363	2363	m	1295	721	344		156	71,5	21.5	8,9	12	9	۴	0	-2	p -		13	12	14	24
не проводилось	HOCE																				
не проводилось	пось																				
3606 2298	229	8	1267	790	385		143	66,5	20,2			3	-7	-2	7	7		4	4	8	
3640 2333	233	3	1233	765	410		158	68.8	19,8			4	9	-5	4	14		14	8	9	
3540 2439	243	6	1334	722	349	234	133	61,6	19,1	7,6		1	-2	3	-2	-3	-2	4	-3	2	6
3554 2490	248	90	1314	728	354	241	193	62,7	18,9	7,4		2	0	2	1-	-2	1	1	-2	1	3
3483 2283	228	33	1215	663	333	235	131	66,3	18,8	7,3	-	0	۴	9-	-10	8-	-1	-5	4	0	1
			2193	818	368	243	128	65,0	20,0	10,01				70	11	2	2	٩	2	7	39
3434			1240		362		143	0'69		0,6		-2		-4		ı		4	80		25
3467			1245		356		144	67,0		9.0		٦		-4		-1		4	5		25
2569	25	39	1248	687	326	190	108	54,2	16,3	5,9			4	-3	7-	6~	-20	-22	-15	-13	-18
2573	25	73	1341	708	373	217	115	58,6	19,9	5,8			4	4	4	4	6-	-17	-8	9	-20
3485			1367		358		142	1,78		2'6		0		8		0		3	9		35
3357 2387	238	7	1214		317		121		16,7			4	4	9-		-12		-12		-11	
3466 2458	245	80	1226		348		133	58,8	18,0			7	7	-5		-3		4	-8	-4	
4686 3593			1317		374		147	66,4			7	3		2		4		7	4		

Окончание таблицы С 2

2		Cpe	Среднее чис	ono vac	гиц раз	мером	изожит в (мкм) в опее от жидкости	N IE (NOI	пжидю	мто					Отклане	то фин	молене	й исо	Откланение от эначений ИСО 4402. %			
лаб	-	2	3	5	7	10	12	15	20	30	40	-	2	e	10	7	10	12	15	20	30	9
15	4318	3425		1294		362		149	6,93			7	2		0		1		8	10		
16**		4085	2933	1861		515		188	86,9	23,9	8,5		17	18	44		43		36	36	27	19
19	4216	3491							58,5	18,8	8,0	4	0							8-	0	12
22		3508	2580	1310		362		137	63,1	18,8	7.0		0	2			0		1-	1-	0	-2
22		3518	2490	1314		359		139	63,5	18,1	7.1			0	2		0		1	0	-4	-1
24			2313	1185	769	349				17,5				1-	۴	\$	-3				-7	
24			2528	1305	769	389				17,8				8	-	9	8				9-	
26			2473	1297		365		138	64,0		7,3			0	0		1		0	0		2
26			2483	1278		367		138	63,5		7,3			0	7		2		0	0		2
27		3575	2415	1275		356			62,0		8,0		2	۴	-1		1-			-3		12
27		3546	2480	1301		359			63,0		8,0		2	0	1		0			1-		12
28		3427	2390	1245	732	368	245	145	9'99	18,7	7,2		7	4	4	0	2	3	9	5	0	0
28		3405	2385	1247	723	362	244	141	63,9	17,9	7,2		-2	4	3	-2	0	2	2	0	-5	0
				Bce	Все результаты	ьтаты																
Среднее	4526	3506	2444	1321	723	358	234	140	64,4	19.1	9.7	4	3	4	9	9	9	9	1	8	8	18
cv. %	9	9	5	15	7	11	8	11	15	6	24											
		3a v	За исключе	энмем	nagobs	нием лабораторий	2, 3, 1,	12, 16														
Среднее	4390	3501	2415	1275	740	360	241	140	64,5	18,7	7,8	3	2	6	3	4	3	2	4	4	4	6
CV. %	4	2	3	69	5	5	2	2	2	9	:											
** Лаборатории, в которы х было получено несколько значений отклонен	Лабор	атории	, в кото	perx 6 _b	ило пол	лучено	нескол	₽КО 3Н	и нен му	отклон	ений, о	Лаборатории, в которых было получено несколько значений отклонений, отличающихся от значений в ИСО 4402 более чем на 10 %, которые в ряде	мцихся	от знач	ений в	исо 4	102 60	иен неи	M HB 10	%, sort	phee	ряде

случаев обусловлены смещением результатов определения размеров частиц.

Таблица С.3 — Результаты вторичной калибровки АСЧ

	40			280	280			144	150					236	250	380	386	138	90	93			128					82	474	440
	30	767	890			874	893	465	492	381	1456	1389		828	828			550					383	824	856	442	459			
	02	3026	3593	3440	3250	3455	3544	1926	1861	1640	5310	2160		4057	4237	4039	4398	2000	1618	1700		1589	1472	3142	3184			1004	4700	20.00
(100)	15	7025	8762			8424	8655	47.77	4713	4212	12050	11749	5274	9934	9730	10083	9846	4900				3624	3561	6984	7214			2377		
ром болев (м	12	13222	15809					9119	88338		22717	22433									9934		6552							
Средние отсчеты частицразмером болев (мкм)	10	21583	24499	23980	23370	27794	28695	14229	14179	12873	37375	36805	16235	31043	31527	32874	33107	15450	13025	13188	15577	9732	10920	19452	19294	10251	10008	7715	43718	42020
ине отсчеты	7			61540	58060	10.37.31		32765	32553	25942	81596	79947	34673						27825	28350	32816		23891			21571	21161			
Cpet	V7	79244	90530	109060	107640	91390	92167	57998	57629	41562	134612	131358	57210	104626	106810	108866	110741	55175			58829	36026	39115	69948	70098	36819	36187	27183	171915	167360
	8	139143	156004	188650	186490	161200	157678	99013	98581	71334	227410	222098	97405					90975	77675	79025	100966		65688	121728	120206	63506	63354	45726	286023	288110
	2							130422	129123	101897	298909	293026		4		239556	234257				132027	82816	82720	155152	154752				373879	260036
	1	211154	231201					158347	157133				138160						122625	124550		99628	100099							
Объем,	MJ	-1		10	10	26	26	25	25	25	25	25	25	25	25	50	90	1	25	25	25	25	50	20	20	25	25	10	20	20
Массовая	концентрация, мг/л	4,4	4,8	20	20	4,6	4,6	3	3	1,9	7	7	3	5	5	3	3	3	2,5	2,5	3	2,5	1	5	5	2	2	3,5	5	u
	лаб	-	+	2	2	4	4	9	5	9	8	8	69	10	10	11	11	12	13	13	14	15	19	22	22	24	24	26	27	22

Таблица С.4 — Результаты вторичной калибровки

OTKS-	% %	0	0	100	100	0	0	0	0	13	11	22	0	0	0	0	0	58	33	33	0	17	0	14	0	0	0	0	17	17	13		7	
Одоб-	% %	100	100	0	0	100	100	100	100	88	88	7.8	100	100	100	100	100	71	67	67	100	83	100	88	100	100	100	100	83	83	87		88	
	40			34	34			25	25					32	33	42	42	24	19	20			23					18	47	44				
	30	63	69			69	70	47	49	42	96	93		99	99			52					42	99	68	46	47							
	20	164	187	181	173	181	18.5	117	119	104	258	251		208	214	208	220	120	103	107		102	97	168	170			75	233	232	9			
ие	15	327	397			384	393	236	233	213	530	518	256	445	436	451	441	241				188	186	326	335			136			более		WOWN	
глонен	12	212	681					412	404		957	946									445		308							ij	орий		эноно	
тное от	10	912	1029	1008	984	1161	1197	617	615	563	1544	1521	698	1291	1310	1364	1373	999	569	575	671	436	484	827	820	457	448	355	1798	1762	аборат		38 MCKU MM 2, 6	
стандар	7			2511	2372			1360	1351	1087	3313	3247	1436						1162	1183	1362		1004			911	895				исла л		бораторий за исключе лаборатории 2, более	
Допустимое стандартное отклонение	9	3219	3671	4412	4355	3705	3736	2369	2355	1712	5434	5304	2338	4235	4322	4404	4479	2256			2403	1490	1614	2847	2853	1522	1497	1136	6926	6744	общего числа лабораторий,		% лабораторий за исключением лаборатории 2, более	50
Aony	3	56116	6290	7596	7509	6498	6357	4010	3993	2903	9146	8934	3946					3689	3157	3211	4088		2677	4919	4858	2590	2584	1878	11491	11574	% 06		*	A east-on
	2	3						5267	5215	4126	12006	11771				9632	9420				5331	3362	3358	6256	6240				15005	14847				A P. В не пом не управления в вторичной капибровка АСУ
	+	8496	9298					6384	6335				5576						4955	5032		4035	4054	Ī										ğunnau
									_																_	_					_	_		N STO
	40	2		50	50)	_	19	5 20	2				16	20	25	25	3 26	23	24			15	01	_	-	_	10	50	80		\perp		MDMH
	30	42				40	37	41	45	42	128	191		30	32	-		28		-		-	21	152	8	24	21	_		10		Ц		Form
	20	83	138	250	250	75	7.8	109	107	86	208	281		7.8	2.0	122	105	101	140	160		52	42	46	44			13	119	165			111	27 700
	15	159	240			140	143	163	166	8.1	272	338	132	123	128	19	155	143				95	63	84	9			14						NB GO
ение	12	219	308					217	225		372	449	H								276		94										15	Tena
Стандартное отклонение	10	257	397	1790	1790	273	359	263	274	176	387	495	374	291	352	605	443	273	465	455	349	157	66	150	156	136	114	192	788	531				OUV GR
цартное	2			4510	4260			309	352	390	353	493	835						605	585	555		193			204	165							Money
Станд	9	266	600	7680	7720	1274	1180	353	352	647	658	436	1191	987	1673	2476	192	564			696	264	33.1	258	196	205	181	578	3854	028				
	3	1838	675	13950	13550	2886	2545	1084	876	1189	2032	1275	2142					1475	328	348	1394		515	377	438	201	446	912	8018	8294				STOR MA
	2							1996	1615	1878	3675	2638				5540	3362				1718	1121	604	811	790				11358	11361				• Паболатолии мотольна
	+	3276	749					2950	2434				3030						1045	1200		1566	694											Ba5
ş	лаб	1	1	2	2**	4	4	2	9	9	8	8	6	10	10	11	11	12	13	13	14	15	19	22	22	24	24	26	27	27				

Таблица С.5 — Отсчеты частиц для ISO MTD

N S	34	миноия	Эталонные отсчеты по ISO MTD, число частиц в мл размером более {мкм}	The no	SO MT	D, числ (мкм)	o vacn	ALL B M.T.	paswep	ом бол	ee		0	добре	1)оне	Одобрено(1) или не одобрено (0) (см. 9 16)	16 0Д0	недда	(0) (8	16)	
nao.	1	2	3	5	*	10	12	15	20	30	40	+	2	3	40	7	10	12	13	20	30	40
≺ миеделы >	2000	1660	1300	157	450	215	126	9'69	28,7	7,3	2,3	8	85	80	69	52	35	19	12	5,5	2	1,0
+	1944		1281	729		199	122	64.7	27,9	7.1		+		-			1	1	1	1	1	
	1928		1301	155		204	132	73,1	30,0	7,4		+			***		1	*	***	-	1	
2**			943	545	308	120			17,2		1,3			0	0	0	0	3		0		0
2			932	538	290	117			16,3		1,3			0	0	0	0	Œ,		0		0
3**		1816	1033	909	270	127		61,4	33,5	10,5	4,5		0	0	0	0	0	0	-	***	0	0
4			1343	197		231		702	29.7	7,3				,	*		1		*	+	1	
4			1314	168		238		72,1	29,5	7,4				1	-		1		1	1	1	
10	2110	1739	1320	773	437	190	122	63.7	25,7	6,2	1,9	-	-	-	1	4	1	+	*	1	1	-
9	2095	17.22	1314	897	434	189	119	62,8	26,4	9'9	2.0	-	+	*	-	1	1	+	*	1	1	-
**9		2101	1471	857	535	265		87.0	34,0	7.8			0	0	0	0	0		0	+	1	
80		1707	1299	769	466	214	130	688	30,3	8,3			-	-	-	+	-	*	-	*	1	
8		1674	1269	751	457	210	128	67.1	29,5	7.8			-	-	· P	1	+	1	**	40.	1	Ш
o,	1842		1299	763	462	217		70,3				0		۳	-	+	+		*			H
10				805		240		75,0	33,0	7,2	2,4				-		~		*	-	-	-
10				796		239		77,0	32,0	7,3	2,3				٠		+		1	+	1	1
11		1562		738		221		9'99	29,3		2,6		*		-		1			+		1
11		1597		728		219		67,2	26,9		2,5		+		-		+		1	+		-
12			1383	817	439	231	139	71,0	33,0	8,5	2,4			·	· ven	-	-	***	·	-	1	*
13	2037		1354		466		116		24,6	5,1		*		-		+		-		+	1	
13	2027		1334		467		116		23,9	5,1		~		**		v		*		~	1	
41		1760	1760 1346	784	438	208	132					_	-	-	-	***	-	-				

Смещение результатов?

Окончание таблицы С 5

	2	372	лонирк	Эталонные оточеты по ISO MTD, число частиц в мл размером более {мкм}	OL ME	SO MT	D, числ (мкм)	to decr	ALL IS MAD	paswe	ром бо	nee		·	Эдобр	Одобрено (1) или не одобрено (0) (см. 9.16)	M 24	10 өн	90 00	(0) он	8 NO)	16	
	nao.	-	8	6	9	2	10	12	15	20	30	40		- 64	60	.40	7	10	12	45	20	30	4
Смещение результатов?	15**	1594	1325		576		156		58,0	25,4				0	0	0		0		,	~		
	16		1751	1406	782		261		72,4	25,2	5,3	1,9		-	1 0	1		0		-	-	-	-
	18	2002	1654	1314	782	478	218	131	2112	29,4	1,7	2,6		-	1 1	1	1	1	*	*	+	ļ	-
	22		1552	1217	700		195		8,69	31,4	8,2			,	1 1	1		1		*	1	1	
	22		1547	1202	701		193		72,1	31,9	8,5			_	1 0	*		*		-	-	1	
	24			1270	736	431	205				8,8				1	+	*	+				1	
	24			1267	724	423	200				9,2				1	-	1	٢				1	
	26			1306	777		220		6'19	28,7		2,4		-	1			1		*	1		· we
	27		1632	1247	700		200			25,0		2,5			1 1	+		1			*		***
	28"		1317	960	566	294	193	118	82,0	31,0	12,7	3,6		_	0 0	0	0	۳	*	-	-	0	0
	28**		1255	897	550	305	184	118	61,0	28,0	9,8	3.0		_	0	0	0	-	-	-	*	0	-
									(80	(все лаборатории)	ратор	(и)											
	Среднве	1953	1630	1245	718	411	203	125	69	28	7.8	2,4											
	CV. %	80	13	12	13	19	18	9	6	15	22	32											
							(38 M	ноши	энием	за исключением лабораторий 2,	атори	й 2, 3,	6, 15	15 M 28)									1 - 6 - 4
	Среднее	1998	1658	1304	757	450	215	126	0.2	29	7,3	2,3											
	CV, %	4	5	4	4	4	9	9	5	10	17	11											
	Одобренные лаборатории, за исключением 2, 3,	өнные	лабор	моть	И, 38 И	сключ	внием	2, 3,	6, 15 и 28,	28, %		97		7 1	11 20	3 23	12	22	11	19	21	18	10
		I	добов	Неодобренные лаборатории,	е лаб	ратор	ж, %	%, более	· m			3		+	1 1	0	0	1	0	0	0	0	0
		0	бщее	Общее число лабораторий/АСЧ, более	лабор	атори	A/ACH	боле	6			16		8 1	12 21	1 23	12	23	11	19	21	18	10
		•	Эдобр	Одобренные лаборатории, %, более	пабор	матори	M. %.	олее						88	92 9	95 100	100	96		0 100	100 100 100	100	100

Таблица С.6 — Результаты проверки калибровки в интерактивном режиме

19.00		отказ %	0	0	0	0	38	0	17	43	0	17	90	17	50	0	0	0	0	0	17	П								12
Верхний/		% dgo#O	100	100	100	100	63	100	83	57	100	83	90	83	50	100	100	100	100	100	83									86
		евягО %	0	17 1	0	0	75	0	0	14	33	33	0	0	0	0	0	0	0	0	33						-	-		10
Нихний		%	100	83	100	100	25	100	100	88	67	19	100	100	100	100	100	100	100	100	19									06
•		% %	0 1	17	0 1	0 1	63	0 1	17 1	0	33	90	1 09	0 1	0	0 1	0 1	0 1	0 1	0 1	17	\exists							\exists	11
Верхний		% CEXTO	100	83 1	100	100	38 6	100	83 1	100	87 3	50 5	50 6	100	100	100	100	100	100	100	83	\dashv							Н	89
ш.	'она	4 q3o4O	ŭ	4	10	2,1 10	3	1	8	3,0 10	8	2,1 5	5	1(1(4	Nt.	1(10	2,5 10	8	_		2	22		2	14	\dashv	8
0.11		8	Н	*	6,7	7,3 2	8,1	8.2		7.0 3		9,1 2			H	7.5 2	6.8 2	8,2	8,6	2	3.1	\forall		7	22 2		7	22	\exists	d)
		20		11	28	28 7	30	8		37 7		58			28	30	25	32	~	32	31	T		53	16		30	10		Sonee
10,1		30	88		20	88	70	2	71	77					62	75	74	7.5		71				70	9		20	8	П	MM, C
	THER	12	123			123		134			141		119	125		137	137	M						130	9		130	9		parop
	оку да	10	194	107	232	194	209	219	210	226	232	215	207	208	174	217	194	191	217	220	199			203	14		209	1		лабо
	Нижний по потоку датчик	7		263		440	447	467	453	Ĭ	481		471	455		470	441		449					440	14	и2)	457	3	П	% общего числа лабораторий,
KM)	ижний	sc.	736	483	762	770	689	767	767	761	780	720	756	810	587	767	530	701	753	735	705		(N	725	10	моте	739	7	П	mero
м) ээц	Ι	6	1313	831	1317	1303	1120	1274	1262	-	1315	1205	1300	1403		1287	1287		1320	1262	230		(Все паборатории)	1252	10	agoba	1280	2	П	% 06
од мо	4	8	,	-	1	1696 1	1586	1648			1726 1			1820 1	1317	1622 1	1640 1	1556	,-	,	1592	\exists	appopu	1620 1	8	MeM 5	1620	8		
Среднее число частиц в мкг размером более (мкм)		-	1953			2054	-	-	1929		-		951	1	1621	1964	1988 1	-			-		(Bce I	1923 1	7	исключением лаборатории 2	1923 1	7		П
M M						~			- Qui				-		-							\exists		-		MCK	-			
THE		et.		1,5		2,1				2,0		2,1				2,5	2,2			2,4	3,2			2	22	(3a	2	18		
0 7 0		3			6,8	7,1	8,7	8,4		6,0		7,8				7.8	6,9	8,2	8,6					80	12		8	12		
MCD		174		16	27	27	33	31		32		27			25	82	27	31		8	31			28	15		28	0		
ное,		-	2		88	8	79	70	88	73					28	71	72	71		88				69	8		689	8		
Сред	ямьле)	2	124	Į)		125		134			137		110	130		132	130							128	1		128	7		
	потоку датчик	10	203	109	225	192	221	220	204	224	227	209	191	205	153	217	198	192	210	220	187			201	14		206	Ø		
	8	2		278		436	429	479	431		478		439	432		465	429		435					430	13		445	5		
	Верхний	40	767	496	763	766	675	769	735	756	768	734	721	776	564	758	749	669	743	733	069			719	10		731	7	П	
	8	65	1343	859	1352	1294	1142	1287	1249	ā	1267	1207	1254	1333		_	1260		1257	1261	1257			1245	6		1271	4		
		7				1694	1608	1684			1663			1743	1285	1632	1659	1547			1638			1615	8		1615	8		
		-	1953			2048 1694			1954				1878	-	1544 1285	1982 1632 1302	2005 1659					\exists		6061	6		6061	o		П
ž	лао		1	2	4	2	9	æ	6	10	11	12	13	14	15 1	19 1	19	22	24	26	27			Ореднее 1909 1615	CV. %		Ореднее 1909 1615	CV. %		

Т а б л и ц а С.7 — Результаты аттестации установки для разбавления в интерактивном режиме для верхнего по потоку датчика АСЧ

Отка-	зано, %	100	0	17	0	0	0	0		83	6	0	0	0	0	0		83	18	0	0	0	0	0		20	
Одоб-	% %	0	100	83	100	100	100	100		17	91	100	100	100	100	100		17	82	100	100	100	100	100		90	
90	MCDO	0	11	9	11	11	9	9		9	11	9	11	11	9	9		9	#	9	11	11	9	9		9	
Одоб-	рено,	0	11	5	11	11	9	9		1	10	9	11	11	9	9		-	6	9	11	11	9	9		3	
		0	***		1	1		*		0	0		*	1		·	7	0	0		**	· pro		·	7	0	t
			1	ĒŊ	1	1	١				1		1	1	٠				0		1	-	-				
Reputer Control of Street	одобрено (1), отказано (0)	0	wit		1	1	1	1		0	1		1	1	۳	-		0	+		· Vere	-	-	*		0	
8	384		-	1	1	1	٠				-	1	1	1	-				÷	-	*	-	-				L
904	OTRE		1		1	1					1		1	1					+		***	-					ļ
2	É	0	-	1	1	*	1	1		1	*	1	1	1	¥m.	-		+	-	-	1	***	1	**		*	ļ
9	O H	0 0	400	1 1	1	1	1			0 0	*	1 1	1	1 1	*	-		0 0	-	1	-	-	-	igan.	_	1	ł
90	добр	0	**	+	1 1	1	,	1		0 0	1 1	1	+	1	,-	1		0 (-	1	1 1	*		1		0	ł
α.	0 0	Ĕ	-				*	+		_					-	-		_	-	5.0	-	**	**	1		_	t
			-	0	1	*					-	1	1						-	-	y=	***					t
	Τ_	2	10	174	4	11		92		4	7		4	1		7		3	0		3	50		9.		3	
	40	2,2	2,		2,34	2,51		2,66		2,	2,7		2,4	2,1		2,7		2,3	2,		2,23	1,95		2,76		2,3	ļ
	30		8		11.17	8.1	8,1				7,8		7,51	7,12	8,2				8,1		7,57	6,82	8,3				
MKM }	20	25	30.2		28	30,8	30,4	28		25	28		27,6	28,4	30,6	26,8		25	28,6		29	27	31,5	27,5		26	
Среднее число частиц в мкг размером более (мкм)	15		70.2	66,3	72,9	78,3	9'69				65	61,2	20,3	73,1	69.2				66,2	65,7	74,6	71,9	68,2				
мером	54		131		134	139			H		121	_	128	133					120		137	132					╁
ikr past	10	160		14			188	4		4	188 1	11			189	179		25	185 1	90			1.	179		6	
THUBN	-	-	202	194	218	213	18	184		154		187	222	208	18	17		152		206	232	203	187	17		149	H
SNO 480	7	38	459	441	468	461				374	429	423	472	434				368	429	436	489	456				357	
Hee 4M	40	68	805	781	782	111	269	664		638	763	762	762	745	702	657		628	775	742	787	781	7.02	646		612	
Cpen	8	1136	1365	1299	1304	1280		1247		1046	1295	1301	1294	1252		1250		1036	1326	1262	1334	1297		1213		1042	
	CN .		1794		1634	1675	1512	1669			1695		1619	1653	1557	1695			1737		1664	1695	1616	1617			
	-		2176	1936	1983	2012					2046	1905	1964	1999					2100	1905	2008	2040					
	Pas6 1	2	2 2	20	3	3 2	3	2	Pa35.2	10	3	10	9	9	9	3	Pas6.3	20	4	5	11 2	11 2	7	8	Pas6.4	80	l
					Ø	Ø	2	7	Pa	9	-		Ø.	Ø	2	7	Pa		10	- 1			2	7	Pa		-
2	na6	2	5	8	19	19	22	27		2	2	Ø	19	18	22	27		2	5	6	19	19	22	27		2	

Окончание таблицы С.7

2				Cpeta	нее чис	NO 48CTN	Среднее число частиц в мкг размером более {мкм}	одажеро	м более	(MKM)					Sepx	HMM	10 011	эток	y 13a	Верхний по потоку датчик:	15		Одоб-		100	-вжо
136.	1830	-	2	8	AD.	7	10	12	125	20	30	40		Ť	одор	рен	(1)	OTIE	B38H	одобрено (1), отказано (0)	_		умсло	щее	% %	38HO
6	2	1905		1286	788	457	202		6'19				ı		+	+	+	-	1				9	9	100	0
19	16	2016	1661	1324	766	468	217	136	7.4	29,4	8,08	2,33	*	F	ļ	-	ipes	1.	1 1	1	,-	1 1	11	11	100	0
19	16	2005	1663	1267	760	440	206	135	135 74,7	37,1 7,03	7,03	1.97	į.	·	1 1 1 1	910	-	1	*	1 1 0 1 1	~	-	10	11	91	6
22	11		1589		702		192		68,8	31,7	8,2			**		*-	2	1	1	1	+		8	9	100	0
27	10		1679	1245	657		181			26,6		2,56		*	1 1 1	-	-	1		1		·	8	9	100	0
																	-									
																981	50.00	пет	NA.	% общего числа пабораторий, более	. 9		201	228	88	12
																	-									
										3%	общего	% общего числа лабораторий, за исключением лаборатории 2, более	рат	рраг	ropy	Šon Šon	9 100	95	464	MeM			196	204	96	4

Таблица С.8 — Результаты аттестации установки для разбавления в интерактивном режиме для нижнего по потоку датчика АСЧ

кг размером более (мкм) Нижиний по потоку датчик- одобрено (1), отказано (0) 30 одобрено (1), отказано (0) 36 одобрено (1), отказано (0) </th <th></th> <th>0 0 17 83 11111 1 0 83</th> <th>1 0 91 9 11111111111111100</th> <th>100 0 1 1 1 1 1 1 1 100</th>		0 0 17 83 11111 1 0 83	1 0 91 9 11111111111111100	100 0 1 1 1 1 1 1 1 100
30 40 Рижний по потоку датчик— 2.5 верхний по потоку датчик одобрено (1), отказано (0) об об одобрено (1), отказано (0) об одобрено (1), отказано (0) об одобрено (1), отказано (0) об од одобрено (1), отказано (0) од од одобрено (1), отказано (0) од		0 17 83 1 1 1 1 1 1	0 91 9 111111111111	0 1 1 1 1 1
30 40 Нижний по потоку датчик. 9% 8% 2. 2.7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0 17 83 11111	0 91 9 111111111111	0 1 1 1 1 1
30 40 Нижний по потоку датчик. 9% 8% 2. 2.7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0 17 83 11111	0 91 9 1111111111	0 1 1 1 1 1
30 40 Нижний по потоку датчик. 9% 8% 2. 2.7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0 17 83 1111	0 91 9 11111111	0 1 1 1 1 1
30 40 Нижний по потоку датчик. 9% 8% 2.2.7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0 17 83 1111	0 91 9 1111111	0 1 1 1 1
30 40 Нижний по потоку датчик. 9% 8% 2.2.7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0 17 83 1111	0 91 9 111111	0 1 1 1 1
30 40 Нижний по потоку датчик. 9% 8% 2.2.7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0 17 83 1 1	0 91 9 1111	0 1 1 1
30 40 Нижний по потоку датчик. 9% 8% 2.2.7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0 17 83 1	0 91 9 111	0 1 1
30 40 Нижний по потоку датчик. 9% 8% 2.2.7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0 17 83	0 91 9 11	0 1 1
30 40 Нижний по потоку датчик. 9% 8% 2.2.7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0 17	0 91 9 1	0
30 40 Нижний по потоку датчик е одобрено (1), отказано (0) об		0 17	0 91 9	0
30 40 Нижний по потоку датчик е одобрено (1), отказано (0) об		0 17	0 91	
30 40 Нижний по потоку датчикторобрено (1), отказано (0) бо о о о о о о о о о о о о о о о о о о		0	0	100
30 40 Нижний по потоку датчик- одобрено (1), отказано (0) 8,2 2,7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			_	
30 40 Рыжний по потоку датчик- одобрено (1), отказано (0) 8,2 2,7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0	_	
30 40 8,2 2,7 1 7,4 2,3 1 8,0 3,0 1 8,2 2,7 1 7,4 2,3 1 7,5 2,3 1		0		1
30 40 8,2 2,7 1 7,4 2,3 1 8,0 3,0 1 8,2 2,7 1 7,4 2,3 1 7,5 2,3 1			-	
30 40 8,2 2,7 1 7,4 2,3 1 8,0 3,0 1 8,2 2,7 1 7,4 2,3 1 7,5 2,3 1			-	-
30 40 8,2 2,7 1 7,4 2,3 1 8,0 3,0 1 8,2 2,7 1 7,4 2,3 1 7,5 2,3 1			-	
30 40 8,2 2,7 1 7,4 2,3 1 8,0 3,0 1 8,2 2,7 1 7,4 2,3 1 7,5 2,3 1		-	971	-
30 40 8,2 2,7 1 7,4 2,3 1 8,0 3,0 1 8,2 2,7 1 7,4 2,3 1 7,5 2,3 1		0	·	*
30 40 8,2 2,7 1 7,4 2,3 1 8,0 3,0 1 8,2 2,7 1 7,4 2,3 1 7,5 2,3 1		0	w.	No.
30 40 8,2 2,7 1 7,4 2,3 1 8,0 3,0 1 8,2 2,7 1 7,4 2,3 1 7,5 2,3 1		0	ym.	-
30 40 8,2 2.7 7,4 2,3 8,0 3.0 2,6			-	
30 7,4 8,0 8,0 8,2			4=	-
30 8,2 8,2 8,0 8,2		0	m	
		3.0	2,8	
частиц в мкг размаром более (мкг 392 166 26 435 197 127 69 30 473 216 139 74 30 471 205 147 80 28 186 68 32 188 68 32			8,1	
частиц в мкг размером бол 7 10 12 15 392 166 435 197 127 69 435 191 63 473 216 139 74 471 205 147 80 186 68		25	29	
частиц в мкг размерс 392 166 435 197 127 435 191 473 216 139 471 205 147 188			92	62
7 10 7 10 392 166 435 197 435 191 473 216 473 216 473 216 188			119	
частиц 435 435 435 473 471		152	189	197
		353	423	425
5 702 793 777 763 697		626	781	747
Среднее 3 3 1170 1170 11348 1348 1327 1327 1327 1327 1327 1327 1327 1327		1029	1333	1290
Средня 1172 1354 1772 1354 1348 1307 1678 1307 1678 13754	-		1735	
1 2154 1957 1957 2028			2096	1928
Pas6.1	- 01	10	3	10
Na na6. 2 2 5 9 9 19 19 22 22 22 22 22 22 22 22 22 22 22 22 22	Pa36.2	2	10	6

36 % ,онвсентО 27 27 0 27 0 0 0 0 0 0 0 0 0 0 0 o o. 8 8 100 8 100 8 8 100 8 8 00 8 2 % онедеодо 9 \$ 2 23 8 16 91 0 0 0 0 ø 0 * -Верхний по потоку датчик g в сравнении с нижним. одобрено (1), отказано * 0 0 0 0 ÷ rjet. * şin. 0 0 0 0 0 • ~ . • • -* -• -۲ v *-• *--٠ * · 1 * . * * * 4 * **Ý**m -* *** -۳ **y**= * ¥10 · w * · * 1 --* -• *v w * --100 №, онвевитО 8 2 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 N 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 0 17 82 % ,онаддодО * 0 w 0 0 * пабораторий, за исключением * w * • ÷ 0 одобрено (1), отказано (0) Нижний по потоку датчик: абораторий, более лаборатории 2, более 0 -0 **V** % общего числа % общего числя • ę. · ۴-ę. -• --~ 0 **V** ۳ * **y**w ۳ *** --* * -* 0 ¥. ø w ę. -* -. . 0 0 -*w -• ÷ v * -÷ -* 0 *** -0 --* * -+ --• ø. + * · ÷ ٠ * • --** **y**-+ ~ * dia. ** -2,4 2.9 2.6 2,4 2,6 2,2 2,7 2,5 2,8 2,2 2.4 2,5 2,7 40 7,2 7.0 2'8 8,5 2,5 7.3 8,3 8,0 8,2 8,3 8,1 8 Среднее число частиц в мкг размером более (мкм) 28 28 32 28 26 28 29 33 25 31 30 32 26 20 27 27 27 2 22 42 8 83 2 7 2 19 28 68 8 4 61 146 112 142 82 144 138 38 137 12 224 203 177 214 223 215 187 176 53 200 172 35 200 211 201 189 74 191 9 448 489 360 421 436 490 452 348 442 446 469 452 1 745 799 735 701 652 640 772 780 801 703 651 621 774 787 772 744 702 664 10 1055 1319 1313 1339 1301 1021 1306 1316 1304 1300 1219 1286 1205 1182 1337 3 1670 1639 1718 1676 1700 1643 16.52 1574 1654 1648 1602 1585 1647 1591 N 2074 2010 2058 1983 1996 1998 1902 1994 1881 1911 Pa35.1 Pas6. Pas6. 16 10 18 40 40 e 20 8 ø 寸 10 7 ø 40 N 6 æ 86 8,08 22 22 13 27 N 10 ග 30 9 27 49 Ø 13 9 22 27 2

Окончание таблицы С

Приложение ДА (справочное)

Сведения о соответствии ссылочных международных стандартов ссылочным национальным стандартам Российской Федерации

Таблица ДА.1

Обозначение ссылочного международного стандарта	Степень соответствия	Обозначение и наименование соответствующего национального стандарта
ИСО 1000:1992	-	•
ИСО 1219-1:1991	_	•
ИСО 4021:1992	-	•
ИСО 5598:1985	IDT	ГОСТ 17752—81 «Гидропривод объемный и лневмопривод. Тер мины и определения» ГОСТ 26070—83 «Фильтры и сепараторы для жидкостей. Терми ны и определения»
ИСО 11171	= =	
ИСО 12103-1:1997		•
ИСО 16889	-	•

Соответствующий национальный стандарт отсутствует. До его утверждения рекомендуется использовать перевод на русский язык данного международного стандарта. Перевод данного международного стандарта находится в Федеральном информационном фонде технических регламентов и стандартов.

П р и м е ч а н и е — В настоящей таблице использовано следующее условное обозначение степени соответствия стандарта:

IDT — идентичный стандарт.

4			/
УДК 628.5:621.892:006.354	OKC 23.100.60	T58	OKIT 02 5000
			41 4000

Ключевые слова: гидропривод объемный, автоматические счетчики частиц, интерактивный режим, жидкость, твердый загрязнитель, методика, калибровка, аттестация

Редактор А.В. Маркин Технический редактор В.Н. Прусакова Корректор Е.Д. Дульнева Компьютерная верстка Л.А. Круговой

Сдано в набор 11.08.2011, Подписано в печать 20.10.2011. Формат 60 × 84 ⅓. Гарнитура Ариал. Усл. печ. л. 4,65. Уч.-изд. л. 4,10. Тираж 121 экз. Зак. 985.

ФГУП «СТАНДАРТИНФОРМ», 123995 Москва, Гранатный пер., 4.
www.gostinfo.ru info⊛gostinfo.ru
Набрано во ФГУП «СТАНДАРТИНФОРМ» на ПЭВМ.
Отпечатано в филиале ФГУП «СТАНДАРТИНФОРМ» — тип. «Московский печатник», 105062 Москва, Лялин пер., 6.