ФЕДЕРАЛЬНОЕ АГЕНТСТВО

ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОСТ Р ИСО/МЭК 15963— 2011

Информационные технологии

РАДИОЧАСТОТНАЯ ИДЕНТИФИКАЦИЯ ДЛЯ УПРАВЛЕНИЯ ПРЕДМЕТАМИ

Уникальная идентификация радиочастотных меток

ISO/IEC 15963:2009
Information technology — Radio frequency identification for item management — Unique identification for RF tags (IDT)

Издание официальное

Предисловие

Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. № 184-ФЗ «О техническом регулировании», а правила применения национальных стандартов Российской Федерации — ГОСТ Р 1.0—2004 «Стандартизация в Российской Федерации. Основные положения»

Сведения о стандарте

- ПОДГОТОВЛЕН Ассоциацией автоматической идентификации «ЮНИСКАН/ГС1 РУС» на основе собственного аутентичного перевода на русский язык стандарта, указанного в пункте 4
- 2 ВНЕСЕН Техническим комитетом по стандартизации ТК 355 «Технологии автоматической идентификации и сбора данных и биометрия»
- 3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 26 апреля 2011 г. № 56-ст
- 4 Настоящий стандарт идентичен международному стандарту ИСО/МЭК 15963—2009 «Информационные технологии. Радиочастотная идентификация для управления предметами. Уникальная идентификация радиочастотных меток» (ISO/IEC 15963:2009 «Information technology Radio frequency identification for item management Unique identification for RF tags»).

При применении настоящего стандарта рекомендуется использовать вместо ссылочных международных стандартов соответствующие им национальные стандарты Российской Федерации, сведения о которых приведены в дополнительном приложении ДА

- 5 ВЗАМЕН ГОСТ Р ИСО/МЭК 15963—2005
- 6 Следует обратить внимание на то, что некоторые элементы настоящего стандарта могут быть объектами получения патентных прав. Организации ИСО и МЭК не несут ответственности за установление подлинности каких-либо или всех таких патентных прав

Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячно издаваемых информационных указателях «Национальные стандарты». В случае пересмотра (замены) или отмены
настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе «Национальные стандарты». Соответствующая информация,
уведомление и тексты размещаются также в информационной системе общего пользования — на
официальном сайте Федерального агентства по техническому регулированию и метрологии в
сети Интернет

© Стандартинформ, 2011

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

Содержание

1	Область применения
	Нормативные ссылки,
	Термины и определения
	Обозначения и сокращения
	Уникальные идентификаторы
	Способы уникальной идентификации радиочастотных меток
	6.1 Виртуальный идентификатор
	6.2 Постоянный уникальный идентификатор
П	иложение А (обязательное) Система нумерации, используемая в TID
	иложение В (обязательное) Системы нумерации по ИСО/МЭК 7816-6 для радиочастотной
	идентификации
П	иложение С (обязательное) Система нумерации и структуры данных по ИСО 14816 1
П	иложение D (обязательное) Системы нумерации по ИСО/МЭК 18000-6 (для радиочастотных
	меток типа С) и ИСО/МЭК 18000-3 (для систем радиочастотной идентификации,
	работающих в режиме 3)
Пр	иложение E (обязательное) Системы нумерации по INCITS 256 и INCITS 371
	иложение ДА (справочное) Сведения о соответствии ссылочных международных стандартов
	ссылочным национальным стандартам
Би	блиография

Введение

Настоящий стандарт входит в комплекс стандартов и технических отчетов, разработанных подкомитетом ПК 31 технического комитета ИСО/МЭК СТК 1 для идентификации предметов (управления предметами) с использованием технологии радиочастотной идентификации.

В настоящем стандарте приведены описания систем нумерации, применяемых для уникальной идентификации радиочастотных меток.

Настоящий стандарт рекомендуется применять совместно с другими международными стандартами в области радиочастотной идентификации для управления предметами и систем определения места нахождения в реальном времени (RTLS), разработанными в рамках подкомитета ПК 31, такими как ИСО/МЭК 18000 и ИСО/МЭК 24730.

Сноски в тексте стандарта, выделенные курсивом, приведены для пояснения текста оригинала.

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Информационные технологии

РАДИОЧАСТОТНАЯ ИДЕНТИФИКАЦИЯ ДЛЯ УПРАВЛЕНИЯ ПРЕДМЕТАМИ

Уникальная идентификация радиочастотных меток

Information technology, Radio frequency identification for item management. Unique identification for RF tags

Дата введения — 2012-01-01

1

1 Область применения

Настоящий стандарт устанавливает структуру уникальных идентификаторов радиочастотных меток. Уникальный идентификатор используют с целью:

- контроля качества интегральных микросхем, на которых выполнена радиочастотная метка, в процессе их производства;
 - прослеживаемости радиочастотных меток в процессе их производства и в течение срока их службы;
- завершения процесса считывания информации для конфигурации системы радиочастотной идентификации, включающей в себя несколько антенн;
- реализации антиколлизионного алгоритма при инвентаризации множества радиочастотных меток, одновременно находящихся в зоне опроса устройства считывания/опроса;
 - прослеживаемости предмета, на котором установлена радиочастотная метка.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие международные стандарты, которые необходимо учитывать при использовании настоящего стандарта. В случае ссылок на стандарты, у которых указана дата утверждения, необходимо пользоваться только указанной редакцией. В случае, когда дата утверждения не приведена, следует пользоваться последней редакцией ссылочных стандартов, включая любые поправки и изменения к ним:

ИСО/МЭК 19762-1 Информационные технологии. Технологии автоматической идентификации и сбора данных. Гармонизированный словарь. Часть 1. Основные термины в области автоматической идентификации и сбора данных (ISO/IEC 19762-1, Information technology — Automatic identification and data capture (AIDC) techniques — Harmonized vocabulary — Part 1: General terms relating to AIDC)

ИСО/МЭК 19762-3 Информационные технологии. Технологии автоматической идентификации и сбора данных. Гармонизированный словарь. Часть 3. Радиочастотная идентификация (ISO/IEC 19762-3, Information technology — Automatic identification and data capture (AIDC) techniques — Harmonized vocabulary — Part 3: Radio frequency identification (RFID))

3 Термины и определения

- В настоящем стандарте применены термины, установленные в ИСО/МЭК 19762-1 и ИСО/МЭК 19762-3, а также следующие термины с соответствующими определениями:
- 3.1 радиочастотная метка (RF tag): Носитель данных системы автоматической идентификации и сбора данных, на котором хранится информация, запрашиваемая устройством считывания/опроса путем модулирования магнитного поля или несущей частоты излучаемого электромагнитного поля для ее последующей передачи в информационную систему.

П р и м е ч а и и е — К радиочастотным меткам относят также радиочастотные метки систем определения места нахождения в реальном времени (RTLS).

- 3.2 уникальный идентификатор радиочастотной метки (RF tag unique identifier): Номер, который позволяет однозначно идентифицировать радиочастотную метку.
- 3.3 эмитент радиочастотных меток (RF tag issuer): Предприятие или организация, уполномоченная присваивать идентификаторы, записываемые в память радиочастотных меток, предназначенных для идентификации предметов.
- 3.4 изготовитель интегральных микросхем (IC manufacturer): Предприятие, изготавливающее интегральные микросхемы для радиочастотных меток.
- 3.5 изготовитель радиочастотных меток (RF tag manufacturer): Предприятие, изготавливающее радиочастотные метки, имеющие готовую к применению конфигурацию.
- 3.6 код категории (allocation class): 8-битовое число, используемое для систематизации предприятий или организаций, уполномоченных присваивать уникальные идентификаторы радиочастотным меткам.
- 3.7 регистрационный номер изготовителя интегральных микросхем (IC manufacturer registration number): Номер, присваиваемый изготовителю интегральных микросхем в соответствии с положениями ИСО/МЭК 7816-6 или стандарта ANSI ASC INCITS T6.
- 3.8 регистрационный номер эмитента радиочастотных меток (RF tag issuer registration number): Номер, присваиваемый эмитентам радиочастотных меток для применения в соответствии с положениями ИСО 6346, ИСО 14816¹⁾, стандартов GS1 или стандарта ANSI ASC INCITS T6.
- 3.9 идентификатор микросхемы (chip ID; CID): Постоянный уникальный идентификационный номер интегральной микросхемы радиочастотной метки.

П р и м е ч а н и е — Вместо термина «идентификатор микросхемы» не рекомендуется применять термин «уникальный идентификатор (UID)». То же самое относится к терминам «идентификатор радиочастотной метки», «уникальный идентификатор предмета» и «идентификатор объекта».

3.10 идентификатор радиочастотной метки (tag ID; TID): Постоянный уникальный идентификационный номер радиочастотной метки.

П р и м е ч а н и е 1 — Идентификатор радиочастотной метки может совпадать с идентификатором микросхемы.

Примечание 2 — Радиочастотная метка может содержать несколько микросхем.

П р и м е ч а н и е 3 — Идентификатор радиочастотной метки может указывать на изготовителя конечной радиочастотной метки и ее комплектующих.

П р и м е ч а н и е 4 — Вместо термина «идентификатор радиочастотной метки» не рекомендуется применять термин «уникальный идентификатор (UID)». То же самое относится к терминам «идентификатор микросхемы», «уникальный идентификатор предмета» и «идентификатор объекта».

3.11 уникальный идентификатор предмета (unique item identifier; UII): Номер, используемый для уникальной идентификации отдельного предмета учета, действительный в течение всего срока его службы.

П р и м е ч а н и е 1 — В случае, если радиочастотная метка повторно используется для идентификации другого предмета, то ранее записанный на нее идентификатор предмета должен быть изменен.

Примечание 2 — Уникальный идентификатор Министерства обороны США (DoD Unique Identifier) и электронный код продукции (EPC) являются разновидностями идентификатора предмета. Например, идентификатор GS1 SSCC является идентификатором предмета (Item ID; IID) с ограниченным сроком действия, идентификатор GS1 GRAI — идентификатором предмета для присвоения возвратным активам, GS1 sGTIN — идентификатором предмета для присвоения товарной продукции.

П р и м е ч а н и е 3 — Вместо термина «уникальный идентификатор предмета» не рекомендуется применять термин «уникальный идентификатор (UID)». То же самое относится к терминам «идентификатор микросхемы», «идентификатор радиочастотной метки» или «идентификатор объекта».

3.12 идентификатор объекта (object identifier; OID): Номер информационного объекта, который может однозначно идентифицировать продукцию, организацию, физическое лицо, стандарт, чертеж, файл (компьютерный) и т.д.

П р и м е ч а н и е 1 — Как правило, идентификатор объекта связан с типом объекта и используется для представления информации на объекте данного типа.

Примечание 2— Вместо термина «идентификатор объекта» не рекомендуется применять термин «уникальный идентификатор (UID)». То же самое относится к терминам «идентификатор микросхемы», «идентификатор радиочастотной метки» или «уникальный идентификатор предмета».

В оригинале ИСО/МЭК 15963—2009 приведена ссылка на ИСО/ТС 14816.

4 Обозначения и сокращения

В настоящем стандарте использованы следующие обозначения и сокращения:

AC — код категории (Allocation Class);

AID — идентификатор применения (Application Identifier);

ANS — Американский национальный стандарт (American National Standard);

ANSI — Американский национальный институт стандартов (American National Standards Institute);

ASC — аккредитованный комитет по стандартизации (Accredited Standards Committee);

CID — идентификатор микросхемы (Chip Identifier);

GS1 — комплекс стандартов, ведение которых осуществляет международная организация GS1;

IC — интегральная микросхема (Integrated Circuit);

ID — идентификатор (Identifier);

INCITS — международный комитет по стандартам информационных технологий (International Committee for Information Technology Standards);

LSB — младший бит (Least Significant Bit);

MDID — маска радиочастотной метки — идентификатор изготовителя (tag Mask — Designer Identifier)¹⁾;

MSB — старший бит (Most Significant Bit);

OID — идентификатор объекта (Object Identifier);

RFU — зарезервировано для использования в будущем (Reserved for Future Use);

RTLS — система определения места нахождения в реальном времени (Real—Time Locating System);

TID — уникальный идентификатор радиочастотной метки (Unique Tag Identifier);

UID — уникальный идентификатор (в соответствии с определением Министерства обороны США);

UII — уникальный идентификатор предмета (Unique Item Identifier).

5 Уникальные идентификаторы

Существует несколько типов идентификаторов, относящихся к радиочастотной метке. Основным является СІD, который изготовитель интегральной микросхемы присваивает конкретному полупроводниковому устройству в процессе его изготовления и который не подлежит изменению. Одна радиочастотная метка может включать в себя несколько полупроводниковых устройств, хотя, как правило, содержит только одну интегральную микросхему. В этом случае идентификатором радиочастотной метки может быть идентификатор интегральной микросхемы. ТІD в большинстве случаев и согласно настоящему стандарту присваивают в процессе изготовления радиочастотной метки таким образом, чтобы предотвратить возможность его изменения в дальнейшем. После записи указанного идентификатора на радиочастотную метку, она может быть прикреплена к предмету.

В некоторых применениях ТІD может стать уникальным идентификатором предмета. В других случаях, например согласно положениям ИСО/МЭК 18000-6 для радиочастотных меток типа С или ИСО/МЭК 18000-3 — для систем радиочастотной идентификации, работающих в режиме 3 (МОDE 3), UII содержится в отдельной ячейке памяти радиочастотной метки, в которую его записывают после того, как радиочастотная метка была установлена или связана с конкретным предметом. Доступ к UII может быть заблокирован или открыт для перепрограммирования.

Для обеспечения уникальности номеров радиочастотных меток в глобальном масштабе необходимо наличие основного документа, регламентирующего присвоение кодов разным агентствам (органам регистрации), которые имеют право присваивать уникальные идентификаторы изготовителям, или непосредственную выдачу уникальных идентификаторов изготовителям. В свою очередь, эти изготовители присваивают уникальные идентификаторы микросхемам, радиочастотным меткам или предметам. Настоящий стандарт является основным документом, устанавливающим требования к присвоению уникальных идентификаторов радиочастотных меток, и включает в себя сводный перечень кодов разных агентств (органов регистрации), уполномоченных на присвоение уникальных идентификаторов изготовителям.

Идентификационные данные некоторых радиочастотных меток содержат только конкретный идентификатор лота, партии или маски радиочастотной метки. Другие радиочастотные метки в соответствии с положениями настоящего стандарта содержат серийные номера, обеспечивающие их уникальность в глобальном масштабе для возможности их отличия от всех прочих радиочастотных меток.

 $^{^{11}}$ В оригинале ИСО/МЭК 15963 сокращение MDID в разделе 4 отсутствует. Данное сокращение используется в тексте приложения $D_{\rm c}$

Одним из основных способов защиты цепей поставок от контрафактной продукции является использование TID, содержащего серийный номер, уникального в глобальном масштабе, программируемого и блокируемого от изменения в процессе изготовления радиочастотной метки, в сочетании с UII, который записывают в память радиочастотной метки на этапе ее установки или закрепления за конкретным предметом, а также обмен данными только с надежными торговыми партнерами.

Для реализации антиколлизионного алгоритма, инвентаризации, считывания или записи данных в память конкретной радиочастотной метки используют TID, UII или случайно сгенерированное число. UII, а также случайно сгенерированное число не обеспечивают прослеживаемость радиочастотной метки на всех этапах ее жизненного цикла, в то время как TID позволяет это сделать.

6 Способы уникальной идентификации радиочастотных меток

Уникальная идентификация радиочастотных меток может быть осуществлена несколькими способами, в том числе указанными в 6.1 и 6.2.

6.1 Виртуальный идентификатор

Виртуальный идентификатор радиочастотной метки представляет собой временный идентификатор, в основе которого лежит использование тех параметров радиочастотной метки, которые могут изменяться в течение ее срока службы. Виртуальный идентификатор также называют логическим идентификатором или идентификатором «на сеанс». В разные интервалы времени несколько радиочастотных меток могут использовать один и тот же виртуальный идентификатор. Однако в конкретный интервал времени все радиочастотные метки, предназначенные для обработки одним и тем же устройством считывания/опроса, должны иметь разные виртуальные идентификаторы, что позволяет конкретному устройству считывания/опроса обеспечить однозначную идентификацию каждой радиочастотной метки в любой момент времени.

Технические решения, позволяющие обеспечить реализацию указанного выше процесса, не входят в область применения настоящего стандарта, однако некоторые возможные подходы к решению данного вопроса рассмотрены в 6.1.1 — 6.1.3.

6.1.1 Данные, используемые в качестве уникального идентификатора

Использование данных является одним из возможных способов реализации виртуального идентификатора в случае, когда радиочастотная метка содержит такие данные, при считывании которых гарантирована их уникальность с учетом времени и места положения отдельной радиочастотной метки. Например, если радиочастотная метка содержит в памяти информацию о времени и дате, то информация о времени, введенная изготовителем, может быть уникальной для конкретной радиочастотной метки, но это не гарантирует ее уникальность среди всех радиочастотных меток в произвольный момент времени. В случае ограниченного применения в памяти радиочастотной метки записан неповторяющийся набор данных. В условиях применения в глобальном масштабе набор данных, записанных в память радиочастотной метки, может повторяться, однако в условиях ограниченного применения эти данные уникально ее идентифицируют.

6.1.2 Информация о времени, используемая в качестве уникального идентификатора

Использование информации о времени является одним из возможных способов реализации виртуального идентификатора в случае, когда битовый шаблон не обеспечивает однозначную идентификацию отдельной радиочастотной метки. Номер слота, выбранный радиочастотной меткой для ответа, может входить в состав параметров, уникально идентифицирующих радиочастотную метку. Например, некоторые радиочастотные метки используют слоты (временные интервалы) для разделения ответов, одновременно поступающих от нескольких радиочастотных меток, присутствующих в зоне опроса устройства считывания/опроса. Если временные слоты являются фиксированными для единичной операции опроса, то они могут быть использованы для выделения отдельной радиочастотной метки в конкретный интервал времени.

П р и м е ч а н и е — Если радиочастотная метка выбирает временные слоты случайным образом каждый раз, когда посылает ответ, их номера не могут являться частью ее уникального идентификатора.

6.1.3 Информация о месте нахождения, используемая в качестве уникального идентификатора

В некоторых применениях информация о расположении радиочастотной метки в конкретный момент времени может быть использована в качестве ее уникального идентификатора. Например, если дальность считывания или записи некоторых радиочастотных меток равна нескольким миллиметрам, то достаточно трудно обеспечить присутствие в зоне опроса более одной радиочастотной метки в конкретный момент времени. Следовательно, любую радиочастотную метку, находящуюся в зоне опроса в данное время в данном месте, можно считать уникальной. Примером подобного применения являются системы радиочастотной идентификации, используемые для оплаты проезда на общественном транспорте или телекоммуникационных услуг.

6.2 Постоянный уникальный идентификатор

Идентификатор, уникальность которого гарантирована в глобальном масштабе, должен быть запрограммирован в память радиочастотной метки и оставаться неизменным.

Правила присвоения и структура постоянных уникальных идентификаторов приведены в таблицах А.1—А.7 приложения А.

6.2.1 Преимущества постоянного уникального идентификатора по сравнению с виртуальным идентификатором

Достоинством виртуального идентификатора (идентификатора «на сеанс») является его небольшая длина, поэтому для идентификации с его использованием требуется меньшее число битов. Недостатком виртуального идентификатора является невозможность обеспечения уникальной идентификации без привязки к используемому устройству считывания/опроса, условиям применения, времени или составу используемых данных. Виртуальный идентификатор уникален только в условиях конкретного времени и места нахождения и является достаточным для идентификации отдельной радиочастотной метки в зависимости от времени и места ее нахождения в пространстве.

Преимущество постоянного уникального идентификатора заключается в том, что его уникальность гарантирована и не зависит от условий применения, места нахождения и времени. Применение постоянного уникального идентификатора является единственным способом идентификации, гарантирующим его уникальность в любой ситуации.

6.2.2 Выбор размера постоянного уникального идентификатора

При выборе размера постоянного уникального идентификатора, т.е. числа битов, выделенных для него в памяти радиочастотной метки, необходимо:

- а) обеспечить соответствие и непротиворечивость требованиям действующих стандартов ИСО/МЭК, при соблюдении которых обеспечивается уникальность идентификации и соответствие требованиям конкретных стандартов;
- б) обеспечить структуризацию, при которой появляется возможность оптимизации технической реализации идентификатора, в результате которой число байтов информации, занесенных на радиочастотную метку, будет равно двум в степени N (т.е. 1, 2, 4, 8 и т.д.);
- с) гарантировать, что число битовых комбинаций будет достаточным для того, чтобы в течение максимального прогнозируемого срока службы радиочастотной метки двум разным радиочастотным меткам не будет присвоен один и тот же идентификатор (средняя продолжительность срока службы радиочастотной метки — 10 лет);
- d) обеспечить эффективный подход к наделению полномочиями по присвоению идентификаторов изготовителей интегральных микросхем или радиочастотных меток;
- е) обеспечить оптимальный, минимально возможный размер (в битах) уникального идентификатора, отвечающего вышеперечисленным критериям, поскольку увеличение числа битов передаваемого идентификатора снижает производительность линии связи в направлении от радиочастотной метки к устройству считывания/опроса. Например для применений, работающих с небольшим числом радиочастотных меток, достаточно использовать идентификаторы, состоящие из небольшого числа битов (например, из 32 битов).

Приложение А (обязательное)

Система нумерации, используемая в TID

А.1 Общие положения

В настоящем приложении приведена система нумерации радиочастотных меток с использованием ТІD. Для реализации такой системы нумерации необходимо совместное применение требований, приведенных далее, и требований к процедурам регистрации, установленных в соответствующем международном стандарте.

Для обеспечения уникальности идентификатора радиочастотной метки необходимо применять следующие правила, определяющие его структуру и длину.

А.2 Организация, присваивающая TID

Для обеспечения уникальности каждого TID все организации, присваивающие их, должны быть идентифицированы уникальным образом. Существует пять категорий таких организаций, сведения о которых приведены в таблице А.2. Коды в диапазонах «от 001ххххх до 1101хххх» и «от 11100100 до 11111111» зарезервированы ИСО для использования в будущем.

Указанные далее органы регистрации устанавливают длину TID. Структура TID включает в себя три поля (таблица A.1).

Таблица А.1 — Структура TID

AC	Регистрационный номер организации, присваивающей TID	Серийный номер
8 битов	Размер поля определяется по значению АС	Размер поля определяется по значению АС и регистрационному номеру организации, присваивающей TID

MSB LSB

А.3 Код категории

Размер кода категории равен 8 битам. В таблице А.2 указаны пять категорий организаций, присваивающих TID.

Таблица А.2 — Категории организаций, присваивающих TID

AC	Нормативный документ категории	Размер идентификатора организации, присваивающей TID	Размер серийного номера	Орган регистрации (организации, присваивающей TID)
000xxxxx	INCITS 256	По стандартам ANS INCITS 256 и ANS INCITS 371	По стандартам ANS INCITS 256 и ANS INCITS 371	autoid.org (орган регистрации по INCITS 256 и ANS INCITS 371)
От 001ххххх до 1101хххх	RFU	Не определен	Не определен	Зарезервирован для использо вания ИСО
11100000	исо/мэк 7816-6	8 битов	48 битов	APACS ¹⁾ (орган регистрации по ИСО/МЭК 7816-6)
11100001	ИСО 14816	По правилам NEN	По правилам NEN	NEN ²⁾ (орган регистрации по ИСО 14816)

¹⁾ APACS (Association for Payment Clearing Services) — Ассоциация клиринговых платежных систем.

²⁾ NEN (Nederlands Normalisatie-instituut) — Голландский институт стандартизации.

Окончание таблицы А.2

AC	Нормативный документ категории	Размер идентификатора организации, присваивающей TID	Размер серийного номера	Орган регистрации (организации, присваивающей TID)
11100010	GS1	По ИСО/МЭК 18000-6 для радио- частотных меток типа С и по ИСО/МЭК 18000-3 для систем радио- частотной идентифи- кации, работающих в режиме 3 (МОDE 3)	По ИСО/МЭК 18000-6 для радио- частотных меток типа С и по ИСО/МЭК 18000-3 для систем радио- частотной идентифи- кации, работающих в режиме 3 (МОDE 3)	GS1 ¹¹
11100011	исо/мэк 7816-6	8 битов	48 битов	APACS (включает в себя раз- мер памяти и заголовок XTID)
От 11100100	RFU	Не определен	Не определен	Зарезервирован ИСО для ис- пользования в будущем

А.4 Регистрационный номер организации, присваивающей TID

Регистрационный номер организации, присваивающей TID, выдают следующие органы регистрации.

- орган регистрации по ИСО/МЭК 7816-6 (для изготовителей карт с интегральной микросхемой, соответствующей ИСО/МЭК 7816);
 - орган регистрации по ИСО 14816 (для грузовых контейнеров и транспортных приложений);
 - орган регистрации в соответствии с системой нумерации GS1;
 - орган регистрации по стандартам ANS INCITS 256 и ANS INCITS 371.

А.5 Серийный номер

Организация, присваивающая TID, присваивает серийные номера и обеспечивает их уникальность.

Серийный номер должен быть уникальным, лоэтому организация, присваивающая TID, не должна допускать повторного присвоения номера в течение продолжительного периода времени с момента его первого присвоения до тех пор, лока номер полностью не утратит своей значимости для всех его пользователей.

Серийный номер представляет собой двоичное число. Размер уникального идентификатора радиочастотной метки зависит от используемого кода категории.

А.6 Коды категорий

А.б.1 Код категории по ИСО/МЭК 7816-6

Если значение АС равно '11100000', уникальный идентификатор присваивают изготовители интегральных микросхем, идентифицированные 8-битовым (1-байтовым) номером.

Если значение АС равно '11100011', уникальный идентификатор присваивают изготовители интегральных микросхем, идентифицированные 8-битовым (1-байтовым) номером.

Изготовитель интегральных микросхем должен быть зарегистрирован в соответствий с требованиями ИСО/МЭК 7816-6 путем подачи заявления в соответствующий орган регистрации.

За значением АС следует 8-битовый регистрационный номер изготовителя интегральных микросхем и 48-битовый серийный номер, присвоенный изготовителем интегральных микросхем согласно таблице А.З.

Регистрационные номера изготовителей интегральных микросхем со значениями кодов категорий «E0» и «E3»²¹, присвоенных на момент публикации настоящего стандарта, приведены в приложении В. Структура уникального идентификатора, у которого значение поля АС равно «E3», отличается от структуры уникального идентификатора со значением поля АС, равным «E0» (приложение B).

¹⁾ GS1— международная организация; на территории Российской Федерации действует национальная организация — Ассоциация ветоматической идентификации «ЮНИСКАН/ГС1 РУС» (ГС1 РУС), официально представляющая международную организацию GS1.

²⁾ Шестнадцатеричные значения кодов категорий «ЕО» и «ЕЗ» соответствуют двоичным значениям «11100000» и «11100011» соответственно.

Таблица А.3 — TID по ИСО/МЭК 7816-6

AC	Регистрационный номер изготовителя интегральных микросхем	Серийный номер
8 битов	8 битов	48 битов
'11100000'	По ИСО/МЭК 7816-6	Значение присваивает изготовитель интегральных микросхем

MSB LSB

А.6.2 Код категории по ИСО 14816

Если значение АС равно '11100001', уникальный идентификатор присваивают согласно ИСО 14816 изготовители радиочастотных меток, идентифицированные в соответствии с положениями ИСО 14816 (таблица А.4). Изготовитель радиочастотных меток должен быть зарегистрирован в порядке, установленном в ИСО 14816. Порядок следования полей данных после значения АС приведен в приложении С.

Таблица А.4 — Структура TID по ИСО 14816

AC	Регистрационный номер эмитента радиочастотных меток	Серийный номер
8 битов	По ИСО 14816	По ИСФ 14816
'11100001'	По ИСО 14816	По ИСО 14816

MSB LSB

А.6.3 Код категории GS1

Если значение АС равно 11100010', уникальный идентификатор присвоен изготовителем радиочастотной метки для обеспечения применения типовых номеров GS1 в соответствии с требованиями Общих спецификаций GS1, а также ИСО/МЭК 18000-6 (для радиочастотных меток типа C) и ИСО/МЭК 18000-3 (для систем радиочастотной идентификации, работающих в режиме 3).

Изготовитель радиочастотных меток должен быть зарегистрирован в порядке, установленном в Общих спецификациях GS1⁵).

П р и м е ч в н и е — Электронный код продукции (EPC) представляет собой кодовую структуру, являющуюся частью информационной сети EPC Network, управляемой международной организацией EPCglobal. EPC разработан специально для обеспечения уникальной и однозначной идентификации предметов, основанной на использовании стандартизированных контролируемых серийных кодов и радиочастотных меток в качестве носителей данных. Структура(ы) EPC стандартизирована(ы) GS1 и опубликована(ы) в Общих спецификациях GS1.

Структуру данных, следующую за значением АС, определяют по ИСО/МЭК 18000-6 для радиочастотных меток типа С или ИСО/МЭК 18000-3 (для систем радиочастотной идентификации, работающих в режиме 3).

Сведения о присвоении кода Е2 приведены в приложении D.

Т а б л и ц а А.5 — Структура TID по ИСО/МЭК 18000-6 для радиочастотных меток типа С и ИСО/МЭК 18000-3 (для систем радиочастотной идентификации, работающих в режиме 3)

AC	MDID	Номер модели радиочастотной метки
8 битов	В соответствии с требованиями GS1	В соответствии с требованиями GS1
'11100010'	В соответствии с требованиями GS1	В соответствии с требованиями GS1

MSB LSB

ч) Изготовитель радиочастотных меток должен быть зарегистрирован в соответствии с процедурами, определенными в Общих спецификациях GS1 и стандартах EPCglobal.

А.6.4 Коды категории по ANS INCITS 256

Если значение AC равно '000ххххх', уникальный идентификатор присвоен изготовителем интегральных микросхем в соответствии с требованиями ANS INCITS 256.

Изготовитель интегральных микросхем должен быть зарегистрирован в порядке, установленном в ANSI ASC INCITS $T6^{5}$.

Структуру данных, следующую за значением AC, определяют по ANS INCITS 256.

Общая длина такого уникального идентификатора, включая значение АС, регистрационный номер изготовителя интегральных микросхем и серийный номер, равна 64 битам (по ИСО/МЭК 18000-7—32 битам).

Таблица A.6 — Структура TID по ANS INCITS 256

AC	Регистрационный номер организации, присавивающей TID	Серийный номер
8 битов	Πο ANS INCITS 256	Πο ANS INCITS 256
'000xxxxx'	Πο ANS INCITS 256	To ANS INCITS 256

MSB LSB

Для значений АС в дивлазоне от "00" до "1F" структура TID приведена в приложении Е.

А.6.5 Коды категории, зарезервированные для использования в будущем

Если значение АС находится в диапазоне от '11100100' до '11101111', то TID является зарезервированным для использования в будущем согласно настоящему стандарту.

Изготовитель радиочастотных меток должен быть зарегистрирован в порядке, установленном органами регистрации по соответствующему стандарту.

Т а б л и ц а А.7 — Структура TID, зарезервированного для использования в будущем

AC	Регистрационный номер эмитента радиочастотных меток	Серийный номер
8 битов	RFU	RFU
От '11100100' до '11101111'	RFU	RFU

MSB LSB

¹¹ ANSI ASC INCITS T6 — Технический комитет «Технология радиочастотной идентификации» («Radio Frequency Identification (RFID) Тесhnology» в составе Международного комитета по стандартам информационных технологий (InterNational Committee for Information Technology Standards).

Приложение В (обязательное)

Системы нумерации по ИСО/МЭК 7816-6 для радиочастотной идентификации

В.1 Регистрационные номера организаций, присваивающих TID по ИСО/МЭК 7816-6

Для различных применений технологии радиочастотной идентификации в цепях поставок существует несколько структур нумерации, которые используют СТК1/ПК31, ИСО ТК 104, ИСО ТК 122 и ИСО ТК 204¹¹. На момент публикации настоящего стандарта регистрационные номера организаций, присваивающих ТІО по ИСО/МЭК 7816-6, использованы в ИСО/МЭК 18000-2 (для радиочастотных меток типа А), ИСО/МЭК 18000-3 (для систем радиочастотной идентификации, работающих в режимах 1 и 3), ИСО/МЭК 18000-4 (для систем радиочастотных меток типов В и С). Указанные структуры приведены в таблице В.1.

Действующий перечень кодов организаций, присваивающих TID, можно найти в сети Интернет по адресу: http://isotc.iso.org/livelink/livelink/fetch/2000/2122/327993/327971/7500839/Register_of_ICC_manufacturers.pdf? nodeid=7838647&vernum=0

На момент публикации настоящего стандарта изготовителям интегральных микросхем, соответствующих ИСО/МЭК 7816-6, были присвоены идентификаторы, указанные в таблице В.1.

Таблица В.1 — Коды организаций, присваивающих TID по ИСО/МЭК 7816-6 (по состоянию на 19.03.2009 г.)

Идентификатор	Организация	Страна
'01'	Motorola	Великобритания
'02'	STMicroelectronics SA	Франция
'03'	Hitachi, Ltd.	Япония
'04'	NXP	Германия
'05'	Infineon Technologies AG	Германия
'06'	Cylink	США
'07'	Texas Instrument	Франция
'08'	Fujitsu Limited	Япония
'09'	Matsushita Electronics Corporation, Semiconductor Co.	Япония
10A1	NEC	Япония
'0B'	Oki Electric Industry Co. Ltd.	яинопЯ
'0C'	Toshiba Corp.	Япония
'0D'	Mitsubishi Electric Corp.	Япония
,0E,	Samsung Electronics Co. Ltd.	Корея
'0F'	Hynix	Корея
'10'	LG-Semiconductors Co. Ltd.	Корея
'11'	Emosyn-EM Microelectronics	США
'12'	INSIDE Technology	Франция

Подкомитет по стандартизации СТК1/ПК31 «Технологии автоматической идентификации и сбора данных» (JTC1/SC31 «Automatic identification and data capture techniques»); технический комитет ИСО ТК 104 «Грузовые контейнеры» (ISO ТС 104 «Freight containers»; технический комитет ИСО ТК 122 «Упаковка» (ISO ТС 122 «Раскадіпд»), технический комитет ИСО ТК 204 «Интеллектувльные транспортные системы» (ISO ТС 204 «Intelligent transport systems»).

Продолжение таблицы В.1

Ідентификатор	Организация	Страна
'13'	ORGA Kartensysteme GmbH	Германия
'14'	SHARP Corporation	япония
'15'	ATMEL	Франция
'16'	EM Microelectronic-Marin SA	Швейцария
'17'	KSW Microtec GmbH	Германия
'18'	ZMD AG	Германия
'19'	XJCOR, Inc.	США
'1A'	Sony Corporation	яинопЯ
'1B'	Malaysia Microelectronic Solutions Sdn. Bhd	Малайзия
"1C"	Emosyn	США
'1D'	Shanghai Fudan Microelectronics Co. Ltd.	Китай
'1E'	Magellan Technology Pty Limited	Австралия
'1F'	Melexis NV BO	Швейцария
20	Renesas Technology Corp.	ямнопŘ
211	TAGSYS	Франция
"22"	Transcore	США
'23'	Shanghai Belling corp., Ltd.	Китай
'24'	Masktech Germany Gmbh	Германия
'25'	Innovision Research and Techology Pic	Великобритания
'26'	Hitachi ULSI Systems Co., Ltd.	яинопЯ
27	Cypak AB	Швеция
'28'	Ricoh	Япония
'29'	ASK	Франция
'2A'	Unicore Microsystems, LLC	Российская Федерация
'2B'	Dallas Semiconductor/Maxim	США
'2C'	Impinj, Inc.	США
'2D'	RightPlug Alliance	США
'2E'	Broadcom Corporation	США
'2F'	MStar Semiconductor, Inc.	Тайвань
,30,	BeeDar Technology Inc.	США
'31'	RFIDsec	Дания
'32'	Schweizer Electronic AG	Германия
'33'	AMIC Technology Corp	Тайвань
'34'	Mikron JSC	Россия
'35'	Frauhofer Institute of Photonic Microsystems	Германия

Окончание таблицы В.1

Адентификатор	Организация	Страна
'36'	IDS Microchip AG	Швейцария
'37'	Kovo	США
'38'	HMT Microelectronic	Швейцария
'39'	Silicon Craft Technology	Таиланд
"3A"	Advanced Film Device Inc.	пиноп
"3B"	Nitecrest Ltd.	Великобритания
'3C'	Verayo Unc.	США

В.2 Код категории «ЕО» для структуры базового TID по ИСО/МЭК 7816-6

Значение «E0» является кодом категории для организаций, присваивающих базовые TID по ИСО/МЭК 7816-6, состоящие из 8-битового регистрационного номера изготовителя интегральных микросхем и следующего за ним 48-битового серийного номера.

В.3 Код категории «ЕЗ» для расширенных TID по ИСО/МЭК 7816-6

Для обеспечения совместимости структура расширенного TID с кодом категории "E3" основана на действующей структуре базового TID с кодом категории "E0". После значения кода категории следует 8-битовый регистрационный номер изготовителя интегральных микросхем, 2-байтовое представление пользовательской памяти и данных о ее размере, 48-битовый уникальный идентификатор радиочастотной метки, 1-байтовый идентификатор XTID и 15-байтовый заголовок XTID. В таблице В.2 приведена структура расширенного TID с кодом категории "E3":

Таблица В.2 — Структура расширенного TID по ИСО/МЭК 7816-6

Адрес би- тов в бан-	17				<u> </u>			Адреса	в битов				,			
ке памяти TID	0	1	2	3	4	5	6	7	8	9	А	В	С	D	E	F
1	Стар	Старший бит Младший бит														
50h-5Fh	XTID	Заголовок XTID [14:0]														
40h-4Fh			Серийный номер [15:0]													
30h-3Fh							Сери	йный н	омер [31:16]						
20h-2Fh							Сери	йный н	омер [47:32]						
10h-1Fh		Наличие пользовательской памяти и ее размер [15:0]														
00h-0Fh	E3h Идентификатор изготовителя интегральных микросхем															

В.3.1 Пользовательская память и ее размер

Значение старшего бита указывает на наличие в радиочастотной метке пользовательской памяти (логической или физической):

«0₂» — пользовательская память у радиочастотной метки отсутствует;

«1₂» — пользовательская память в радиочастотной метке присутствует.

П р и м е ч а н и е — Указанные выше двоичные значения не относятся к данным пользователя, а свидетельствуют о наличии пользовательской памяти радиочастотной метки. Остальные 15 битов определяют размер пользовательской памяти в битах.

Примеры указания размера пользовательской памяти.

x00000000100000002 = 64 битам.

х0000010000000000 = 512 битам.

x00010000000000002 = 2048 битам.

х11111111111111₂ = 32767 битам.

Примеры, устанавливающие наличие пользовательской памяти и ее размер:

000000000000000002 = пользовательская память отсутствует.

10000000010000000 = пользовательская память присутствует, ее размер — 64 бита.

В.3.2 Блокировка серийного номера

Изготовитель интегральных микросхем присваивает 48-битовый серийный номер радиочастотной метке, установив на него постоянную блокировку, запрещающую любое изменение.

В.3.3 Заголовок расширенного TID (XTID)

Значение старшего бита указывает на то, имеется ли заголовок XTID:

0₂ = данные заголовка XTID отсутствуют.

1₂ = данные заголовка XTID присутствуют.

Данные заголовка XTID, следующие после старшего бита, будут установлены позднее.

Приложение С (обязательное)

Система нумерации и структуры данных по ИСО 14816

Для различных применений технологии радиочастотной идентификации в целях поставок существует несколько структур нумерации, которые используют СТК1/ПК31, ИСО ТК 104, ИСО ТК 122 и ИСО ТК 204. Указанные структуры приведены в таблице С.1.

Таблица С.1 — Идентификаторы структуры кодирования (CSI)

CSI	Длина		Пол	я данных стру	туры кодирования					
ņ	Переменная	3:	арезервирован	о для исполь	зования СЕН/ИС	O (CEN/ISO)				
U	Переменная	Не определено								
1 7 октетов/		Код стр	аны"		гор организа- вающей TID	Служебный номер				
	56 битов	10		1	4	32				
	6 октетов/	Идентиф	икатор изготов	ителя	Cny	жебный номер				
2	48 битов		16			32				
3	22 октета/	Время начала				Ограничение применения				
176 битов		80	80		8	8				
	2070.00	Код страны" Буквенный индикатор			Заводской номер					
4	Переменная	10 8				Не определен				
_	17 октетов/	Иде	нтификационны	ый номер тра	нспортного сред	ства (на шасси)				
5	136 битов			12	26					
			Зарезеря	вировано для	CEH/UCO (CEN	I/ISO)				
6	Переменная			Не опр	еделен					
7	00.5	Нумерация грузового контейнера								
′	93 бита	93								
8		Ko	од страны ^е		Код налога					
0	Переменная		10		Не определен					
9	Попомонная		Зарезеря	вировано для	CEH/NCO (CEN	(/ISO)				
3	Переменная			Не опре	делено					
	Переменная		Зарезеря	вировано для	CEH/UCO (CEN	//ISO)				
	переменная			Не опре	делено					
30	Переменная		CEH/UCO (CEN	//ISO)						
JU	переменная			Не опре	делено					
31	Переменная	3	Зарезервирован	но для СЕН/И	ICO (CEN/ISO) (расширение)				
31	переменная			Не опре	делено					

Ведение идентификаторов CSI-1 и CSI-2 по ИСО 14816 обеспечивается институтом NEN.

Информация о них приведена в сети Интернет по адресу:

http://www3.nen.nl/cen278/.

Ведение идентификаторов CSI-7 обеспечивается в соответствии с требованиями ИСО 6346, согласно которому органом регистрации является Международное бюро по контейнерным перевозкам (BIC), расположенное по адресу:

Opraн регистрации c/o International Container Bureau 167, rue de Courcelles F-75017 Paris France

Тел.: + 33 1 47 66 03 90 Факс: + 33 1 47 66 08 91 E-mail: bic@bic-cjde.org.

Приложение D (обязательное)

Системы нумерации по ИСО/МЭК 18000-6 (для радиочастотных меток типа С) и ИСО/МЭК 18000-3 (для систем радиочастотной идентификации, работающих в режиме 3)

Правила присвоения АС со значением «E2» для ТID приведены в стандарте международной организации EPCglobal на данные радиочастотной метки. В таблице D.1 указан действующий формат TID радиочастотной метки EPC; в таблице D.2 — предлагаемый формат TID радиочастотной метки EPC. После значения кода категории «E2» следует поле идентификатора организации, присваивающей TID¹³. В таблице D.3 приведены коды MDID, присваиваемые международной организацией EPCglobal²³. Информация о присвоенных MDID приведена в сети Интернет по адресу: http://www.epcglobalinc.org/standards/mdid/.

Таблица D.1 — Сокращенный TID EPCglobal

Адрес битов банка памяти Т(D					Адре	сбита (в шестн	адцате	ричной	систем	е счисл	ения)				
	0	1	2	3	4	5	6	7	8	9	٨	В	С	D	Ε	F
10h-1Fh	М	DID [3:	[3:0] НОМЕР МОДЕЛИ РАДИОЧАСТОТНОЙ МЕТКИ (TAG MODEL NUMBER) [1							1:0]						
00h-0Fh	E2, MDID [11:4]															

Таблица D.2 — Расширенный TID EPCglobal (TDS 1.5)

Адрес битов					Адре	обита (в шест	адцате	ричной	систем	е счисл	ения)				
банка памяти TID	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
COh-CFh		Пользовательская память и сегмент BlockPermaLock [15:0]														
B0h-BFh		Пользовательская память и сегмент BlockPermaLock [31:16]														
A0h-AFh		Cerмeнт BlockWrite и BlockErase [15:0]														
90h-9Fh		Сегмент BlockWrite и BlockErase [31:16]														
80h-8Fh		Сегмент BlockWrite и BlockErase [47:32]														
70h-7Fh						Сегме	нт Віос	kWrite	и Вюсі	kErase	[63:48	I				
60h-6Fh					Сегме	нт под	цержк	и доло	лнител	ьных н	оманд	[15:0]				
50h-5Fh		Сегмент серийного номера [15:0]														
40h-4Fh		Сегмент серийного номера [31:16]														
30h-3Fh		Сегмент серийного номера [47:32]														
20h-2Fh		Заголовок ХТІD [15:0]														

¹⁾ Для радиочастотных меток ЕРС идентификатором организации, присваивающей TID, является идентификатор MDID.

²⁾ Информация о порядке присвоения идентификаторов MDID приведена на официальном сайте международной организации EPCGlobal www.gs1.org/epcglobal.

Окончание таблицы D.2

Адрес битов банка памяти ТІО					Адре	с бита (в шесті	адцате	ричноя	систем	е счисл	ения)				
	0	1	2	3	4	5	6	7	8	9	А	В	С	D	E	F
10h-1Fh	М	DID [3:	:0]	HOMEP МОДЕЛИ РАДИОЧАСТОТНОЙ METKU (TAG MODEL NUMBER)							ER) [1	1:0]				
00h-0Fh	E2h MDID [11:4]															

П р и м е ч а н и е — TID со значением АС, равным Е2ь, содержит в себе информацию о серии при выполнении следующих условий.

- 1) по адресу 08h в банке памяти TID (старший бит MDID) хранится значение 1;
- значения битов 20_в—22_в отличаются от нуля при их обработке как 3-битового незначащего номера; старшим будет бит 20_в.

Если выполняется первое из вышеуказанных условий, то в банке памяти TID с адресами 20_h—2F_h хранится 16-битовый заголовок XTID. В банке памяти TID могут содержаться другие данные, информация о которых не приведена в настоящем стандарте.

Банк памяти TID радиочастотной метки EPCglobal с адресами 00_h — 07_h должен содержать 8-битовый AC по ИСО/МЭК 15963 со значением E2_h для применений EPCglobal. Банк памяти TID с адресами 08_h — 13_h содержит 12-битовый MDID, присваиваемый международной организацией EPCglobal. Организация EPCglobal присваивает два MDID каждому изготовителю радиочастотной метки, в одном из которых бит с адресом 08_h содержит значение 1, а в другом — 0. Устройства считывания, которые не могут обрабатывать расширенный TID, воспринимают оба указанных номера как 12-битовый MDID. Устройства считывания/опроса, которые могут обрабатывать расширенный TID, определят адрес 08_h как бит расширенного идентификатора радиочастотной метки. Значение указанного бита определяет формат следующей за ним структуры данных TID. Значение, равное 0, соответствует сокращенному TID, в котором значения, следующие за битом $1F_h$, не определены. Значение, равное 1, указывает на расширенный идентификатор радиочастотной метки (XTID), в котором биты, следующие за битом $1F_h$, содержат дополнительные данные в соответствии с требованиями настоящего стандарта. Изготовители радиочастотных меток в процессе производства должны установить постоянную блокировку на поля идентификаторов как сокращенного, так и расширенного TID.

Т в б л и ц в D.3 — MDID, выданные международной организацией EPCglobal (по состоянию на 12.03.2009 г.)

Организация	Значение бита 08 _h = 0 (XTID отсутствует)	Значение бита 08 ₅ = 1 (XTID присутствует)
Impinj	001	801
Texas Instruments	002	802
Alien Technology	003	803
Intelleflex	004	804
Atmel	005	805
NXP (устаревшее название — Philips)	006	806
ST Microelectronics	007	807
EP Microelectronics	008	808
Motorola (устаревшее название — Symbol Technologies)	009	809
Sentech Snd Bhd	00A	80A
EM Microelectronics	00B	80B
Renesas Technology Corp.	00C	80C
Mstar	00D	80D

Окончание таблицы D.3

Организация	Значение бита 08 ₁ + 0 (XTID отсутствует)	Значение бита 08; = 1 (XTID присутствует)
Tyco International	00E	80E
Quanray Electronics	00F	80F
Fujitsu	016	810
LSIS	011	811

Приложение Е (обязательное)

Системы нумерации по INCITS 256 и INCITS 371

В процессе разработки стандарта INCITS 256:2001 возникла необходимость применения TID. Органом регистрации для INCITS 256 и INCITS 371 является организация autoid.org. Требования к радиоинтерфейсам, установленным в INCITS 256 и INCITS 371, в настоящее время поддерживаются стандартами серии ИСО/МЭК 18000.

В настоящем стандарте для TID INCITS установлен код категории AC со значениями от «00» до «1F». Изготовитель, продукция которого соответствует требованиям стандартов ИСО/МЭК или ITU может подать заявку на присвоение им кода изготовителя TID INCITS.

Перечень кодов изготовителей приведен в сети Интернет по адресу: http://www.autoid.org/INCITS/INCITS_256_371_Manufacturer_ID_Registration.htm

Т а б л и ц а Е.1 — Код категории INCITS TID и коды изготовителей (по состоянию на 12.03.2009 г.)

Код категории	Идентификатор изготовителя	Наименование организации
0000 0000	0000 0000	WhereNet
0001 0001	0000 0100	Savi Technology
0001 0001	0000 0101	Evigia Systems
0001 0001	0000 0110	Identec Solutions
0001 0001	0000 0111	HI-G-Tek

Приложение ДА (справочное)

Сведения о соответствии ссылочных международных стандартов ссылочным национальным стандартам

Сведения о соответствии ссылочных международных стандартов ссылочным национальным стандартам приведены в таблице ДА.1

Т а б л и ц а ДА.1 — Сведения о соответствии ссылочных международных стандартов ссылочным национальным стандартам

Обозначение ссылочного международного стандарта	Степень сортветствия	Обозначение и наименование соответствующего национального стандарта
ИСО/МЭК 19762-1		•
исо/мэк 19762-3		

Соответствующий национальный стандарт отсутствует. До его утверждения рекомендуется использовать перевод на русский язык данного международного стандарта. Перевод данного международного стандарта находится в Федеральном информационном фонде технических регламентов и стандартов.

Библиография

[1]	ISO 690	Documentation Bibliographic references Content, form and structure
	(NCO 690)	(Документация. Библиографические ссылки. Содержание, форма и структура)
[2]	ISO 690-2	Information and documentation — Bibliographic references — Part 2: Electronic documents or parts thereof
	(MCO 690-2)	(Информация и документация. Библиографические ссылки. Часть 2. Электронная документация или ее составляющие)
[3]	ISO 1000	SI units and recommendations for the use of their multiples and of certain other units
	(UCO 1000)	(Единицы СИ и рекомендации по применению кратных и дольных от них и некоторых других единиц)
[4]	ISO 3166-1	Codes for the representation of names of countries and their subdivisions — Part 1: Country codes
	(MCO 3166-1)	(Коды для прёдставления названий стран и их подразделений. Часть 1. Коды стран)
[5]	ISO 6346	Freight containers — Coding, identification and marking
	(MCO 6346)	(Контейнеры грузовые. Кодирование, идентификация и маркировка)
[6]	ISO/IEC 7816-6	Identification cards — Integrated circuit cards — Part 6: Interindustry data elements for interchange
	(ИСО/МЭК 7816-6)	(Карточки идентификационные. Контактные карточки на интегральных схемах. Часть 6. Элементы межотраслевых данных для обмена информацией)
[7]	ISO/IEC TR 10000-1	Information technology — Framework and taxonomy of International Standardized Profiles — Part 1: General principles and documentation framework
	(ИСО/МЭК ТО 10000-1)	(Информационные технологии. Основы и таксономия международных стандартизованных профилей. Часть 1. Общие принципы и структура документации)
[8]	ISO 10241	International terminology standards — Preparation and layout
103	(MCO 10241)	(Международные стандарты по терминологии. Подготовка и оформление)
[a]	ISO/TS 14816	Road transport and traffic telematics — Automatic vehicle and equipment identification — Numbering and data structure
	(MCO/TC 14816)	(Телематика для дорожного транспорта и транспортного движения. Идентификация автоматических транспортных средств и оборудования. Структура нумерации и дан- ных)
[10	I ISO/IEC 18000-3	Information technology — Radio frequency identification for item management — Part 3: Parameters for air interface communications at 13,56 MHz
	(NCO/MЭК 18000-3)	(Информационные технологии. Радиочастотная идентификация для управления предметами. Часть 3. Параметры радиоинтерфейса для связи на частоте 13,56 МГц)
[11	ISO/IEC 18000-6	Information technology — Radio frequency identification for item management — Part 6: Parameters for air interface communications at 860 MHz to 960 MHz
	(NCO/MЭК 18000-6)	(Информационные технологии. Радиочастотная идентификация для управления лредметами. Часть 6. Параметры радиоинтерфейса для диапазона частот 860—906 МГц)
[12	ISO/IEC 18000-7	Information technology — Radio frequency identification for item management — Part 7: Parameters for active air interface communications at 433 MHz
	(ИСО/МЭК 18000-7)	(Информационные технологии. Радиочастотная идентификация для управления предметами. Часть 7. Параметры активного радиоинтерфейса для связи на частоте 433 МГц)
[13	ISO/IEC 24730 (all parts)	Information technology — Real-time locating systems (RTLS)
	(ИСО/МЭК 24730 (все части))	(Информационные технологии. Системы определения места нахождения в реальном времени (RTLS))
[14	ISO/IEC Directives, Part 2	Rules for the structure and drafting of International Standards, 2001
	(Директивы ИСО/МЭК, Часть 2)	(Правила по структуре и построению международных стандартов, 2001)
[15	ANS INCITS 256	Radio Frequency Identification (RFID)
-57	(ANS INCITS 256)	(Радиочастотная идентификация (RFID))
[16	ANS INCITS 371	Real Time Locating Systems (RTLS)
	(ANS INCITS 371)	(Системы определения места нахождения в реальном времени (RTLS))
-		s (GS1, Brussels) (Общие спецификации GS1)
[18	EPCGlobal Tag Data Stand	fards (GS1, Brussels) (Стандарты EPCglobal на данные радиочастотной метки)

УДК 681.5.015:621.3:006.89

OKC 35.040

П85

Ключевые слова: информационные технологии, технологии автоматической идентификации, сбор данных, радиочастотная идентификация, управление предметами, уникальная идентификация радиочастотных меток, структура уникальных идентификаторов радиочастотных меток

Редактор Т.А. Лернова
Технический редактор В.Н. Прусакова
Корректор Р.А. Ментова
Компьютерная верстка В.И. Грищенко

Сдано в набор 31.08.2011.

Подписано в печать 27.10,2011. Формат 60х84¹/₀. Уч.-изд. л. 2,65. Тираж 116 экз. Зак. 939. Гарнитура Ариал. Усл. печ. л. 3,26.

ФГУП «СТАНДАРТИНФОРМ», 123995 Москва, Гранатный пер., 4.
www.gostinfo.ru info@gostinfo.ru
Набрано во ФГУП «СТАНДАРТИНФОРМ» на ПЭВМ.
Отпечатано в филиале ФГУП «СТАНДАРТИНФОРМ» — тип. «Московский печатник»,
117418 Москва, Нахимовский проспект, 31, к. 2.