ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

ΓΟCT P 54039— 2010

КАЧЕСТВО ПОЧВ

Экспресс-метод спектроскопии в ближней инфракрасной области для определения содержания нефтепродуктов

Издание официальное

Предисловие

- РАЗРАБОТАН Государственным научным учреждением «Всероссийский научно-исследовательский институт агрохимии имени Д.Н. Прянишникова» Российской академии сельскохозяйственных наук (ГНУ «ВНИИА им. Д.Н. Прянишникова» Россельхозакадемии)
 - 2 ВНЕСЕН Техническим комитетом по стандартизации ТК 25 «Качество почв и грунтов»
- 3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 30 ноября 2010 г. № 653-ст
 - 4 ВВЕДЕН ВПЕРВЫЕ
 - 5 ИЗДАНИЕ (июнь 2019 г.) с Изменением (ИУС 3—2012)

Правила применения настоящего стандарта установлены в статье 26 Федерального закона от 29 июня 2015 г. № 162-ФЗ «О стандартизации в Российской Федерации». Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе «Национальные стандарты», а официальный текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регупированию и метрологии в сети Интернет (www.gost.ru)

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

качество почв

Экспресс-метод спектроскопии в ближней инфракрасной области для определения содержания нефтепродуктов

Soil quality. Rapid near-infrared spectroscopic method for the determination of oil products

Дата введения — 2012—01—01

1 Область применения

Настоящий стандарт устанавливает метод определения содержания нефтепродуктов в почве с использованием спектроскопии в ближней инфракрасной области (далее — БИК-спектроскопия) в диапазоне значений массовой доли нефтепродуктов от 0,1 % до 10,0 %.

Примечание — Предельно допустимая концентрация нефтепродуктов в почвах не установлена. Массовая доля нефтепродуктов в незагрязненных почвах не превышает 0,1 % [1].

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ 12.1.019 Система стандартов безопасности труда. Электробезопасность. Общие требования и номенклатура видов защиты

ГОСТ 12.2.007.0 Система стандартов безопасности труда. Изделия электротехнические. Общие требования безопасности

ГОСТ 17.4.4.02 Охрана природы. Почвы. Методы отбора и подготовки проб для химического, бактериологического, гельминтологического анализа

ГОСТ 5180 Грунты. Методы лабораторного определения физических характеристик

ГОСТ 25336 Посуда и оборудование лабораторные стеклянные. Типы, основные параметры и размеры

ГОСТ 30483 Зерно. Методы определения общего и фракционного содержания сорной и зерновой примеси; содержания мелких зерен и крупности; содержания зерен пшеницы, поврежденных клопомчерепашкой; содержания металломагнитной примеси

ГОСТ Р ИСО 5725-6 Точность (правильность и прецизионность) методов и результатов измерений. Часть 6. Использование значений точности на практике

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя «Национальные стандарты» за текущий год. Если заменен ссылочный стандарт, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого стандарта с учетом всех внесенных в данную версию изменений. Если заменен ссылочный стандарт, на который дана датированная ссылка, то рекомендуется использовать версию этого стандарта с указанным выше годом утверждения (принятия). Если после утверждения настоящего стандарта в ссылочный стандарт, на который дана

FOCT P 54039-2010

датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение рекомендуется применять без учета данного изменения. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применен следующий термин с соответствующим определением:

БИК-спектрометр: Прибор, предназначенный для регистрации спектров отражения в инфракрасном спектральном диапазоне.

4 Сущность метода

Метод БИК-спектроскопии определения содержания нефтепродуктов в почве заключается в измерении интенсивности оптического излучения, отраженного от исследуемого образца в ближней инфракрасной области спектра (800—2400 нм), и последующем пересчете полученной интенсивности в содержание нефтепродуктов с помощью градуировочной модели, полученной по набору образцов с известными значениями массовой доли нефтепродуктов, установленными с использованием аттестованных базовых методов.

5 Требования безопасности и охраны окружающей среды

- 5.1 Общие требования безопасности при эксплуатации анализаторов должны соответствовать ГОСТ 12.2.007.0.
- 5.2 При работе с БИК-спектрометром следует соблюдать правила электробезопасности в соответствии с ГОСТ 12.1.019 и инструкцией по эксплуатации.
 - 5.3 Необходимо соблюдать требования, предъявляемые к воздуху помещений рабочей зоны.
- 5.4 Аналитик должен пройти инструктаж по мерам безопасности при работе с электрическими приборами.
 - 5.5 Помещение должно быть оборудовано приточно-вытяжной вентиляцией.

6 Условия выполнения измерений

6.1 Требования к помещению

БИК-спектрометр должен быть установлен на плоскую, жестко закрепленную поверхность в сухом отапливаемом помещении, защищенном от посторонних магнитных полей, механических воздействий и прямого попадания солнечных и тепловых лучей.

В помещении должно быть защитное заземление.

Воздух в помещении не должен содержать примесей, вызывающих коррозию металлических деталей и повреждение электрической изоляции.

Температуру воздуха в помещении следует поддерживать в пределах (20 ± 5) °C. Резкие колебания температуры (сквозняки) недопустимы.

6.2 Требования к квалификации оператора

К проведению измерений допускаются лица, прошедшие соответствующий инструктаж и ознакомившиеся с руководством по эксплуатации БИК-спектрометра и настоящим стандартом.

7 Средства измерений, вспомогательные устройства и оборудование

- 7.1 БИК-спектрометр, работающий в спектральном диапазоне от 800 до 2400 нм в режиме диффузного отражения, снабженный компьютером и программным обеспечением для установления градуировочной модели и обработки результатов измерений образцов.
- 7.2 Вибрационная, шаровая или другая лабораторная мельница, обеспечивающая размол почвы без потери летучих веществ (с герметичной камерой).

- 7.3 Стеклянные емкости с плотно закрывающимися крышками по ГОСТ 25336 вместимостью не менее 50 см³.
 - 7.4 Лабораторные сита из решетного полотна по ГОСТ 30483 с диаметром отверстий 1 мм.
 - 7.5 Шкаф сушильный, обеспечивающий поддержание температуры до 100 °C.
 - 7.6 Эксикатор.
 - 7.7 Холодильник бытовой любой марки.
- 7.8 Применяемые средства измерений должны быть внесены в Государственный реестр средств измерений и должны иметь действующие свидетельства о поверке, а вспомогательное оборудование должно быть проверено на работоспособность.

Допускается применение других средств измерений с метрологическими характеристиками и оборудования с техническими характеристиками не хуже, а также реактивов по качеству не ниже вышеуказанных.

8 Подготовка к выполнению измерений

8.1 Отбор и выделение проб

Отбор проб почвы и их подготовку к анализу проводят в соответствии с ГОСТ 17.4.4.02 для всех видов почв. Отобранные пробы хранят в герметичной таре при температуре 4 °C—5 °C не более 24 ч и обрабатывают в кратчайшие сроки.

8.2 Подготовка проб к измерениям

Сухую пробу почвы рассыпают на бумаге или кальке и разминают пестиком крупные комки, затем выбирают включения — корни растений, насекомых, камни, стекло, уголь, кости животных, а также новообразования — друзы гипса, известковые журавчики. Почву растирают в ступке пестиком и просеивают через сито с диаметром отверстий 1 мм. При определении труднолетучих соединений (масел, битумов) образцы почвы высушивают до воздушно-сухого состояния при (80 ± 2) °С по ГОСТ 5180. При определении летучих нефтепродуктов (бензина, керосина, дизельного топлива) пробы сушат при необходимости в эксикаторе над химическим осушителем (прокаленный хлористый кальций) и измельчают в герметичной мельнице, обеспечивающей отсутствие потерь летучих веществ.

8.3 Пробы хранят в плотно закрытых стеклянных емкостях в сухом помещении в холодильнике при температуре 4 °C—5 °C. На этикетке должны быть указаны номер пробы, характеристика почвы и дата поступления. Непосредственно перед измерением пробы тщательно перемешивают.

8.4 Подготовка БИК-спектрометра к работе

- 8.4.1 Подготовку БИК-спектрометра к работе проводят в соответствии с требованиями эксплуатационной документации.
 - 8.4.2 Измерения проводят на предварительно проградуированном БИК-спектрометре.

Градуировка БИК-спектрометра заключается в получении градуировочной модели, описывающей связь массовой доли нефтепродуктов со спектральными характеристиками с применением специализированной программы обработки результатов методом многофакторного анализа.

Процедура градуировки предусматривает:

- выбор набора образов для градуировки;
- анализ образцов стандартизованными (аттестованными) методами;
- измерение спектральных характеристик (коэффициентов диффузного отражения) и получение градуировочной модели;
 - проверку градуировки;
 - корректировку градуировки.

8.4.3 Выбор набора образцов для градуировки

При градуировке следует соблюдать следующие основные требования:

- градуировочный массив должен включать значительное число проб (не менее 100);
- пробы должны представлять весь диапазон значений массовой доли нефтепродуктов в пробах, которые будут анализироваться с использованием данной градуировки;
- пробы должны представлять весь диапазон физического и химического составов проб, которые будут анализироваться с использованием данной градуировки;

- состав проб должен оставаться неизменным в течение времени между сканированием и анализом стандартными методами;
- пробы должны быть гомогенизированы так, чтобы субпробы, используемые для сканирования и анализа стандартными методами, имели одинаковый состав;
 - образцы для градуировки должны отвечать требованиям раздела 9;
- значения массовой доли нефтепродуктов в образцах для градуировки должны быть равномерно распределены по диапазону измерений;
- градуировочный набор должен включать образцы с массовой долей нефтепродуктов, выходящей за диапазоны измерений на величину доверительных границ абсолютной погрешности измерений (±Δ; %; см. таблицу 1);
- количество образцов (N) для создания градуировочной модели устанавливается экспериментально;
- для повышения точности анализа следует проводить раздельную градуировку по массивам проб почвы, содержащих нефтепродукты в диапазонах 0,1 %—1,0 %, 1,0 %—3,0 % и 3,0 %—10,0 %;
- высокое содержание органического углерода влияет на спектральные характеристики почв, поэтому следует проводить отдельную градуировку для почв с малым (дерново-подзолистые, серые лесные) и высоким содержанием органических веществ (торфяные, болотные);
- высокое содержание гумуса (более 5 %) влияет на точность определения нефтепродуктов, поэтому для таких почв следует устанавливать отдельное градуировочное уравнение;
- отдельные градуировки должны проводиться для проб почв, измельченных в мельнице, и проб, растертых в ступке.

8.4.4 Определение массовой доли нефтепродуктов в почвах базовым методом

Определение массовой доли нефтепродуктов в почвах базовым методом должно проводиться с использованием аттестованной методики. В качестве базового метода могут использоваться гравиметрический метод [2], метод определения нефтепродуктов инфракрасной спектрометрией экстрактов [3] или метод флуориметрического определения нефтепродуктов в очищенном экстракте из почвы [4].

При наличии недостаточного количества проб загрязненной почвы допускается провести градуировку БИК-спектрометра на пробах искусственно загрязненных почв и затем провести корректировку полученного уравнения по пробам (не менее 10) естественно загрязненных почв.

8.4.5 Измерение спектральных коэффициентов диффузного отражения и получение градуировочной модели

Регистрируют спектры диффузного отражения образцов и находят коэффициенты диффузного отражения на аналитических длинах волн.

Градуировочные уравнения рассчитывают методом множественной линейной регрессии. Выбор метода расчета и расчет градуировочных уравнений проводят на основе спектров образцов градуировочного набора с помощью программного обеспечения, поставляемого с БИК-спектрометром.

8.4.6 Корректировка градуировки

Корректировку градуировочных уравнений проводят при наличии систематического смещения показаний для конкретного БИК-спектрометра, а также при проведении градуировки по искусственно загрязненным пробам. Коррекцию уравнений проводят по методике, являющейся составной частью программного обеспечения БИК-спектрометра. Число образцов с известным содержанием нефтепродуктов для корректировки градуировки должно быть не менее 10.

Результатом расчета является создание нового градуировочного уравнения.

8.4.7 Одновременное определение различных нефтепродуктов

Возможно одновременное определение различных типов нефтепродуктов. При этом градуировочный массив также должен включать пробы, одновременно содержащие различные нефтепродукты.

8.4.8 Периодичность и критерий проверки правильности градуировки анализатора

Правильность градуировки БИК-спектрометра проверяется не реже, чем раз в год при переходе к измерениям проб, отобранных в новом сезоне, а также перед началом измерений почв, отличающихся от используемых для градуировки по типу, подтипу, содержанию гумуса или другим параметрам. Если расхождение между результатом измерений контрольного образца и значением, полученным для него базовым методом, превышает доверительную границу абсолютной погрешности результатов измерений (см. раздел 11), то проводят корректировку градуировки по 8.4.6.

9 Выполнение измерений

Из пробы, подготовленной в соответствии с 8.2, отбирают пробу для измерений, тщательно ее перемешивают и загружают в измерительную кювету. Кювету с пробой помещают в измерительную камеру и проводят измерения в соответствии с эксплуатационной документацией на БИК-спектрометр.

Повторяют измерения с другой пробой для измерений, отобранной из того же образца.

Используя программное обеспечение к спектрометру, рассчитывают массовую долю нефтепродуктов в каждом образце для измерений.

10 Обработка и оформление результатов измерений

10.1 Вычисляют среднеарифметическое (C, %) значений массовой доли нефтепродуктов, полученных для двух образцов для измерений $(C_1, \%$ и $C_2, \%)$. Полученное среднеарифметическое значений принимают за результат измерений массовой доли нефтепродуктов в образце, если выполняется неравенство

$$|C_2 - C_1| \le r$$
, (1)

где r — предел повторяемости результатов измерений массовой доли нефтепродуктов в почве, % (см. таблицу 1).

Результат округляют до первого десятичного знака.

- 10.2 При невыполнении условия (1) используют методы проверки приемлемости результатов параллельных определений и установления окончательного результата измерений согласно ГОСТ Р ИСО 5725-6—2002 (пункт 5.2).
 - 10.3 Полученные результаты регистрируют в протоколах, в которых указывают:
- информацию, необходимую для идентификации пробы почвы (номер пробы, место, дата и время отбора пробы, тип и подтип почвы, кем предоставлена проба);
 - даты отбора пробы и выполнения измерений;
 - результат измерения;
 - доверительные границы погрешности измерений (см. раздел 11);
 - фамилию оператора;
- любые детали, не указанные в настоящем стандарте или необязательные, а также любые факторы, повлиявшие или могущие повлиять на результаты.

11 Метрологические характеристики

Метод обеспечивает получение результатов измерений с метрологическими характеристиками, не превышающими значений, приведенных в таблице 1, при доверительной вероятности P=0.95.

Таблица 1

Диапазон измерений массо- вой доли нефтепродуктов, %	Предел повторяемости г, %	Предел воспроизводимости R, %	Границы абсолютной погреш- ности результатов измерений ±А, % (P = 0,95)
От 0,1 до 1,0 включ.	0,2	0,30	0,45
Св. 1,0 до 3,0 включ.	0,30	0,45	0,75
Св. 3,0 до 10,0 включ.	0,50	0,80	1,20

12 Контроль точности результатов измерений

Контроль точности результатов измерений осуществляют в соответствии с требованиями ГОСТ Р ИСО 5725-6 и рекомендаций [5].

Библиография

[1]	Временные методические рекомендации по контролю загрязнения почв. Часть 2. М.: Гидрометеоиздат, 1984		
[2]	РД 52.18.647—2003	Методические указания. Определение массовой доли нефтепродуктов в почвах. Методика выполнения измерений гравиметрическим методом	
[3]	РД 52.18.575—96	Руководящий документ. Методические указания. Определение валового содержания нефтепродуктов в почвах методом инфракрасной спектрометрии. Методика выполне- ния измерений	
[4]	ПНД Ф 16.1:2.21—98	8 Методика выполнения измерений массовой доли нефтепродуктов в пробах почвы флу ориметрическим методом на анализаторе жидкости «Флюорат-02». Методика допуще на для целей государственного экологического контроля. М., 1998	
[5]	PMГ 76—2004	Государственная система измерений. Внутренний контроль качества результатов количественного химического анализа	

УДК 631.422:006.354 OKC 13.080.05

Ключевые слова: почва, нефтепродукты, ближняя инфракрасная область. БИК-спектрометр, градуировочная модель

Редактор Н.Е. Рагузина
Технический редактор И.Е. Черепкова
Корректор И.А. Королева
Компьютерная верстка А.Н. Золотпаревой

Поправка к ГОСТ Р 54039—2010 Качество почв. Экспресс-метод ИК-спектроскопии для определения количества и идентификации загрязнения почв нефтепродуктами

В каком месте	Напечатано	Должно быть
Наименование стандарта	Качество почв. Экспресс- метод ИК-спектроскопии для определения количе- ства и идентификации заг- рязнения почв нефтепро-	Качество почв. Экспресс- метод спектроскопии в ближней инфракрасной области для определения содержания нефтепродук-
Наименование стандарта на ан- глийском языке	Soil quality. Quick method for the determination of oil products by NIR spect- roscopy	Soil quality. Rapid near- infrared spectroscopic me- thod for the determination of oil products

(ИУС № 3 2012 г.)