# ФЕДЕРАЛЬНОЕ АГЕНТСТВО

# ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ



НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

ΓΟCT P 54074— 2010

# МОЛОКО СУХОЕ ОБЕЗЖИРЕННОЕ

# Методы оценки пригодности для сыроделия

Издание официальное



# Предисловие

- РАЗРАБОТАН Государственным научным учреждением Всероссийским научно-исследовательским институтом маслоделия и сыроделия Российской академии сельскохозяйственных наук (ГНУ ВНИИМС Россельхозакадемии)
- 2 ВНЕСЕН Техническим комитетом по стандартизации ТК 470 «Молоко и продукты переработки молока»
- 3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 30 ноября 2010 г. № 728-ст
  - 4 ВВЕДЕН ВПЕРВЫЕ
  - 5 ПЕРЕИЗДАНИЕ. Декабрь 2019 г.

Правила применения настоящего стандарта установлены в статье 26 Федерального закона от 29 июня 2015 г. № 162-ФЗ «О стандартизации в Российской Федерации». Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе «Национальные стандарты», а официальный текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

# Содержание

| 1 | Область применения1                                                                    |
|---|----------------------------------------------------------------------------------------|
| 2 | Нормативные ссылки                                                                     |
| 3 | Термины и определения                                                                  |
| 4 | Реологический метод                                                                    |
| 5 | Фотоколориметрический метод с использованием контрольных образцов сухого обезжиренного |
|   | молока                                                                                 |
| 6 | Фотоколориметрический метод с использованием сырого обезжиренного молока               |
| 7 | Требования безопасности                                                                |
| Б | иблиография                                                                            |

# НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

#### МОЛОКО СУХОЕ ОБЕЗЖИРЕННОЕ

#### Методы оценки пригодности для сыроделия

Dried skimmed milk. Methods of checking fitness for cheese making

Дата введения — 2012-01-01

# 1 Область применения

Настоящий стандарт распространяется на сухое обезжиренное молоко (далее — продукт) и устанавливает методы оценки пригодности для сыроделия: реологический и фотоколориметрический.

# 2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ 12.1.004 Система стандартов безопасности труда. Пожарная безопасность. Общие требования

ГОСТ 12.1.005 Система стандартов безопасности труда. Общие санитарно-гигиенические требования к воздуху рабочей зоны

ГОСТ 12.1.007 Система стандартов безопасности труда. Вредные вещества. Классификация и общие требования безопасности

ГОСТ 12.1.019 Система стандартов безопасности труда. Электробезопасность. Общие требования и номенклатура видов защиты

ГОСТ 12.4.009 Система стандартов безопасности труда. Пожарная техника для защиты объектов. Основные виды. Размещение и обслуживание

ГОСТ 12.4.021 Система стандартов безопасности труда. Системы вентиляционные. Общие требования

ГОСТ 1770 (ИСО 1042—83, ИСО 4788—80) Посуда мерная лабораторная стеклянная. Цилиндры, мензурки, колбы, пробирки. Общие технические условия

ГОСТ 3118 Реактивы. Кислота соляная. Технические условия

ГОСТ 4166 Реактивы. Натрий хлористый. Технические условия

ГОСТ 6709 Вода дистиплированная. Технические условия

ГОСТ 12026 Бумага фильтровальная лабораторная. Технические условия

ГОСТ 14919 Электроплиты, электроплитки и жарочные электрошкафы бытовые. Общие технические условия

ГОСТ 19881 Анализаторы потенциометрические для контроля pH молока и молочных продуктов. Общие технические условия

ГОСТ 23327—98 Молоко и молочные продукты. Метод измерения массовой доли общего азота по Кьельдалю и определение массовой доли белка

ГОСТ 25336 Посуда и оборудование лабораторные стеклянные. Типы, основные параметры и размеры

ГОСТ 25794.1—83 Реактивы. Методы приготовления титрованных растворов для кислотно-основного титрования

#### **FOCT P 54074-2010**

ГОСТ 26678 Холодильники и морозильники бытовые электрические компрессионные параметрического ряда. Общие технические условия

ГОСТ 26809.1 Молоко и молочная продукция. Правила приемки, методы отбора и подготовка проб к анализу. Часть 1. Молоко, молочные, молочные составные и молокосодержащие продукты

ГОСТ 27752 Часы электронно-механические кварцевые настольные, настенные и часы-будильники. Общие технические условия

ГОСТ 27987 Анализаторы жидкости потенциометрические ГСП. Общие технические условия

ГОСТ 28498 Термометры жидкостные стеклянные. Общие технические требования. Методы испытаний

ГОСТ 29169 (ИСО 648—77) Посуда лабораторная стеклянная. Пипетки с одной отметкой

ГОСТ 29227 (ИСО 835-1—81) Посуда лабораторная стеклянная. Пипетки градуированные. Часть 1. Общие требования

ГОСТ 29251 (ИСО 385-1—84) Посуда лабораторная стеклянная. Бюретки. Часть 1. Общие требования

ГОСТ 31658 Молоко обезжиренное — сырье. Технические условия

ГОСТ 34353 Препараты ферментные молокосвертывающие животного происхождения сухие. Технические условия

ГОСТ Р 52791 Консервы молочные. Молоко сухое. Технические условия

ГОСТ Р ИСО 5725-1 Точность (правильность и прецизионность) методов и результатов измерений. Часть 1. Основные положения и определения

П р и м е ч а н и е — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя «Национальные стандарты» за текущий год. Если заменен ссылочный стандарт, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого стандарта с учетом всех внесенных в данную версию изменений. Если заменен ссылочный стандарт, на который дана датированная ссылка, то рекомендуется использовать версию этого стандарта с указанным выше годом утверждения (принятия). Если после утверждения настоящего стандарта в ссылочный стандарт, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение рекомендуется применять без учета данного изменения. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту ссылку.

# 3 Термины и определения

В настоящем стандарте применены термины, установленные ГОСТ Р ИСО 5725-1, [1], а также следующие термины с соответствующими определениями:

- 3.1 реологический метод: Метод, основанный на изучении необратимой деформации сгустка восстановленного сухого обезжиренного молока.
- 3.2 фотоколориметрический метод: Метод, основанный на измерении поглощения света окрашенными растворами в видимой части спектра с помощью фотоэлементов.

# 4 Реологический метод

# 4.1 Сущность метода

Метод основан на сравнении характера разрушения сгустка восстановленного сухого обезжиренного молока, подготовленного специальным образом и подвергнутого дозированной механической обработке в течение определенного времени, с образцами сгустка из обезжиренного молока.

## 4.2 Средства измерений, вспомогательное оборудование и реактивы

Весы лабораторные среднего класса точности, с пределом допускаемой абсолютной погрешности однократного взвешивания ±0,01 г.

Термостат жидкостный, позволяющий поддерживать температуру от 34 °C до 40 °C с отклонением от заданной температуры ±1 °C.

Холодильник электрический бытовой по ГОСТ 26678.

Термометр жидкостный стеклянный по ГОСТ 28498, с диапазоном измерения от 0 °C до 100 °C, ценой деления шкалы 1 °C.

Часы по ГОСТ 27752, 2-го класса точности.

Баня водяная с обогревом, позволяющая поддерживать температуру от 0 °C до 100 °C с отклонением от заданной температуры ±2 °C.

Вибромещалка или устройство перемещивающее лабораторное.

Плитка электрическая по ГОСТ 14919.

Стаканчики для взвешивания (бюксы) типов СВ и СН по ГОСТ 25336.

Стаканы В-1(2)-500(1000) ТХС по ГОСТ 25336.

Воронки В-56(75)-80 ХС по ГОСТ 25336.

Пипетки 1-1(2)-1(2)-0,5 по ГОСТ 29227.

Колбы мерные 1-100(200)-1 по ГОСТ 1770.

Цилиндры 1(2)-50(100)-1 по ГОСТ 1770.

Чашки Петри ЧБН-1-100 или ЧБН-2 по ГОСТ 25336.

Палочки стеклянные, оплавленные.

Бумага фильтровальная лабораторная по ГОСТ 12026.

Кальций хлористый (E509), предназначенный для использования в пищевой и медицинской промышленности.

Контрольный образец сычужного фермента по ГОСТ 34353.

Молоко сухое обезжиренное по ГОСТ Р 52791.

Вода дистиллированная по ГОСТ 6709.

Допускается применение других средств измерений, вспомогательного оборудования и реактивов, по качеству и метрологическим характеристикам не уступающих перечисленным выше.

# 4.3 Отбор проб

Отбор и подготовка проб — по ГОСТ 26809.1.

В случае, если анализ не может быть проведен сразу после отбора, пробы рекомендуется хранить в холодильнике при температуре не выше 10 °C.

#### 4.4 Подготовка к проведению анализа

# 4.4.1 Приготовление раствора контрольного образца сычужного фермента

В мерную колбу вместимостью 200 см³ помещают (1,0 ± 0,1) г контрольного образца сычужного фермента активностью 100000 усл. ед., добавляют 50 см³ дистиллированной воды и тщательно перемешивают. Объем раствора доводят дистиллированной водой до метки, тщательно перемешивают.

Раствор контрольного образца сычужного фермента хранят в холодильнике не более 2 сут.

# 4.4.2 Приготовление раствора хлористого кальция массовой концентрацией 400 г/дм<sup>3</sup>

В мерную колбу вместимостью  $1000 \text{ см}^3$  помещают  $(400,0 \pm 0,1)$  г безводного хлористого кальция и объем доводят до метки дистиллированной водой. Перемешивают до растворения.

Раствор хлористого кальция хранят при комнатной температуре в плотно закрытой посуде в затемненном месте не более 6 мес.

# 4.4.3 Приготовление восстановленного продукта

В стакан помещают (5,5 ± 0,1) г продукта, добавляют 500 см<sup>3</sup> дистиллированной воды температурой 40 °С. Перемешивают до полного растворения. Полученный восстановленный продукт выдерживают в термостате при температуре 37 °С в течение 1 ч. Затем в стакан с диаметром дна 10 см отбирают 100 см<sup>3</sup> восстановленного продукта и перемешивают палочкой в течение 30 с, добавляют 0,1 см<sup>3</sup> раствора хлористого кальция по 4.4.2. Смесь перемешивают в течение 30 с.

### 4.5 Условия проведения анализа

При выполнении анализа в лаборатории следует соблюдать следующие условия:

#### 4.6 Проведение анализа

К пробе, приготовленной по 4.4.3 и нагретой до температуры  $(36\pm2)$  °C, добавляют  $(1,5\pm0,1)$  см<sup>3</sup> раствора контрольного образца сычужного фермента, приготовленного по 4.4.1, и проводят свертывание в течение  $(60\pm5)$  мин при температуре  $(36\pm2)$  °C на водяной бане. Затем стакан со сгустком устанавливают в лабораторную вибромешалку и перемешивают в течение  $(20\pm5)$  с. Вибромешалка должна вызывать колебания с амплитудой от 0.5 до 2.0 см и частотой от 1 до 3 Гц, что соответствует второй скорости вибромешалки. Затем разрушенный сгусток помещают в термостат на  $(60\pm5)$  мин при температуре  $(39\pm1)$  °C, выливают в чашку Петри и сравнивают с образцами, изображенными на рисунке 1.

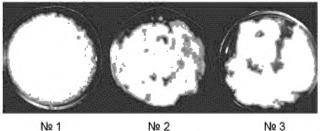



Рисунок 1 — Характер разрушения сгустка

# 4.7 Обработка результатов анализа

В зависимости от того, к какому образцу относят разрушенный сгусток (зерно с сывороткой) согласно рисунку 1, и в соответствии с данными таблицы 1 делают вывод о возможности использования продукта при производстве сыров.

Таблица 1

| Номер образца | Область применения сухого обезжиренного молока                                                                                                     |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Nº 1          | Непригодно для использования в сыроделии                                                                                                           |
| Nº 2          | Предназначено для производства мягких сыров. При производстве полутвердых сыров возможна замена до 30 % сырого молока восстановленным продуктом    |
| N9 3          | Предназначено для производства мягких сыров. При производстве полутвердых<br>сыров возможна замена до 70 % сырого молока восстановленным продуктом |

# 5 Фотоколориметрический метод с использованием контрольных образцов сухого обезжиренного молока

#### 5.1 Сущность метода

Метод основан на измерении оптической плотности бесказеинового фильтрата восстановленного сухого обезжиренного молока методом фотоколориметрирования, определении на ее основе массы неденатурированных сывороточных белков в сухом обезжиренном молоке и оценке его пригодности для использования в сыроделии.

#### 5.2 Средства измерений, вспомогательное оборудование и реактивы

Колориметр фотоэлектрический типа КФК-2 со спектральным диапазоном измерения от 315 до 980 нм, пределом допускаемого значения коэффициента пропускания не более ±1 %, оснащенный коветами длиной оптического пути 5 мм.

П р и м е ч а н и е — При использовании колориметра другой марки необходимо делать поправку на оптическую плотность раствора, относительно которого проводят измерения.

Анализаторы потенциометрические типа I по ГОСТ 19881, ГОСТ 27987.

Весы лабораторные высокого и среднего классов точности, с пределом допускаемой абсолютной погрешности однократного взвешивания ±0,001 г.

Термостат жидкостный, позволяющий поддерживать температуру (37 ± 1) °C с отклонением от заданной температуры ±1 °C.

Термометр жидкостный стеклянный по ГОСТ 28498, с диапазоном измерения от 0 °C до 100 °C, ценой деления шкалы 1 °C.

Баня водяная с обогревом, позволяющая поддерживать температуру от 0 °C до 100 °C с отклонением от заданной температуры ±2 °C.

Вибромешалка или устройство перемешивающее лабораторное.

Часы по ГОСТ 27752, 2-го класса точности.

Холодильник электрический бытовой по ГОСТ 26678.

Стаканчики для взвешивания (бюксы) типов СВ и СН по ГОСТ 25336.

Стаканы В-1(2)-50(100, 500, 1000) ТХС по ГОСТ 25336.

Воронки В-56(75)-80 ХС по ГОСТ 25336.

Пипетки 1-1(2)-1 по ГОСТ 29169.

Пипетки 1-1(2)-1(2)-1(1, 5, 10) по ГОСТ 29227.

Цилиндры 1(2)-25(50, 200, 500, 1000)-1 по ГОСТ 1770.

Колбы конические Кн-2-50(100)-34 ТХС по ГОСТ 25336.

Колба мерная 1(2)-100(1000) по ГОСТ 1770.

Бюретки 1-1(2)-1-10(25)-0,05 по ГОСТ 29251.

Палочки стеклянные, оплавленные.

Бумага фильтровальная лабораторная по ГОСТ 12026, обезжиренная.

Натрий хлористый по ГОСТ 4166.

Кислота соляная по ГОСТ 3118, плотностью 1188 кг/м3.

Контрольный образец сухого обезжиренного молока низкотемпературной сушки с содержанием неденатурированных сывороточных белков от 6,1 до 10,0 мг в 1 г продукта, температурой сушки не более 60 °C.

Контрольный образец сухого обезжиренного молока высокотемпературной сушки с содержанием неденатурированных сывороточных белков от 0,1 до 1,5 мг в 1 г продукта, температурой сушки не менее 90 °C.

Молоко обезжиренное сырое по ГОСТ 31658.

Молоко сухое обезжиренное по ГОСТ Р 52791.

Вода дистиплированная по ГОСТ 6709.

Допускается применение других средств измерений, вспомогательного оборудования и реактивов, по качеству и метрологическим характеристикам не уступающих перечисленным выше.

# 5.3 Отбор проб

Отбор и подготовка проб — по ГОСТ 26809.1.

Если анализ не может быть проведен сразу после отбора образцов, пробы рекомендуется хранить в холодильнике при температуре не выше 10 °C.

#### 5.4 Подготовка к проведению измерений

#### 5.4.1 Приготовление раствора хлористого натрия (раствора A)

Для приготовления насыщенного раствора хлористого натрия в колбу вместимостью 1000 см<sup>3</sup> вносят 290—300 г хлористого натрия, доводят дистиллированной водой температурой (20 ± 2) °С до метки, перемешивают вручную. Допускается наличие небольшого количества нерастворившихся кристаллов соли. Раствор отфильтровывают через складчатый бумажный фильтр.

Раствор A хранят при комнатной температуре в плотно закрытой посуде в затемненном месте не более 6 мес.

# 5.4.2 Приготовление подкисленного раствора хлористого натрия (раствора Б)

Подкисленный насыщенный раствор хлористого натрия готовят путем добавления по каплям к 1000 см<sup>3</sup> раствора, приготовленного в соответствии с 5.4.1, раствора соляной кислоты массовой долей 6 % до значения активной кислотности 2,2—2,5 pH. Раствор отфильтровывают через складчатый бумажный фильтр.

#### ГОСТ Р 54074-2010

Раствор Б хранят при комнатной температуре в плотно закрытой посуде в затемненном месте не более 6 мес.

#### 5.4.3 Приготовление раствора соляной кислоты массовой долей 6 %

В мерную колбу вместимостью 1 дм<sup>3</sup> вливают около 500 см<sup>3</sup> дистиллированной воды, затем осторожно, при перемешивании, вносят 136,4 см<sup>3</sup> концентрированной соляной кислоты и доводят объем раствора дистиллированной водой до метки.

Раствор хранят в плотно закрытой посуде при комнатной температуре в месте, защищенном от попадания прямых солнечных лучей, в течение 3 мес.

# 5.4.4 Приготовление раствора соляной кислоты молярной концентрацией 0,01 моль/дм³

Готовят раствор в соответствии с требованиями ГОСТ 25794.1—83 (подпункт 2.1.2) разбавлением концентрированной соляной кислоты.

В мерную колбу вместимостью 1 дм<sup>3</sup> осторожно вносят 0,85 см<sup>3</sup> концентрированной соляной кислоты и доводят объем раствора дистиллированной водой до метки.

Коэффициент поправки определяют по ГОСТ 25794.1—83 (подпункт 2.1.3).

# 5.4.5 Подготовка проб контрольных образцов сухого обезжиренного молока для построения градуировочного графика

Для построения градуировочного графика используют контрольные образцы сухого обезжиренного молока низкотемпературной и высокотемпературной сушки и их смеси в определенной пропорции. Для этого взвешивают по 2 г каждого из контрольных образцов или их смешивают в определенных количествах согласно таблице 2.

Таблица 2

| Контрольный образец сухого обезжиренного молока<br>низкотемпературной сушки, г | Контрольный образец сухого обезжиренного молока<br>высокотемпературной сушки, г |
|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| 2,0                                                                            |                                                                                 |
| 1,8                                                                            | 0,2                                                                             |
| 1,6                                                                            | 0,4                                                                             |
| 1,4                                                                            | 0,6                                                                             |
| 1,2                                                                            | 0,8                                                                             |
| 1,0                                                                            | 1,0                                                                             |
| 8,0                                                                            | 1,2                                                                             |
| 0,6                                                                            | 1,4                                                                             |
| 0,4                                                                            | 1,6                                                                             |
| 0,2                                                                            | 1,8                                                                             |
| <u>-</u> :                                                                     | 2,0                                                                             |

# 5.4.6 Построение градуировочного графика с использованием контрольных образцов продукта

5.4.6.1 В 11 стаканов вместимостью 100 см³ помещают каждую из проб по 5.4.5, в каждый вносят (8,0 ± 0,1) г хлористого натрия и 20 см³ дистиллированной воды. Перемешивают вручную в течение 20 с, стаканы со смесью помещают на водяную баню при температуре (37 ± 1) °С на 30 мин. Через каждые 5 мин каждый из стаканов извлекают из бани, смесь в стакане интенсивно перемешивают вручную или на лабораторной вибромешалке в течение 20 с. Через 30 мин содержимое стаканов фильтруют через складчатый бумажный фильтр. Если фильтрат непрозрачен, фильтрование повторяют.

5.4.6.2 Затем смешивают 1 см<sup>3</sup> фильтрата по 5.4.6.1 и 10 см<sup>3</sup> раствора Б, раствор тщательно перемешивают.

Такие растворы готовят для каждого фильтрата.

5.4.6.3 Для приготовления раствора сравнения 1 см<sup>3</sup> фильтрата, приготовленного по 5.4.6.1, смешивают с 10 см<sup>3</sup> раствора А.

Такие растворы сравнения готовят для каждого фильтрата.

- 5.4.6.4 В фотоколориметрическую кювету очень аккуратно, стараясь не испачкать стенки кюветы, поочередно помещают растворы, подготовленные по 5.4.6.2. Кювету с исследуемым раствором устанавливают в ближнее гнездо кюветодержателя колориметра.
- 5.4.6.5 В другую кювету (кювету сравнения) помещают раствор сравнения, по отношению к которому проводится измерение, подготовленный по 5.4.6.3, и устанавливают ее в дальнее гнездо кювето-держателя колориметра.

Оптическую плотность подготовленных проб измеряют при (440 ± 10) нм, для этого снимают четыре-пять показаний и вычисляют среднеарифметическое значение результатов измерений.

5.4.6.6 Одновременно в каждой пробе контрольных образцов сухого обезжиренного молока и их смесей методом Кьельдаля определяют содержание неденатурированных сывороточных белков. Для этого берут 11 проб фильтрата по 5.4.6.1 массой 4 г, добавляют 40 см³ раствора Б. Затем растворы перемешивают и фильтруют через складчатый бумажный фильтр. Измерения проводят по ГОСТ 23327—98 (раздел 6), используя вместо пробы продукта складчатый фильтр с его содержимым, при этом титрование проводят раствором соляной кислоты молярной концентрацией 0,01 моль/дм³.

Массу неденатурированных сывороточных белков m, мг, содержащихся в 1 г проб по 5.4.5, рассчитывают по формуле

$$m = 0.14 \cdot \frac{30 \cdot (V_1 - V_2)}{2 \cdot m_1},\tag{1}$$

- где 0,14 коэффициент пересчета объема соляной кислоты в массу неденатурированных сывороточных белков, мг/см³;
  - 30 масса смеси по 5.4.6.1, г;
  - V<sub>1</sub> объем раствора соляной кислоты, израсходованный на титрование аммиака, содержащегося в фильтре с осадком, см<sup>3</sup>;
  - V<sub>2</sub> объем раствора соляной кислоты, израсходованный на титрование аммиака, содержащегося в фильтре (холостая проба), см<sup>3</sup>;
  - 2 коэффициент пересчета на 1 г сухого обезжиренного молока;
  - т. масса фильтрата по 5.4.6.1, г.

За результат измерений принимают среднеарифметическое значение двух параллельных определений.

Вычисления проводят до второго десятичного знака с последующим округлением до первого десятичного знака.

5.4.6.7 Для построения градуировочного графика по оси абсцисс откладывают определенные по формуле (1) значения масс неденатурированных сывороточных белков, по оси ординат — соответствующие им значения оптической плотности.

## 5.4.7 Приготовление восстановленного продукта

- 5.4.7.1 В стакан вместимостью 100 см³ помещают (2,0 ± 0,1) г продукта, (8,0 ± 0,1) г хлористого натрия и 20 см³ дистиллированной воды. Перемешивают вручную в течение 20 с. Стакан с подготовленной смесью помещают на водяную баню при температуре (37 ± 1) °C на 30 мин. Через каждые 5 мин его извлекают из бани и смесь интенсивно перемешивают вручную, или на лабораторной вибромешалке, в течение 20 с. Через 30 мин смесь фильтруют через складчатый бумажный фильтр. Если фильтрат непрозрачен, фильтрование повторяют.
- 5.4.7.2 Затем смешивают 1 см<sup>3</sup> фильтрата по 5.4.7.1 и 10 см<sup>3</sup> раствора Б и тщательно перемешивают.
- 5.4.7.3 Для приготовления раствора сравнения 1 см<sup>3</sup> фильтрата, подготовленного по 5.4.7.1, смешивают с 10 см<sup>3</sup> раствора А.

# 5.5 Условия проведения измерений

#### 5.6 Проведение измерений

5.6.1 В фотоколориметрическую кювету очень аккуратно, стараясь не испачкать стенки кюветы, помещают раствор, подготовленный по 5.4.7.2.

#### ГОСТ Р 54074-2010

В другую фотоколориметрическую кювету (кювету сравнения) наливают раствор сравнения, подготовленный по 5.4.7.3.

5.6.2 В дальнее гнездо кюветодержателя колориметра устанавливают кювету с раствором сравнения, по отношению к которому проводят измерение. Кювету с исследуемым раствором устанавливают в ближнее гнездо кюветодержателя.

Оптическую плотность анализируемого раствора определяют при длине волны максимального светопропускания (440 ± 10) нм, для этого снимают четыре-лять показаний и вычисляют среднеарифметическое значение результатов измерений.

#### 5.7 Обработка результатов измерений

По измеренному значению оптической плотности, используя градуировочный график, находят количество неденатурированных сывороточных белков в восстановленном продукте.

В зависимости от найденной массы неденатурированных сывороточных белков в продукте и в соответствии с данными таблицы 3 делают заключение о возможности использования сухого обезжиренного молока в сыроделии.

Таблица 3

| Масса неденатурированных сыворрточных белков, мг/г | Область применения сухого обезжиренного молока                                                                                                            |
|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fonee 6,0                                          | Все виды сыров                                                                                                                                            |
| Св. 5,5 до 6,0 включ.                              | Все виды сыров                                                                                                                                            |
| Св. 4,5 до 5,5 включ.                              | Предназначено для производства мягких сыров. При производстве полутвер-<br>дых сыров возможна замена до 70 % сырого молока восстановленным продук-<br>том |
| Св. 3,5 до 4,5 включ.                              | Предназначено для производства мягких сыров. При производстве полутвер-<br>дых сыров возможна замена до 50 % сырого молока восстановленным продук-<br>том |
| Св. 2,5 до 3,5 включ.                              | Предназначено для производства мягких сыров. При производстве полутвер-<br>дых сыров возможна замена до 30 % сырого молока восстановленным продук-<br>том |
| Св. 1,5 до 2,5 включ.                              | Предназначено для производства мягких сыров                                                                                                               |
| Менее 1,5                                          | Не допускается к использованию в сыроделии                                                                                                                |

# 6 Фотоколориметрический метод с использованием сырого обезжиренного молока\*

#### 6.1 Сущность метода

Метод основан на измерении оптической плотности бесказеинового фильтрата восстановленного сухого обезжиренного молока методом фотоколориметрирования и определении на ее основе температуры тепловой обработки сухого обезжиренного молока при сушке.

#### 6.2 Средства измерений, вспомогательное оборудование и реактивы

Средства измерений, вспомогательное оборудование и реактивы — по 5.2.

#### 6.3 Отбор проб

Отбор проб — в соответствии с 5.3.

При использовании сухого обезжиренного молока, выработанного в зоне производства сыра, градуировочный график можно построить с использованием результатов определения оптической плотности подготовленных проб сырого обезжиренного молока.

# 6.4 Подготовка к проведению измерений

# 6.4.1 Подготовка проб сырого обезжиренного молока для построения градуировочного графика

Для построения градуировочного графика готовят семь проб сырого обезжиренного молока. Каждую пробу сырого обезжиренного молока объемом 50 см³ подвергают тепловой обработке через каждые 5 °C начиная с 60 °C (первая проба — 60 °C, вторая — 65 °C и т. д. до 90 °C), с выдержкой 20 с. Для нагревания используют водяную баню. По окончании выдержки пробы охлаждают под проточной водой до (30 ± 5) °C.

При невозможности проведения анализа сразу допускается хранить подвергнутые тепловой обработке пробы сырого обезжиренного молока в течение 24 ч при температуре не выше 8 °C.

### 6.4.2 Построение градуировочного графика с использованием сырого обезжиренного молока

6.4.2.1 В стакан вместимостью 100 см³ помещают 22 см³ пробы сырого обезжиренного молока, подготовленной по 6.4.1, и добавляют (8,0 ± 0,1) г хлористого натрия. Смесь перемешивают вручную в течение 20 с. Стакан со смесью выдерживают на водяной бане при температуре (37 ± 1) °C в течение 30 мин. Через каждые 5 мин его извлекают из бани и смесь интенсивно перемешивают, вручную или на лабораторной вибромещалке, в течение 20 с. Затем смесь фильтруют через складчатый бумажный фильтр. Если фильтрат непрозрачен, фильтрование повторяют.

Такую же подготовку проводят для каждой из проб сырого обезжиренного молока, подвергнутого тепловой обработке по 6.4.1.

6.4.2.2 Затем смешивают 1 см<sup>3</sup> фильтрата по 6.4.2.1 и 10 см<sup>3</sup> раствора Б по 5.4.2, раствор тщательно перемешивают.

Такие растворы готовят для каждого фильтрата.

6.4.2.3 Для приготовления растворов сравнения 1 см<sup>3</sup> фильтрата, приготовленного по 6.4.2.1, смешивают с 10 см<sup>3</sup> раствора А по 5.4.1.

Такие растворы сравнения готовят для каждого фильтрата.

- 6.4.2.4 В фотоколориметрическую кювету очень аккуратно, стараясь не испачкать стенки кюветы, помещают раствор фильтрата, подготовленный по 6.4.2.2. Кювету с исследуемым раствором устанавливают в ближнее гнездо кюветодержателя.
- 6.4.2.5 В другую кювету (кювету сравнения) наливают раствор сравнения, по отношению к которому проводят измерение, подготовленный по 6.4.2.3, и устанавливают ее в дальнее гнездо кюветодержателя колориметра.
- 6.4.2.6 Оптическую плотность подготовленных растворов измеряют при (440 ± 10) нм, для этого снимают четыре-пять показаний и вычисляют среднеарифметическое значение результатов измерений.

Для построения градуировочного графика по оси абсцисс откладывают значения температуры обработки сырого обезжиренного молока, по оси ординат — соответствующие им значения оптической плотности.

#### 6.4.3 Приготовление восстановленного продукта

- $6.4.3.1\,$  В стакан вместимостью  $100\,$  см $^3$  помещают  $(2.0\pm0.1)\,$ г продукта,  $(8.0\pm0.1)\,$ г хлористого натрия и  $20\,$  см $^3$  дистиллированной воды. Перемешивают вручную в течение  $20\,$ с. Стакан со смесью помещают на водяную баню при температуре  $(37\pm1)\,$ °C на  $30\,$  мин. Через каждые  $5\,$  мин его извлекают из бани и интенсивно перемешивают, вручную или на лабораторной вибромешалке, в течение  $20\,$ с. Затем смесь фильтруют через складчатый бумажный фильтр. Если фильтрат непрозрачен, фильтрование повторяют.
- 6.4.3.2 Затем смешивают 1 см<sup>3</sup> фильтрата по 6.4.3.1 и 10 см<sup>3</sup> раствора Б по 5.4.2, раствор тщательно перемешивают.
- 6.4.3.3 Для приготовления раствора сравнения 1 см³ фильтрата, приготовленного по 6.4.3.1, перемешивают с 10 см³ раствора А по 5.4.1.

### 6.5 Условия проведения измерений

Условия проведения измерений — в соответствии с 5.5.

### 6.6 Проведение измерений

6.6.1 В фотоколориметрическую кювету очень аккуратно, стараясь не испачкать стенки кюветы, помещают раствор, подготовленный по 6.4.3.2.

#### **FOCT P 54074-2010**

В другую фотоколориметрическую кювету (кювету сравнения) наливают раствор сравнения, подготовленный по 6.4.3.3.

6.6.2 В дальнее гнездо кюветодержателя колориметра устанавливают кювету с раствором сравнения, по отношению к которому проводят измерение. Кювету с исследуемым раствором устанавливают в ближнее гнездо кюветодержателя.

Оптическую плотность анализируемого раствора определяют при длине волны максимального светопропускания (440 ± 10) нм, для этого снимают четыре-лять показаний и вычисляют среднеарифметическое значение результатов измерений.

#### 6.7 Обработка результатов измерений

По измеренному значению оптической плотности, используя градуировочный график, находят температуру тепловой обработки сырого обезжиренного молока.

В зависимости от найденной температуры тепловой обработки сырого обезжиренного молока, идентичной температуре сушки продукта, и в соответствии с данными таблицы 4 делают заключение о возможности использования сухого обезжиренного молока в сыроделии.

Таблица 4

| Температура тепловой обработки продукта<br>при сушке, соответствующая тепловой обра-<br>ботке сырого обезжиренного молока. °C | Область применения сухого обезжиренного молока                                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| От 60 до 70 включ.                                                                                                            | Все виды сыров                                                                                                                                          |
| Св. 70 до 75 включ.                                                                                                           | Предназначено для производства мягких и полутвердых сыров                                                                                               |
| Св. 75 до 80 включ.                                                                                                           | Предназначено для производства мягких сыров. При производстве<br>полутвердых сыров возможна замена до 70 % сырого молока восста-<br>новленным продуктом |
| Св. 80 до 85 включ.                                                                                                           | Предназначено для производства мягких сыров. При производстве<br>полутвердых сыров возможна замена до 50 % сырого молока восста-<br>новленным продуктом |
| Св. 85 до 90 включ.                                                                                                           | Предназначено для производства мягких сыров. При производстве<br>полутвердых сыров возможна замена до 30 % сырого молока восста-<br>новленным продуктом |
| Более 90                                                                                                                      | Не допускается к использованию в сыроделии                                                                                                              |

# 7 Требования безопасности

- 7.1 Помещение лаборатории должно быть оборудовано общей приточно-вытяжной вентиляцией в соответствии с требованиями ГОСТ 12.4.021. Содержание вредных веществ в воздухе рабочей зоны не должно превышать норм, установленных требованиями ГОСТ 12.1.005.
- 7.2 Требования техники безопасности при работе с химическими реактивами в соответствии с требованиями ГОСТ 12.1.007.
- 7.3 Требования техники безопасности при работе с электроустановками в соответствии с требованиями ГОСТ 12.1.019.
- 7.4 Помещение лаборатории должно соответствовать требованиям пожарной безопасности в соответствии с требованиями ГОСТ 12.1.004 и быть оснащено средствами пожаротушения в соответствии с требованиями ГОСТ 12.4.009.

# Библиография

[1] Федеральный закон от 12 июня 2008 г. № 88-ФЗ «Технический регламент на молоко и молочную продукцию» (с изменением) УДК 637.12.04/07:576.8:006.354

OKC 67.100.10

Ключевые слова: сухое обезжиренное молоко, сырое обезжиренное молоко, контрольные образцы сухого обезжиренного молока низкотемпературной и высокотемпературной сушки, температура тепловой обработки, реологический метод, характер разрушения сгустка, фотоколориметрический метод, оптическая плотность

> Редактор Е.В. Яковлева Технический редактор И.Е. Черепкова Корректор Л.С. Лысенко Компьютерная верстка А.Н. Золотаревой

Сдано в набор 03.12.2019. Подписано в печать 09.12.2019. Формат 60 × 84<sup>1</sup>/<sub>8</sub>. Гарнитура Ариал Усл. печ. л. 1.86. Уч.-изд. л. 1.35. Подготовлено на основе электронной версии, предоставленной разработчиком стандарта