#### ФЕДЕРАЛЬНОЕ АГЕНТСТВО

#### ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ



НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОСТ Р ИСО 7199— 2010

# СИСТЕМЫ ГАЗООБМЕНА С КРОВЬЮ (ОКСИГЕНАТОРЫ)

Технические требования и методы испытаний

ISO 7199:2009
Cardiovascular implants and artificial organs —
Blood-gas exchangers (oxygenators)
(IDT)

Издание официальное



#### Предисловие

Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. № 184-ФЗ «О техническом регулировании», а правила применения национальных стандартов Российской Федерации — ГОСТ Р 1.0—2004 «Стандартизация в Российской Федерации. Основные положения»

#### Сведения о стандарте

- 1 ПОДГОТОВЛЕН Учреждением РАМН «Научный Центр сердечно-сосудистой хирургии им. А.Н. Бакулева РАМН» («НЦССХ им. А.Н. Бакулева РАМН») на основании собственного аутентичного перевода на русский язык международного стандарта, указанного в пункте 4.
  - 2 ВНЕСЕН Техническим комитетом по стандартизации ТК 453 «Имплантаты в хирургии»
- 3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 12 ноября 2010 г. № 385-ст
- 4 Настоящий стандарт идентичен международному стандарту ИСО 7199:2009 «Сердечно сосудистые имплантаты и искусственные органы. Системы газообмена с кровью (оксигенаторы)» (ISO 7199:2009 «Cardiovascular implants and artificial organs — Blood-gas exchangers (oxygenators)»).

При применении настоящего стандарта рекомендуется использовать вместо ссылочных международных стандартов соответствующие им национальные стандарты Российской Федерации, сведения о которых приведены в дополнительном приложении А.

Наименование настоящего стандарта изменено относительно наименования указанного международного стандарта для приведения в соответствие с ГОСТ Р 1.5—2004 (подраздел 3.5)

#### 5 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячно издаваемых информационных указателях «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

© Стандартинформ, 2011

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

#### Содержание

| 1 | Область применения                                                                      | 1 |
|---|-----------------------------------------------------------------------------------------|---|
| 2 | Нормативные ссылки                                                                      | 1 |
| 3 | Термины и определения                                                                   | 2 |
| 4 | Требования                                                                              | 2 |
|   | 4.1 Биологические характеристики                                                        | 2 |
|   | 4.2 Физические характеристики. ,                                                        | 2 |
|   | 4.3 Функциональные характеристики                                                       | 3 |
| 5 | Испытания и измерения для определения соответствия настоящему стандарту                 | 3 |
|   | 5.1 Общие положения                                                                     | 3 |
|   | 5.2 Биологические характеристики                                                        | 3 |
|   | 5.3 Физические характеристики                                                           | 3 |
|   | 5.4 Функциональные характеристики                                                       | 4 |
| 6 | Информация, предоставляемая изготовителем                                               | 6 |
|   | 6.1 Информация, указываемая на оксигенаторе                                             | 6 |
|   | 6.2 Информация, указываемая на упаковке                                                 | 6 |
|   | 6.3 Информация, указываемая в сопроводительной документации                             | 6 |
|   | 6.4 Информация, которая должна быть выделена особым образом в сопроводительной докумен- |   |
|   | тации                                                                                   | 7 |
| 7 | Упаковка                                                                                | 7 |
| П | риложение А (справочное) Сведения о соответствии ссылочных международных стандартов     |   |
|   | национальным стандартам Российской Федерации                                            | 8 |
| Б | иблиография                                                                             | g |

## Введение к международного стандарту ИСО 7199:2009 «Сердечно-сосудистые имплантаты и искусственные органы. Системы газообмена с кровью (оксигенаторы)»

Настоящий стандарт направлен на обеспечение проведения достоверных испытаний на безопасность и эксплуатационные характеристики устройств газообмена, предназначенных для поддержания или замены нормальной дыхательной функции легких, а также на полноту сведений об устройстве в его маркировке, в частности, приведения характеристик экстракорпорального устройства.

Настоящий стандарт устанавливает порядок проведения испытаний экстракорпоральных систем газообмена с кровью (оксигенаторов). Приведены методики типовых испытаний для определения параметров газообмена, повреждения клеток крови и эффективности теплообменника, но не определены допускаемые пределы этих характеристик. Однако установленный стандартом способ идентификации функциональных характеристик должен помочь пользователю в выборе оксигенатора, удовлетворяющего потребности пациента.

Настоящий стандарт также включает в себя минимальные требования к представлению результатов испытаний, что позволит стандартным образом сравнивать функциональные характеристики оксигенаторов различных типов.

Настоящий стандарт ссылается на другие стандарты, в которых можно найти методы определения общих характеристик медицинского оборудования.

В настоящем стандарте не было приведено никаких указаний о количественном анализе неформенных элементов коровьей крови и образования микропузырьков, поскольку в настоящее время не существует единого мнения о соответствующих удовлетворительных и воспроизводимых методах испытаний.

Требования к клиническим испытаниям и испытаниям на животных не были включены в настоящий стандарт. Подобные исследования могут являться элементами системы менеджмента качества изготовителя.

Настоящий стандарт содержит только требования, специфичные для оксигенаторов. Неспецифичные требования регламентированы другими международными стандартами, перечисленными в разделе «Нормативные ссылки». Поскольку предполагается, что нетоксичность будет являться предметом рассмотрения другого стандарта, настоящий стандарт не охватывает требования нетоксичности.

#### НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

#### СИСТЕМЫ ГАЗООБМЕНА С КРОВЬЮ (ОКСИГЕНАТОРЫ)

#### Технические требования и методы испытаний

Blood-gas exchangers (oxygenators). Technical requirements and test methods

Дата введения — 2011—11—01

#### 1 Область применения

Настоящий стандарт устанавливает требования к стерильным экстракорпоральным системам однократного применения, предназначенным для газообмена с кровью, доставки кислорода в кровь и вывода углекислого газа из крови человека (оксигенаторов).

Настоящий стандарт также применяют к теплообменникам, являющимся встроенными деталями оксигенаторов, и к внешнему оборудованию, специфичному для применения устройства.

Настоящий стандарт не охватывает:

- имплантируемые оксигенаторы;
- жидкостные оксигенаторы;
- экстракорпоральные контуры (кровеносные магистрали);
- отдельные теплообменники;
- отдельные вспомогательные устройства.

#### 2 Нормативные ссылки

Следующие ссылочные документы являются обязательными при применении настоящего стандарта. Для датированных ссылок следует применять только указанные издания. Для недатированных ссылок – последнее издание документа (включая любые дополнения).

ИСО 10993.1: 99 Биологическая оценка медицинских изделий. Часть 1. Оценка и исследования

ИСО 10993.7 Биологическая оценка медицинских изделий. Часть 7. Остаточное содержание этилен оксида после стерилизации

ИСО 10993.11 Биологическая оценка медицинских изделий. Часть 11. Исследование общетоксического действия

ИСО 11135:1994 Медицинские изделия. Валидация и текущий контроль стерилизации оксидом этилена

ИСО 11137-1 Стерилизация медицинских изделий. Радиация. Часть 1. Требования к разработке, валидации и текущему контролю процесса стерилизации медицинских изделий

ИСО 11607-1 Упаковка для медицинских изделий, подлежащих окончательной стерилизации. Часть 1. Требования к материалам, системам стерильных барьеров и упаковочным системам

ИСО 11607-2 Упаковка для медицинских изделий, подлежащих окончательной стерилизации. Часть 2. Утвержденные требования к формированию, герметизации и процессу сборки

ИСО 17665-1 Стерилизация медицинских изделий. Пар. Часть 1. Требования к разработке, валидации и производственному контролю процесса стерилизации медицинских изделий

#### 3 Термины и определения

В настоящем стандарте применимы следующие термины с соответствующими определениями:

- 3.1 система для обмена газа с кровью (оксигенатор) (охуденатог): Экстракорпоральное устройство, разработанное для дополнения или замены респираторной функции легких.
- 3.2 контур кровеносный (blood pathway): Каналы оксигенатора, содержащие кровь в течение предусмотренного клинического применения.
- контур газовый (gas pathway): Части оксигенатора, содержащие газ для вентиляции в течение предусмотренного клинического применения.
- 3.4 устройство для теплообмена (теплообменник) (heat exchanger): Компонент, предназначенный для контроля температуры циркулирующей крови или раствора.
- 3.5 коэффициент эффективности теплообменника (R) (heat exchanger performance factor): Отношение разности температуры крови на выходе из оксигенатора и температуры крови на входе в оксигенатор к разности температуры воды на входе в теплообменник и температуры крови на входе в оксигенатор.
- 3.6 деталь встроенная (integral part): Часть, которая соединена с оксигенатором и не может быть отсоединена пользователем.
- параметры рабочие (operating variables): Установки управления, которые влияют на работу устройства.
- 3.8 снижение количества тромбоцитов (platelet reduction): Разность процентного уменьшения числа тромбоцитов, содержащихся в соединенном с оксигенатором контуре, и процентного уменьшения числа тромбоцитов в идентичном контрольном контуре без оксигенатора, как функция времени.
- 3.9 свободный гемоглобин плазмы крови (plasma-free haemoglobin): Разность концентрации свободного гемоглобина плазмы крови, содержащейся в соединенном с оксигенатором контуре, и концентрации в идентичном контрольном контуре без оксигенатора, как функция времени.
- 3.10 снижение количества лейкоцитов (white blood cell reduction): Разность процентного уменьшения числа лейкоцитов, содержащихся в соединенном с оксигенатором контуре, и процентного уменьшения числа лейкоцитов в идентичном контрольном контуре без оксигенатора, как функция времени.
- 3.11 остаточный объём крови (residual blood volume): Разность между общим объемом аппарата и объемом крови, который может быть выведен аппаратом при его наиболее эффективной дренажной работе, определенная через 20 с с момента первого появления воздуха в дренажном контуре аппарата.

#### 4 Требования

#### 4.1 Биологические характеристики

#### 4.1.1 Стерильность и апирогенность

Кровеносный контур должен быть стерильным и апирогенным.

Контроль соответствия осуществляют по 5.2.1.

#### 4.1.2 Биосовместимость

Все части кровеносного контура должны быть биосовместимыми с учетом предусмотренного применения.

Контроль соответствия осуществляют по 5.2.2.

#### 4.2 Физические характеристики

#### 4.2.1 Целостность кровеносного контура

При испытаниях по 5.3.1 кровеносный контур не должен протекать.

#### 4.2.2 Целостность жидкостного контура теплообменника

При испытаниях по 5.3,2 жидкостной контур теплообменника не должен протекать.

#### 4.2.3 Объемы крови

При испытаниях по 5.3.3 объем кровеносного контура должен быть в допускаемых пределах, определенных изготовителем (см. 6.3).

#### 4.2.4 Соединительные устройства

При испытаниях по 5.3.4 соединительные устройства, предназначенные для присоединения к кровеносному контуру, должны обеспечивать надежное соединение. Примечания

 Соединительные устройства, позволяющие осуществлять соединение трубок с внутренним диаметром 4.8; 6,3, 9,5 или 12,7 мм, или соответствующие рисунку 1 ИСО 8637:1989, или соответствующие ИСО 594-2, являются допустимыми к применению.

При испытаниях по 5.3.4 соединение газового входа с газовым контуром должно быть неразрывным.

Должна быть обеспечена возможность соединения жидкостных контуров теплообменников путем «быстрого соединения».

 Соединительные устройства, соответствующие рисунку 3 ИСО 8637:1989, являются одним из возможных способов соответствия данному требованию.

#### 4.3 Функциональные характеристики

#### 4.3.1 Скорости переноса кислорода и углекислого газа

При определении по 5.4.1 скорости переноса кислорода и углекислого газа должны быть в пределах значений, определенных изготовителем (см. 6.3).

#### 4.3.2 Коэффициент эффективности теплообменника

При определении по 5.4.2 коэффициент эффективности теплообменника должен быть в пределах значений, определенных изготовителем (см. 6.3).

#### 4.3.3 Повреждение клеток крови

#### 4.3.3.1 Свободный гемоглобин плазмы крови

При определении по 5.4.3 повышение концентрации свободного гемоглобина плазмы крови должно быть в пределах значений, определенных изготовителем (см. 6.3).

4.3.3.2 Снижение количества тромбоцитов и лейкоцитов

При определении по 5.4.3 процентное снижение количества тромбоцитов и процентное снижение количества лейкоцитов должны быть в пределах значений, определенных изготовителем (см. 6.3).

#### 4.3.4 Изменения рабочих характеристик во времени

При определении по 5.4.1 скорости переноса кислорода и углекислого газа должны быть в пределах значений, определенных изготовителем, на протяжении всего времени испытания (см. 6.3).

#### 5 Испытания и измерения для определения соответствия настоящему стандарту

#### 5.1 Общие положения

- 5.1.1 Испытания и измерения следует проводить на испытываемом устройстве, подготовленном согласно указаниям изготовителя для предполагаемого клинического применения.
- 5.1.2 Если нет иных указаний, то рабочие параметры должны быть такими, как определено изготовителем для предполагаемого клинического применения.
  - 5.1.3 Если нет иных указаний, то температура рабочей жидкости должна быть (37 ± 1) °C.
- 5.1.4 Если соотношение между переменными нелинейно: должно быть выполнено достаточное количество измерений для проведения корректной интерполяции между измерительными точками.
- 5.1.5 Процедуры испытаний и измерений следует считать методиками испытаний и измерений соответственно. Могут быть применимы другие процедуры, обеспечивающие сопоставимую точность и воспроизводимость.

#### 5.2 Биологические характеристики

#### 5.2.1 Стерильность и апирогенность

Соответствие должно быть верифицировано проверкой документации изготовителя по процессу стерилизации и по испытаниям на пирогенность по ИСО 17665-1. ИСО 11135, ИСО 11137-1 или ИСО 10993-11 соответственно.

#### 5.2.2 Биосовместимость

Контроль соответствия осуществляют посредством испытаний или изучения документации изготовителя по биосовместимости для готовых изделий по ИСО 10993-1 или ИСО 10993-7.

#### 5.3 Физические характеристики

#### 5.3.1 Определение целостности кровеносных контуров

#### 5.3.1.1 Рабочая жидкость

Рабочая жидкость — вода.

#### 5.3.1.2 Порядок проведения испытаний

Устанавливают испытываемое устройство в соответствующую испытательную цепь. Подают к кровеносному контуру устройства давление, в полтора раза более максимального давления, установленного изготовителем для предлолагаемого клинического применения. Если максимальное давление или поток не определены, испытания проводят при 40 кПа. Визуально проверяют устройство на наличие утечек воды.

#### 5.3.2 Определение целостности водных контуров теплообменника

#### 5.3.2.1 Рабочая жидкость

Рабочая жидкость — вода.

#### 5.3.2.2 Порядок проведения испытаний

Устанавливают устройство и испытательный контур. Подают к жидкостному контуру теплообменника давление в полтора раза более максимального давления, установленного изготовителем для предполагаемого клинического применения. Если максимальное давление не определено, испытания проводят при 350 кПа. Поддерживают это давление в течение 6 ч или в течение времени, установленного изготовителем для предполагаемого клинического применения. Визуально проверяют устройство на наличие утечек воды.

#### 5.3.3 Объемы крови

#### 5.3.3.1 Рабочая жидкость

Рабочая жидкость — гепаринизированная кровь или вода.

#### 5.3.3.2 Порядок проведения испытаний

Объем кровеносного контура устанавливают в диапазоне рабочих параметров, определенном изготовителем для предполагаемого клинического применения (см. 6.3).

#### 5.3.4 Соединительные устройства

Соединение осуществляют в соответствии с руководством по эксплуатации.

Соединения должны выдерживать тяговое усилие 15 Н в течение 15 с без разъединения.

#### 5.4 Функциональные характеристики

#### 5.4.1 Скорости переноса кислорода и углекислого газа

#### 5.4.1.1 Рабочая среда

Рабочая жидкость для кровеносного контура — гепаринизированная коровья, свиная или овечья кровь. Рабочая среда для газового контура — газ с известными концентрациями кислорода, азота и углекислого газа.

#### 5.4.1.2 Порядок проведения испытаний

Устанавливают испытываемое устройство в соответствующий испытательный контур. Проводят испытания со следующими параметрами крови на входе, определяя скорости переноса кислорода и углекислого газа:

- содержание оксигемоглобина: (65 ± 5) %;
- содержание гемоглобина: (12 ± 1) г/дл;
- избыток оснований: 0 ± 5 ммоль/л;
- парциальное давление углекислого газа в крови, p<sub>CO<sub>2</sub></sub>: (6,0 ± 0,7) кПа.

Скорости переноса кислорода и углекислого газа определяют в пределах рабочих параметров, установленных изготовителем (см. 6.3).

Между каждой серией измерений поддерживают максимальное значение потока крови, установленное изготовителем для предполагаемого клинического применения (см. 6.3).

Скорости переноса кислорода и углекислого газа определяют в начале испытаний. Для зависимых наблюдений измерения проводят в начале испытаний, а затем через 1, 3 и 6 ч после начала испытаний. Следующие измерения в случае их необходимости проводят с интервалом 6 ч.

Также допустимы испытания in vitro и испытания на крупном рогатом скоте.

Гепаринизированная кровь может быть заменена свежей кровью в соответствии с указаниями по проведению измерений скоростей переноса кислорода и углекислого газа.

Сбор данных при точно определенных условиях не является необходимым. Допустима аппроксимация, полученная в результате корректной интерполяции.

#### 5.4.2 Коэффициент эффективности теплообменника

#### 5.4.2.1 Рабочая жидкость

Рабочая жидкость для кровеносного контура — гепаринизированная кровь или вода.

#### 5.4.2.2 Порядок проведения испытаний

Помещают испытываемое устройство в соответствующую испытательную цепь. Проводят испытания in vivo при следующих условиях:

температура крови на входе, В<sub>т;</sub>: (30 ± 1) °C;

температура воды на входе, W<sub>T</sub>;: (40 ± 1) °C.

Определение коэффициента эффективности теплообменника проводят в пределах рабочих параметров, установленных изготовителем (см. 6.3).

#### 5.4.2.3 Формула

Коэффициент эффективности теплообменника вычисляют по следующей формуле:

$$R = \frac{B_{To} - B_{Ti}}{W_{Ti} - B_{Ti}},$$

где B<sub>To</sub> — температура крови на выходе оксигенатора, °C;

В<sub>ті</sub> — температура крови на входе оксигенатора, °С;

 $W_{\tau_i}$  — температура воды на входе теплообменника, °C;

#### 5.4.3 Повреждение клеток крови

#### 5.4.3.1 Рабочая среда

Рабочая жидкость для кровеносного контура — гепаринизированная коровья, свиная или овечья кровь. Рабочая среда для газового контура — газ с известными концентрациями кислорода, азота и углекислого газа.

#### 5.4.3.2 Порядок проведения испытаний

Собирают две установки из соответствующих идентичных компонентов цепи, включающих в себя насос, соединительные трубки, резервуар (соответствующий рекомендациям изготовителя и имеющий подходящие для испытываемого устройства размеры) и теплообменник. Подключают испытываемое устройство к одной из цепей. Объемы рабочей жидкости кровеносных контуров в начале испытаний должны быть в пределе 1 % объемов контуров. Проводят испытания in vitro с условиями по таблице 1.

Таблица 1 — Условия испытания in vitro повреждения клеток крови

| Параметр              | Уровень                                                                                                       | Максимальное отклонение<br>± 5 % |  |
|-----------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------|--|
| Скорость потока крови | Максимальное значение, определенное<br>изготовителем для предполагаемого<br>клинического применения (см. 6.3) |                                  |  |
| Скорость потока газа  | Максимальное значение, определенное<br>изготовителем для предполагаемого<br>клинического применения (см. 6.3) | ± 5 %                            |  |
| PC02                  | 5,3 кПа                                                                                                       | ± 0,7 кПа                        |  |
| Избыток оснований     | 0 ммоль/дл                                                                                                    | ± 5 ммоль/дл                     |  |
| Глюкоза крови         | 10 ммоль/дл                                                                                                   | ± 5 ммоль/дл                     |  |
| Гемоглобин            | 12 г/дл                                                                                                       | ± 5 r/gn                         |  |

План выборочного контроля в соответствии с таблицей 2.

Таблица 2 — План выборочного контроля

| Параметр                          | До<br>испытания | Время после начала испытания, мин |    |     |     |
|-----------------------------------|-----------------|-----------------------------------|----|-----|-----|
|                                   |                 | 10                                | 30 | 180 | 360 |
| Свободный гемоглобия плазмы крови | х               |                                   | х  | х   | х   |
| Лейкоциты                         | х               |                                   | x  | х   | ×   |
| Тромбоциты                        | х               |                                   | х  | ×   | х   |

#### ГОСТ Р ИСО 7199-2010

Окончание таблицы 2

| Параметр                                                                          | До | Время после начала испытания, мин |    |     |     |
|-----------------------------------------------------------------------------------|----|-----------------------------------|----|-----|-----|
|                                                                                   |    | 10                                | 30 | 180 | 360 |
| Уровни газов в крови. $p_{\text{CO}_2}, \; p_{\text{O}_2}, pH;$ избыток оснований |    | ×                                 | х  | ×   | ×   |
| Гемоглобин                                                                        | ×  | х                                 | х  | х   | х   |
| Глюкоза                                                                           | ×  |                                   |    |     | 7 7 |
| Активированное время свертывания                                                  | х  |                                   |    |     |     |
| Температура                                                                       | ×  | х                                 | х  | х   | х   |
| Скорость потока                                                                   | х  | х                                 | х  | ×   | х   |

#### 6 Информация, предоставляемая изготовителем

#### 6.1 Информация, указываемая на оксигенаторе

Следующая информация должна быть указана на оксигенаторе:

- а) фирменный знак изготовителя;
- b) обозначение партии, лота или серийного номера;
- с) обозначение модели;
- d) направление потоков крови и/или газа и/или воды, если необходимо;
- е) минимальный и рабочий уровни наполнения, где это требуется.

#### 6.2 Информация, указываемая на упаковке

#### 6.2.1 Индивидуальный контейнер

Следующая информация должна быть указана на индивидуальном контейнере или просматриваться через него:

- а) наименование и адрес изготовителя;
- b) описание содержимого;
- с) обозначение модели:
- d) утверждение о стерильности и апирогенности;
- е) срокгодности;
- бозначение партии, лота или серийного номера;
- д) слова «Перед применением ознакомьтесь с инструкцией».

Примечание — Перед этими словами может быть добавлен символ 🧥 ;

- пюбые особые условия обращения и хранения;
- і) предписание об однократном применении.

П р и м е ч а н и е — Перед словами. «Не использовать повторно», «Для однократного применения» или «Использовать только один раз» может быть добавлен символ $\odot$ .

#### 6.2.2 Транспортная упаковка

Следующая информация должна быть указана на транспортной упаковке:

- а) наименование и адрес изготовителя;
- описание содержимого, включая число единиц продукции;
- с) обозначение модели,
- d) утверждение о стерильности и апирогенности;
- е) сроктодности;
- любые особые указания по обращению, условиям хранения и распаковки.

#### 6.3 Информация, указываемая в сопроводительной документации

Каждая транспортная упаковка должна содержать «Инструкцию по эксплуатации» со следующей информацией:

- а) адрес, телефон или факс изготовителя;
- b) обозначение модели;
- с) необходимое вспомогательное оборудование;
- d) инструкции по необходимым, особым или уникальным процедурам, если применимо;
- е) указания по размещению оксигенатора в опорах или рабочем креплении;
- f) размещение, тип и крепление соединений трубок;
- g) положение и назначение дополнительных входных или выходных отверстий;
- аливка и эксплуатация теплообменника;
- і) процедура заливки;
- і) направление потоков крови, газа и воды:
- к) основные режимы работы для нормальной эксплуатации;
- рекомендуемая методика замены оксигенатора в ходе операции:
- т) максимальные и минимальные рекомендуемые скорости тока крови;
- n) максимальные и минимальные рабочие объемы кровеносного контура, включая любые внутренние емкости;
  - о) максимальные и минимальные определенные скорости тока газа;
  - р) коэффициенты эффективности теплообменника;
  - q) остаточный объем крови;
  - г) скорости переноса кислорода и углекислого газа;
  - s) ограничения по давлению для кровеносных, водных и газовых контуров;
  - t) утверждение о том, что по требованию может быть доступна следующая информация:
  - 1 метод стерилизации;
  - 2 перечень материалов кровеносных контуров;
  - 3 данные об утечке плазмы через любые полупроницаемые мембраны, если применимо;
- 4 падение давления в кровеносном контуре при максимальной скорости потока крови, определенной изготовителем для предполагаемого клинического использования;
- 5 падение давления в газовом контуре при максимальных скоростях потоков крови и газа, определенных изготовителем для предполагаемого использования;
  - 6 данные относительно повреждения клеток крови;
- 7 данные о высвобождении частиц из оксигенатора в соответствии с системой контроля качества изготовителя:
  - 8 соответствующий диапазон допускаемых значений величин представленных данных.

## 6.4 Информация, которая должна быть выделена особым образом в сопроводительной документации

Следующая информация должна быть выделена особым образом в сопроводительной документации:

- а) ограничения давления;
- b) ограничения скорости потока;
- с) ограничения по уровням концентраций веществ в крови;
- d) прочие ограничения прибора.

#### 7 Упаковка

Упаковка должна удовлетворять соответствующим требованиям ИСО 11607-1 и ИСО 11607-2.

### Приложение А (справочное)

#### Сведения о соответствии ссылочных международных стандартов национальным стандартам Российской Федерации

Таблица А.1

| Обозначение ссылочного<br>международного стандарта | Степень<br>соответствия | Обозначение и наименование соответствующего национального<br>стандарта                                                                                                                                        |  |  |  |  |
|----------------------------------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| ИСО 10993-1                                        | IDT                     | ГОСТ Р ИСО 10993.1—99 Биологическая оценка медицинских изделий. Часть 1. Оценка и исследования                                                                                                                |  |  |  |  |
| ИСО 10993-7                                        | IDT                     | ГОСТ Р ИСО 10993.7—99 Биологическая оценка медицинских изделий. Часть 7. Стерилизация этиленоксидом                                                                                                           |  |  |  |  |
| ИСО 10993-11                                       | IDT                     | ГОСТ Р ИСО 10993.11—99 Биологическая оценка медицинских изделий. Часть 11. Исследование общетоксического действия                                                                                             |  |  |  |  |
| ИСО 11135:1994                                     | IDT                     | ГОСТ Р ИСО 11135—2000 Медицинские изделия. Валидация и текущий контроль стерилизации оксидом этилена                                                                                                          |  |  |  |  |
| ИСО 11137-1                                        | IDT                     | ГОСТ Р ИСО 11137-1—2008 Стерилизация медицинской про-<br>дукции. Радиационная стерилизация. Часть 1. Требования к<br>разработке, валидации и текущему контролю процесса стери-<br>лизации медицинских изделий |  |  |  |  |
| ИСО 11607-1                                        | IDT                     | ГОСТ Р ИСО 11607—2003 Упаковка для медицинских изделий, подлежащих финишной стерилизации. Общие требования                                                                                                    |  |  |  |  |
| ИСО 11607-2                                        | IDT                     | ГОСТ Р ИСО 11607—2003 Упаковка для медицинских изделий, подлежащих финишной стерилизации. Общие требования                                                                                                    |  |  |  |  |
| ИСО 17665-1                                        |                         |                                                                                                                                                                                                               |  |  |  |  |

Соответствующий национальный стандарт отсутствует. До его утверждения рекомендуется использовать перевод на русский язык данного международного стандарта. Перевод данного международного стандарта находится в Федеральном информационном Фонде технических регламентов и стандартов.

П р и м е ч а н и е — В настоящей таблице использовано следующее условное обозначение степени соответствия. IDT — идентичные стандарты.

#### Библиография

| [1] ISO 594-2     | Conical fittings with a 6 % (Luer) taper for syringes, needles and certain other medical equipment.<br>Part 2. Lock fittings |
|-------------------|------------------------------------------------------------------------------------------------------------------------------|
| [2] ISO 8637:1989 | Haemodialysers, haemofilters and haemoconcentrators                                                                          |
| [3] ISO 13485     | Medical devices. Quality management systems. Requirements for regulatory purposes*                                           |
| [4] ISO 14971     | Medical devices. Application of risk management to medical devices*                                                          |
| [5] ISO/TS 23810  | Cardiovascular implants and artificial organs. Checklist for preoperative extracorporeal circulation equipment setup         |

<sup>\*</sup> Официальный перевод данного стандарта находится в Федеральном информационном фонде.

УДК 616.126.3 — 089.28:006.354

OKC 11.040.40

P26

Ключевые слова: оксигенатор, газообмен, системы газообмена, экстракорпоральное кровообращение, сердечно-сосудистые имплантаты, кровь, теплообмен

Редактор А.Ю. Томилин
Технический редактор В.Н. Прусакова
Корректор А.С. Черноусова
Компьютерная верстка А.Н. Золотаревой

Сдано в набор 25.05.2011. Подписано в печать 21.06.2011. Формат 60 × 84  $\frac{1}{16}$ . Бумага офсетная. Гарнитура Ариал. Печать офсетная. Усл. печ. л. 1.86. Уч.-изд. л. 1,20. Тираж 79 экз. Зак. 515.

ФГУП «СТАНДАРТИНФОРМ», 123995 Москва, Гранатный пер., 4. www.gostinfo.ru info@gostinfo.ru Набрано во ФГУП «СТАНДАРТИНФОРМ» на ПЭВМ.

Отпечатано в филиале ФГУЛ «СТАНДАРТИНФОРМ» — тип. «Московский печатник», 105082 Москва, Лялин пер., 6.