МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ (МГС)

INTERSTATE COUNCIL FOR STANDARDIZATION, METROLOGY AND CERTIFICATION (ISC)

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ ΓΟCT 30459— 2008

ДОБАВКИ ДЛЯ БЕТОНОВ И СТРОИТЕЛЬНЫХ РАСТВОРОВ

Определение и оценка эффективности

Издание официальное

Предисловие

Цели, основные принципы и общие правила проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены»

Сведения о стандарте

- 1 РАЗРАБОТАН Научно-исследовательским, проектно-конструкторским и технологическим институтом бетона и железобетона (НИИЖБ филиал Федерального государственного унитарного предприятия «НИЦ Строительство»)
 - 2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 «Строительство»
- 3 ПРИНЯТ Межгосударственной научно-технической комиссией по стандартизации, техническому нормированию и сертификации в строительстве (протокол от 10 декабря 2008 г. № 34)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004—97	Код страны по МК (ИСО 3166) 004—97	Сокращенное наименование национального органа по стандартизации
Азербайджан	AZ	Азстандарт
Армения	AM	Минэкономики Республики Армения
Казахстан	KZ	Госстандарт Республики Казахстан
Киргизия	KG	Кыргызстандарт
Молдова	MD	Молдова-Стандарт
Россия	RU	Росстандарт
Таджикистан	TJ	Таджикстандарт
Узбекистан	UZ	Узстандарт

- 4 Приказом Федерального агентства по техническому регулированию и метрологии от 29 апреля 2010 г. № 69-ст межгосударственный стандарт ГОСТ 30459—2008 введен в действие в качестве национального стандарта Российской Федерации с 1 января 2011 г.
 - 5 Настоящий стандарт соответствует европейским стандартам:
- EH 934-6:2002 «Добавки для бетонов, строительных и инъекционных растворов. Часть 6. Изготовление образцов, контроль соответствия и подтверждение соответствия» (EN 934-6:2002 «Admixtures for concrete, mortars and grout Part 6: Sampling, ronformity control and evaluation of conformity», NEQ) в части требований к изготовлению образцов для испытаний отдельных видов добавок,
- EH 480-1:1997 «Добавки для бетонов, строительных и инъекционных растворов. Методы испытаний. Часть 1. Контрольный бетон и контрольный строительный раствор для испытаний» (EN 480-1:1997 «Admixtures for concrete, mortars and grout Part 1: Reference concrete and mortar for testing», NEQ) в части методов испытаний отдельных видов добавок
 - 6 B3AMEH FOCT 30459-2003
 - 7 ПЕРЕИЗДАНИЕ. Ноябрь 2019 г.

Информация о введении в действие (прекращении действия) настоящего стандарта и изменений к нему на территории указанных выше государств публикуется в указателях национальных стандартов, издаваемых в этих государствах, а также в сети Интернет на сайтах соответствующих национальных органов по стандартизации.

В случае пересмотра, изменения или отмены настоящего стандарта соответствующая информация будет опубликована на официальном интернет-сайте Межгосударственного совета по стандартизации, метрологии и сертификации в каталоге «Межгосударственные стандарты»

© Стандартинформ, оформление, 2010, 2019

В Российской Федерации настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

FOCT 30459—2008

Содержание

1 Область применения
2 Нормативные ссылки
3 Термины и определения
4 Общие положения
5 Порядок отбора и подготовки проб добавок
6 Требования к материалам
7 Составы для испытания
8 Методы испытаний добавок, регулирующих свойства смесей
8.1 Испытание пластифицирующих добавок
8.2 Испытание водоредуцирующих добавок
8.3 Испытание стабилизирующих добавок
8.4 Испытание добавок, регулирующих сохраняемость подвижности
8.5 Испытание добавок, увеличивающих воздухо(газо)содержание
9 Методы испытаний добавок, изменяющих свойства бетонов и растворов
9.1 Испытание добавок, регулирующих кинетику твердения
9.2 Испытание добавок, повышающих прочность
9.3 Испытание добавок, снижающих проницаемость
9.4 Испытание добавок-ингибиторов, повышающих защитные свойства бетонов и растворов
по отношению к стальной арматуре
9.5 Испытание добавок, повышающих морозостойкость
9.6 Испытание добавок, повышающих коррозионную стойкость
9.7 Испытание расширяющих добавок
10 Методы испытаний добавок, придающих бетонам и растворам специальные свойства 11
10.1 Испытание противоморозных добавок
10.2 Испытание гидрофобизирующих добавок
Приложение А (обязательное) Определение коррозионного воздействия противоморозных добавок
на бетоны и растворы

ДОБАВКИ ДЛЯ БЕТОНОВ И СТРОИТЕЛЬНЫХ РАСТВОРОВ

Определение и оценка эффективности

Admixtures for concretes and mortars. Determination and estimate of the efficiency

Дата введения — 2011—01—01

1 Область применения

Настоящий стандарт распространяется на неорганические и органические вещества естественного и искусственного происхождения (далее — добавки), применяемые в качестве модификаторов свойств бетонных и растворных смесей (далее — смеси), бетонов и строительных растворов (далее — бетоны и растворы), изготавливаемых на вяжущих на основе портландцементного клинкера.

Настоящий стандарт устанавливает требования к методам испытаний добавок, которые следует учитывать при оценке их эффективности действия в смесях, бетонах и растворах в соответствии с критериями эффективности по ГОСТ 24211.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие межгосударственные стандарты:

ГОСТ 310.4 Цементы. Методы определения предела прочности при изгибе и сжатии

ГОСТ 5802 Растворы строительные. Методы испытаний

ГОСТ 6732.2 Красители органические, продукты промежуточные для красителей, вещества текстильно-вспомогательные. Методы отбора проб

ГОСТ 7473—94 Смеси бетонные. Технические условия 1)

ГОСТ 8267 Щебень и гравий из плотных горных пород для строительных работ. Технические условия

ГОСТ 8269.0—97 Щебень и гравий из плотных горных пород и отходов промышленного производства для строительных работ. Методы физико-механических испытаний

ГОСТ 8736 Песок для строительных работ. Технические условия

ГОСТ 9179 Известь строительная. Технические условия

ГОСТ 9757 Гравий, щебень и песок искусственные пористые. Технические условия²⁾

ГОСТ 10060.0—95 Бетоны. Методы определения морозостойкости. Общие требования 3)

ГОСТ 10060.2 Бетоны. Ускоренные методы определения морозостойкости при многократном замораживании и оттаивании³⁾

ГОСТ 10178 Портландцемент и шлакопортландцемент. Технические условия

ГОСТ 10180 Бетоны. Методы определения прочности по контрольным образцам

ГОСТ 10181—2000 Смеси бетонные. Методы испытаний

ГОСТ 10834 Жидкость гидрофобизирующая 136-41. Технические условия

ГОСТ 12730.1 Бетоны. Метод определения плотности

¹⁾ Действует ГОСТ 7473—2010.

²⁾ Действует ГОСТ 32496—2013.

³⁾ Действует ГОСТ 10060—2012.

FOCT 30459-2008

ГОСТ 12730.3 Бетоны. Метод определения водопоглощения

ГОСТ 12730.5 Бетоны. Методы определения водонепроницаемости

ГОСТ 12852.0 Бетон ячеистый. Общие требования к методам испытаний

ГОСТ 23732 Вода для бетонов и растворов. Технические условия

ГОСТ 23789—79 Вяжущие гипсовые. Методы испытаний 1)

ГОСТ 24211—2008 Добавки для бетонов и строительных растворов. Общие технические условия

ГОСТ 25485 Бетоны ячеистые. Технические условия

ГОСТ 25820 Бетоны легкие. Технические условия

ГОСТ 26633 Бетоны тяжелые и мелкозернистые. Технические условия

ГОСТ 27006 Бетоны. Правила подбора состава

ГОСТ 27677 Защита от коррозии в строительстве. Бетоны. Общие требования к проведению

ГОСТ 28013—98 Растворы строительные. Общие технические условия

ГОСТ 31108 Цементы общестроительные. Технические условия

ГОСТ 31359 Бетоны ячеистые автоклавного твердения. Технические условия

ГОСТ 31383 Защита бетонных и железобетонных конструкций от коррозии. Методы испытаний

3 Термины и определения

В настоящем стандарте применены термины по ГОСТ 24211, а также следующие термины с соответствующими определениями:

- 3.1 контрольный состав: Состав смеси, бетона или раствора без добавок, соответствующий требованиям ГОСТ 26633 (для тяжелых и мелкозернистых бетонов), ГОСТ 25820 (для легких бетонов) или ГОСТ 28013 (для растворов) и дополнительным требованиям настоящего стандарта.
- 3.2 **основной состав:** Состав смеси, бетона или раствора, в который введена испытываемая добавка в соответствии с требованиями настоящего стандарта.

4 Общие положения

- 4.1 Показатели физико-химических свойств добавок следует определять методами, изложенными в нормативных или технических документах, в соответствии с которыми изготавливают добавки конкретных видов. Эффективность добавок в цементных системах определяют в соответствии с требованиями настоящего стандарта.
- 4.2 Значение основного эффекта действия добавки определяют сравнением модифицируемых показателей качества смесей, бетонов и растворов контрольного и основных составов или по результатам испытаний основных составов.
- 4.3 Оценку эффективности действия добавок проводят сравнением результатов испытаний, проведенных в соответствии с настоящим стандартом, с критериями эффективности по ГОСТ 24211.
 - 4.4 Оптимальную дозировку добавки определяют с учетом требований 7.2 и 7.4.
- 4.5 Изготовление образцов контрольного и основных составов, их предварительную выдержку перед тепловлажностной обработкой следует проводить при температуре окружающего воздуха (20 ± 3) °C, испытание всех видов добавок, кроме противоморозных, при температуре (20 ± 3) °C, противоморозных при заданной температуре.

Температура материалов, применяемых для приготовления растворных и бетонных смесей, должна быть (20 ± 3) °C.

- 4.6 Испытания добавок полифункционального действия в смесях, бетонах и растворах проводят по всем показателям качества, нормируемым в нормативных или технических документах на добавку конкретного вида. При этом испытание добавки может проводиться отдельно по каждому показателю или одновременно по нескольким показателям качества.
- 4.7 При наличии в составе добавки агрессивных по отношению к бетонам, растворам и/или арматуре веществ степень их отрицательного воздействия определяют при максимально рекомендуемой дозировке добавки по методикам, приведенным в настоящем стандарте, с учетом требований ГОСТ 24211—2008, пункт 8.3.

¹⁾ Действует ГОСТ 23789—2018.

5 Порядок отбора и подготовки проб добавок

- 5.1 Для отбора проб добавок, предназначенных для испытаний, применяют сосуды, приспособления и пробоотборники по ГОСТ 6732.2, изготовленные из материалов, устойчивых к действию добавок.
 - 5.2 Пробы отбирают по следующей схеме:
- от упаковочных единиц, выбранных для контроля в соответствии с требованиями нормативного или технического документа на добавку конкретного вида, отбирают точечные пробы;
 - из точечных проб составляют объединенную пробу;
 - от объединенной пробы отбирают среднюю пробу, которую используют для проведения испытаний.
- 5.3 Отбирают не менее двух точечных проб сыпучих добавок (порошкообразных, гранулированных и т. п.) из любых точек массы добавки по всей толщине слоя при помощи металлического щупа, трубок, ковшей и механических пробоотборников.

Пробы слежавшихся при хранении или транспортировании добавок отбирают после их измельчения.

- 5.4 Отбирают не менее трех точечных проб пастообразных добавок после визуальной проверки добавки на однородность из любых точек ее массы по всей толщине слоя при помощи металлического щупа или трубок.
- 5.5 Из любых слоев добавки после ее тщательного перемешивания отбирают не менее двух точечных проб жидких добавок (растворы, эмульсии, суспензии) при помощи стеклянных трубок с оттянутыми концами, стеклянных или металлических пипеток, погружных кружек или банок и специальных банок с крышками или колпачками для взятия проб из любых слоев.

Погружные кружки или банки должны иметь ручки достаточной длины для опускания на дно любой емкости.

Пробы жидких добавок из вагонов-цистерн, автоцистерн, контейнеров отбирают из верхнего, среднего и нижнего слоев в соотношении 2 : 3 : 2 по объему.

- 5.6 Добавки в виде монолит-глыбы должны быть предварительно измельчены до состояния сыпучего материала, после чего точечные пробы отбирают в соответствии с 5.3.
- 5.7 Отобранные точечные пробы соединяют и тщательно перемешивают для получения объединенной пробы.
- 5.8 Из объединенной пробы методом квартования (для сыпучих добавок) или отбора (для жидких и пастообразных добавок) получают среднюю пробу.

Масса средней пробы должна быть достаточной для трехкратного определения всех нормируемых показателей качества добавки.

- 5.9 Среднюю пробу добавки помещают в чистую сухую стеклянную или полиэтиленовую банку или бутылку, полиэтиленовый пакет и плотно закрывают.
- 5.10 На сосуды и пакеты со средней пробой наклеивают или надежно прикрепляют этикетку с указанием:
 - наименования добавки и предприятия-изготовителя;
 - номера партии;
 - маркировки пробы (номера пробы);
 - даты отбора пробы;
 - фамилии лица, проводившего отбор.

6 Требования к материалам

- 6.1 Материалы, применяемые для приготовления смесей, бетонов или растворов, должны соответствовать нормативным или техническим документам на эти материалы и иметь документ о качестве.
 - 6.2 Для приготовления контрольного и основных составов применяют:
 - в качестве вяжущего:
 - портландцемент видов ПЦ400-Д0, ПЦ400-Д5, ПЦ500-Д0, ПЦ500-Д5 по ГОСТ 10178 или портландцемент типа ЦЕМ I по ГОСТ 31108 класса прочности 32,5 или 42,5, с содержанием $\rm C_3A$ не более 8 %, щелочей не более 0,6 % и удельной поверхностью 3200—4000 см²/г,
 - известь негашеную кальциевую по ГОСТ 9179 (в качестве компонента ячеистых бетонов с газообразующей добавкой);
 - в качестве заполнителей:
 - в тяжелых бетонах щебень из плотных горных пород смеси фракций 5—20 мм по ГОСТ 8267 или ГОСТ 26633, песок класса I средней крупности по ГОСТ 8736;

FOCT 30459-2008

- в мелкозернистых бетонах песок класса I средней крупности по ГОСТ 8736 или ГОСТ 26633;
 - в строительных растворах песок класса I средней крупности по ГОСТ 8736;
 - в легких бетонах пористые заполнители фракций 5—10 и 10—20 мм по ГОСТ 9757;
 - в ячеистых бетонах заполнители по ГОСТ 25485 и ГОСТ 31359;
- воду по ГОСТ 23732.
- 6.3 Добавки должны иметь документ о качестве, подтверждающий их соответствие всем нормируемым показателям качества, регламентируемым в нормативном или техническом документе, по которому производится и применяется добавка конкретного вида.

7 Составы для испытания

- 7.1 Контрольный и основные составы должны изготавливаться из материалов, соответствующих требованиям раздела 6.
- 7.2 Общие требования к подбору составов бетонов должны соответствовать ГОСТ 27006, растворов ГОСТ 28013—98, подраздел 4.14, с учетом следующих дополнительных условий.

Расход материалов должен быть, кг/м³:

- в тяжелых бетонах:
- цемента 300 [для добавок, увеличивающих воздухо(газо)содержание смесей и повышающих морозостойкость бетонов и растворов], 350 (для остальных добавок),
 - песка 650—850,
 - щебня 950—1150;
- в растворах и мелкозернистых бетонах:
 - цемента 500—550,
 - песка 1500—1600;
- в легких конструкционных бетонах:
 - цемента 450,
 - песка 650,
 - пористого заполнителя фракции 5—10 мм 0,35 м³/м³, фракции 10—20 мм 0,45 м³/м³;
- в легких конструкционно-теплоизоляционных бетонах:
 - цемента 250,
 - песка 250,
 - пористого заполнителя фракции 5—10 мм 0,45 м³/м³, фракции 10—20 мм 0,65 м³/м³;
- в легких теплоизоляционных бетонах:
 - цемента 300,
- пористого заполнителя фракции 5—10 мм 0,45 м 3 /м 3 , фракции 10—20 мм 0,65 м 3 /м 3 ;
- в ячеистых бетонах:
 - цемента 200,
 - песка 270,
- извести (для ячеистых бетонов с газообразующими добавками) не менее 5 % массы цемента.
- 7.3 Составы изготавливают с учетом требований 7.2 и 7.4 и методов испытания добавок конкретного вида, предусмотренных настоящим стандартом.
- 7.4 Оптимальную дозировку добавки, обеспечивающую технологический и/или технический эффект по ГОСТ 24211, определяют, изготавливая основные составы с тремя различными дозировками, соответствующими граничным значениям и середине интервала, рекомендуемого нормативным или техническим документом на добавку конкретного вида, с последующей интерполяцией полученных результатов.
- 7.5 Правила изготовления контрольного и основных составов бетонных смесей по ГОСТ 27006 и ГОСТ 7473, растворных смесей ГОСТ 28013—98, подраздел 4.14, с учетом следующих дополнительных условий.
- 7.5.1 Добавки следует вводить в смеси основных составов в соответствии с требованиями нормативных или технических документов на добавки конкретных видов.

Добавки, выпускаемые в виде водных растворов, суспензий и эмульсий, а также пастообразные и сыпучие водорастворимые добавки вводят в растворные и бетонные смеси с водой затворения. Непосредственно перед применением добавки должны быть перемешаны до получения однородной массы.

Сыпучие водонерастворимые добавки вводят в основные составы в сухом виде, после чего сухая смесь с добавкой должна быть тщательно перемешана до подачи в нее воды или с водой затворения, смешанной с предварительно приготовленной суспензией добавки.

При приготовлении смесей ячеистых бетонов суспензии газообразователей и пену вводят в смесь на заключительной стадии ее перемешивания.

- 7.5.2 Влажность заполнителей и количество воды, входящее в состав добавок, следует учитывать при дозировании расчетного количества воды в смеси.
- 7.5.3 Отбор проб бетонных смесей для испытаний проводят по ГОСТ 10181—2000, раздел 3, растворных по ГОСТ 5802—86, раздел 1.
- 7.5.4 Образцы из контрольного и основных составов смесей должны изготавливаться в соответствии с требованиями нормативных или технических документов на конкретные методы определения контролируемых показателей качества бетонов (растворов).
 - 7.6 Результаты испытаний должны быть занесены в журнал, в котором указывают:
 - дату, время изготовления и испытания смесей и образцов бетонов или растворов;
 - наименование испытываемой добавки;
 - наименование предприятия поставщика добавки;
 - дозировки добавки;
 - паспортные данные на добавку;
 - расход материалов в контрольном и основном составах;
 - показатели качества смесей, которые были определены при испытаниях добавки;
 - условия хранения и испытаний образцов бетона или раствора;
 - показатели качества бетона (раствора), которые были определены при испытаниях.

8 Методы испытаний добавок, регулирующих свойства смесей

8.1 Испытание пластифицирующих добавок

- 8.1.1 Эффективность действия пластифицирующих добавок оценивают по увеличению подвижности смеси и по прочности бетона или раствора при одинаковом водоцементном отношении контрольного и основных составов.
- 8.1.2 Контрольный состав бетонной смеси должен иметь подвижность, соответствующую OK = 2—4 см, растворной смеси $\Pi_{\rm K}$ = 2—4 см, где OK осадка конуса, определяемая по ГОСТ 10181; $\Pi_{\rm K}$ погружение конуса, определяемое по ГОСТ 5802.
- 8.1.3 Из смесей контрольного и основных составов отбирают пробы в соответствии с 7.5.3 для определения их подвижности и изготовления образцов для определения прочности контрольного $R_{\rm контр}$ и основных $R_{\rm осh}$ составов:
- бетона или раствора, твердеющего в нормальных условиях [при температуре (20 \pm 5) °C и относительной влажности воздуха (95 \pm 5) %], в возрасте 3 и 28 сут;
- пропаренного бетона через 4 ч после твердения в условиях тепловлажностной обработки и через 27 сут последующего твердения в нормальных условиях. Тепловлажностную обработку следует проводить по режиму 3 + 3 + 6 + 2 ч при температуре изотермической выдержки 80 °C (где 3 ч время предварительной выдержки по 4.5; 3 ч время подъема температуры; 6 ч время изотермической выдержки; 2 ч время снижения температуры).
- 8.1.4 Прочность бетона контрольного и основных составов определяют по ГОСТ 10180, раствора по ГОСТ 5802.
- 8.1.5 Изменение прочности бетона или раствора ΔR , %, для каждого возраста и условий твердения рассчитывают по формуле

$$\Delta R = \left| \frac{R_t^{\text{контр}} - R_t^{\text{осн}}}{R_t^{\text{контр}}} \right| 100, \tag{1}$$

где $R_t^{
m Kohtp}$ и $R_t^{
m och}$ — прочность бетона или раствора контрольного и основных составов, МПа; t — возраст бетона или раствора нормального твердения (через 3 и 28 сут) и/или

 t — возраст бетона или раствора нормального твердения (через 3 и 28 сут) и/или ускоренного твердения (через 4 ч после тепловлажностной обработки и через 28 сут).

8.2 Испытание водоредуцирующих добавок

- 8.2.1 Эффективность действия водоредуцирующих добавок оценивают по уменьшению водопотребности смеси основных составов по сравнению с контрольным при условии изготовления смесей с одинаковой подвижностью.
- 8.2.2 Подвижность смесей контрольного и основных составов должна соответствовать осадке конуса ОК = 2—4 см, определяемой по ГОСТ 10181 для бетонных смесей, и погружению конуса Π_{κ} = 2—4 см, определяемому по ГОСТ 5802, — для растворных смесей.
- 8.2.3 Из смесей контрольного и основных составов отбирают пробы в соответствии с 7.5.3 для определения их подвижности.
 - 8.2.4 Уменьшение количества воды затворения ΔB , %, определяют по формуле

$$\Delta B = \frac{B_{\text{контр}} - B_{\text{осн}}}{B_{\text{контр}}} 100,$$
 (2)

где $B_{\text{контр}}$ и $B_{\text{осн}}$ — расход воды затворения в контрольном и основных составах, л/м³.

8.3 Испытание стабилизирующих добавок

- 8.3.1 Эффективность действия стабилизирующих добавок оценивают по снижению показателей расслаиваемости (раствороотделения и водоотделения) смесей основных составов по сравнению с контрольным.
- 8.3.2 Контрольный и основные составы смесей должны иметь следующие марки по удобоукпадываемости:
 - П5 для смесей тяжелых и мелкозернистых бетонов;
 - П4 для смесей легких бетонов;
 - П_к4 для растворных смесей.
- 8.3.3 Из смесей контрольного и основных составов отбирают пробы для определения раствороотделения и водоотделения по ГОСТ 10181 для бетонных смесей и ГОСТ 5802 — для растворных смесей.
- 8.3.4 Показатели расслаиваемости контрольного состава бетонных смесей не должны превышать пределов, указанных в ГОСТ 7473—94, таблица 2, растворных смесей ГОСТ 28013—98, пункт 4.5.

8.4 Испытание добавок, регулирующих сохраняемость подвижности

- 8.4.1 Эффективность действия добавок, регулирующих сохраняемость подвижности смесей, оценивают сравнением времени сохраняемости подвижности смесей контрольного и основных составов.
 - 8.4.2 Смеси контрольного и основных составов должны иметь одинаковую подвижность.
- 8.4.3 Из смесей контрольного и основных составов отбирают пробы для определения времени сохраняемости подвижности бетонных смесей по ГОСТ 10181, растворных смесей по ГОСТ 5802.
- 8.4.4 За показатель сохраняемости подвижности принимают время, мин, в течение которого смесь в процессе своего выдерживания после окончания перемешивания теряет подвижность в пределах, приведенных на рисунке 1.
- 8.4.5 Первое определение подвижности смесей проводят непосредственно после окончания их перемешивания, последующие через 10—40 мин, в зависимости от эффекта действия добавки.
 - 8.4.6 Каждое определение подвижности смесей следует проводить на новой пробе.
- 8.4.7 Каждую новую пробу смеси перед испытанием перемешивают. Остальные пробы до испытания хранят накрытыми влажной тканью или полиэтиленовой пленкой.
 - 8.4.8 Показатель эффективности П, рассчитывают по формулам:
 - для добавок, увеличивающих время сохраняемости подвижности:

$$\Pi_{y}^{1} = \frac{t_{\text{och}}}{t_{\text{контр}}}; \tag{3}$$

- для добавок, сокращающих время сохраняемости подвижности:

$$\Pi_{y}^{2} = \frac{t_{\text{контр}}}{t_{\text{och}}},\tag{4}$$

где $t_{\text{осн}}$ и $t_{\text{контр}}$ — время сохраняемости подвижности основных и контрольного составов смесей, мин.

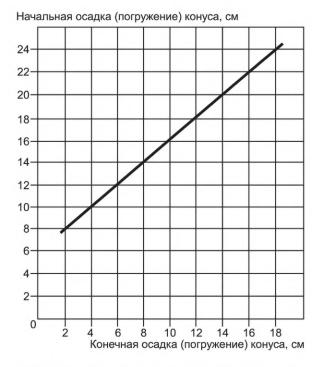


Рисунок 1 — Критерий сохраняемости подвижности

8.5 Испытание добавок, увеличивающих воздухо(газо)содержание

8.5.1 Испытание добавок для смесей тяжелых и мелкозернистых бетонов

- 8.5.1.1 Эффективность действия воздухововлекающих и газообразующих добавок оценивают по изменению объема вовлеченного воздуха или по количеству выделившегося газа в смесях основных составов по сравнению с контрольным.
- 8.5.1.2 Контрольный и основные составы бетонных смесей приготавливают марки по удобоукладываемости П2 (ОК = 6—8 см).
- 8.5.1.3 Количество вовлеченного воздуха или выделившегося газа определяют компрессионным методом по ГОСТ 10181—2000, подраздел 6.3.
 - 8.5.1.4 На отобранных из замесов пробах определяют:
 - содержание вовлеченного воздуха в смесях контрольного состава;
- содержание вовлеченного воздуха для воздухововлекающей добавки или газообразной фазы (суммарное количество вовлеченного воздуха и выделившегося газа) для газообразующей добавки — в смесях основных составов.
- 8.5.1.5 Содержание воздуха в смесях с воздухововлекающими добавками определяют непосредственно после окончания перемешивания смеси, количество выделившегося газа — через 1 ч после окончания перемешивания.

Дополнительные испытания (если необходимо) проводят на новых порциях смеси через заданные промежутки времени, устанавливаемые в зависимости от свойств добавки. Бетонные смеси, на которых повторно определяют количество вовлеченного воздуха (выделившегося газа), повторно не перемешивают.

8.5.1.6 Изменение объема воздуха (газа) в смесях тяжелых и мелкозернистых бетонов $\Delta V_{\rm p}$, %, определяют по формуле

$$\Delta V_{\rm B} = V_{\rm B}^{\rm OCH} - V_{\rm B}^{\rm KOHTP},\tag{5}$$

где $V_{\rm B}^{\rm OCH}$ и $V_{\rm B}^{\rm KOHTP}$ — объем воздуха (газа) в основных и контрольном составах смеси, %. 8.5.2 Испытание добавок для смесей легких конструкционных, конструкционно-теплоизоляционных и теплоизоляционных бетонов

- 8.5.2.1 Эффективность действия воздухововлекающих добавок оценивают по объему вовлеченного воздуха (выделившегося газа) в смесях основных составов, которые изготавливают марок по удобоукладываемости П1 при плотности смеси 1600 кг/м 3 и более и П2 — при плотности смеси не менее 1600 кг/м 3 .
 - 8.5.2.2 Объем вовлеченного воздуха (выделившегося газа) определяют по ГОСТ 10181.

8.5.2.3 Потерю газовой фазы $\Delta V_{\rm B}$, %, определяют на новых порциях смеси по 8.5.2.2 через 15 мин после ее приготовления и вычисляют по формуле

$$\Delta V_{\rm B} = \frac{V_{\rm B}^{\rm HAY} - V_{\rm B}^{\rm KOH}}{V_{\rm P}^{\rm HAY}} 100,\tag{6}$$

где $V_{\rm B}^{\rm Haq}$ — объем воздуха в основном составе бетонной смеси, определенный непосредственно после ее изготовления, %;

V_в — объем воздуха в основном составе бетонной смеси, определенный через 15 мин после ее изготовления, %.

8.5.3 Испытание добавок для смесей ячеистых бетонов

- 8.5.3.1 Эффективность действия порообразующих добавок оценивают по объему пены (выделившегося газа) в ячеистобетонных смесях и по значению коэффициента использования добавок в бетонах основных составов.
- 8.5.3.2 Для приготовления ячеистобетонной смеси при определении эффективности порообразующих добавок используют скоростные смесители с числом оборотов 150—200 в минуту. При приготовлении ячеистобетонной смеси применяют одностадийное перемешивание компонентов в течение 4—5 мин.
- 8.5.3.3 Приготавливают смесь контрольного состава, содержащую цемент, молотый песок и воду, которая должна иметь текучесть (расплыв) 25—26 см при испытании по ГОСТ 23789—79, раздел 4.
- 8.5.3.4 Для определения эффективности пенообразующих добавок приготавливают основные составы ячеистобетонных смесей, вливая в состав по 8.5.3.3 за 1—1,5 мин до окончания перемешивания пену, предварительно приготовленную из расчетного количества порообразователя, обеспечивающего среднюю плотность бетона 600 кг/м³.
- 8.5.3.5 Для определения эффективности газообразующих добавок основные составы изготавливают, добавляя в контрольный состав по 8.5.3.3 кальциевую негашеную известь в количестве 5~% массы цемента и за 30— $40~\mathrm{c}$ до окончания перемешивания расчетное количество газообразователя. Температура смеси должна быть $\approx 40~\mathrm{°C}$.
- 8.5.3.6 Пористость смесей основных составов определяют объемным методом по ГОСТ 10181, раздел 6.
- 8.5.3.7 Из основных составов пенобетонных смесей изготавливают образцы размером $10 \times 10 \times 10$ см или $7 \times 7 \times 7$ см по ГОСТ 10180, из основных составов газобетонных смесей блоки по ГОСТ 12850.0. Образцы и блоки подвергают тепловлажностной обработке при температуре изотермической выдержки t = 80 °C по режиму 3 + 3 + 10 + 2 ч, где 3 ч продолжительность предварительной выдержки в нормальных условиях, 3 ч продолжительность подъема температуры, 10 ч продолжительность изотермической выдержки, 2 ч продолжительность снижения температуры.

Через 12 ч после окончания тепловлажностной обработки из блоков выпиливают образцы размером $10 \times 10 \times 10$ см или $7 \times 7 \times 7$ см.

8.5.3.8 Для образцов, изготовленных из пено(газо)бетона, определяют среднюю плотность по ГОСТ 12730.1.

8.5.3.9 Коэффициент использования пено- и газообразующей добавок lpha определяют по формуле

$$\alpha = \frac{\gamma_{\text{OCH}}^{\text{3adah}}}{\gamma_{\text{OCH}}^{\text{dakT}}},\tag{7}$$

где $\gamma_{\text{осн}}^{\text{задан}}$ и $\gamma_{\text{осн}}^{\text{факт}}$ — заданная и фактическая средние плотности ячеистых бетонов основных составов, кг/м 3 .

9 Методы испытаний добавок, изменяющих свойства бетонов и растворов

9.1 Испытание добавок, регулирующих кинетику твердения

- 9.1.1 Эффективность действия добавок, регулирующих кинетику твердения бетонов и растворов, оценивают по изменению их прочности ΔR_t в основных составах по сравнению с контрольным в сроки твердения, указанные в 9.1.4 и 9.1.5.
- 9.1.2 Марки по удобоукладываемости смесей контрольного и основных составов должны быть Π 3 для бетонных смесей и $\Pi_{\nu}2$ для растворных смесей.

- 9.1.3 Образцы бетонов изготавливают и испытывают по ГОСТ 10180, растворов по ГОСТ 5802.
- 9.1.4 При испытании добавок, замедляющих твердение, прочность на сжатие бетонов или растворов определяют в возрасте 1, 2, 3 и 28 сут нормального твердения.
- 9.1.5 При испытании добавок, ускоряющих твердение, прочность на сжатие бетонов и растворов определяют в возрасте 1 и 28 сут нормального твердения, прочность пропаренных бетонов через 4 ч твердения после тепловлажностной обработки и через 27 сут последующего твердения в нормальных условиях. Тепловлажностную обработку следует проводить по режиму, указанному в 8.1.3.
- 9.1.6 Изменение прочности бетонов или растворов основных составов по сравнению с контрольным составом ΔR_{t} , %, определяют по формуле

$$\Delta R_t = \left| \frac{R_t^{\text{контр}} - R_t^{\text{och}}}{R_t^{\text{контр}}} \right| 100, \tag{8}$$

где $R_t^{\text{осн}}$ и $R_t^{\text{контр}}$ — прочность бетонов или растворов основных и контрольного составов в сроки твердения t, МПа.

9.2 Испытание добавок, повышающих прочность

- 9.2.1 Эффективность действия добавок, повышающих прочность бетонов и растворов, оценивают по увеличению прочности образцов основных составов по сравнению с контрольным.
- 9.2.2 Марки по удобоукладываемости бетонных смесей контрольного и основных составов должны быть П3, растворных смесей $\Pi_{\nu}2$.
 - 9.2.3 Образцы бетонов изготавливают по ГОСТ 10180, растворов по ГОСТ 5802.
- 9.2.4 Прочность бетонов или растворов контрольного и основных составов определяют в возрасте 28 сут нормального твердения.
- 9.2.5 Повышение прочности бетонов или растворов основных составов по сравнению с контрольным ΔR_{28} , %, определяют по формуле

$$\Delta R_{28} = \frac{R_{28}^{\text{och}} - R_{28}^{\text{контр}}}{R_{28}^{\text{контр}}} 100, \tag{9}$$

где $R_{28}^{\text{осн}}$ и $R_{28}^{\text{контр}}$ — прочность бетонов или растворов основных и контрольного составов в возрасте 28 сут, МПа.

9.3 Испытание добавок, снижающих проницаемость

- 9.3.1 Эффективность действия добавок, снижающих проницаемость бетонов и растворов, оценивают по увеличению марки по водонепроницаемости и/или диффузионной проницаемости для хлоридов основных составов по сравнению с контрольным составом.
- 9.3.2 Марки по удобоукладываемости бетонных смесей контрольного и основных составов должны быть Π 3, растворных смесей Π_{ν} 2.
- 9.3.3 Образцы для испытаний на водонепроницаемость изготавливают и испытывают по ГОСТ 12730.5, на диффузионную проницаемость для хлоридов по ГОСТ 31383.

9.4 Испытание добавок-ингибиторов, повышающих защитные свойства бетонов и растворов по отношению к стальной арматуре

- 9.4.1 Эффективность действия добавок-ингибиторов, повышающих защитные свойства бетонов и растворов по отношению к стальной арматуре, определяют по изменению плотности электрического тока, проходящего через арматуру.
- 9.4.2 Для определения эффективности добавок в тяжелых и легких бетонах используют крупный заполнитель фракции 5—10 мм.

Изготавливают стальные стержни длиной 120 мм, диаметром 3—6 мм, которые обрабатывают в соответствии с ГОСТ 31383.

- 9.4.3 Приготавливают смеси основных составов с применением комплексного модификатора, состоящего из хлорида кальция в количестве 3~%-5~% массы цемента, и добавки-ингибитора, повышающей защитные свойства бетонов и растворов по отношению к стальной арматуре, с дозировками добавки по 7.4. Марка бетонных смесей по удобоукладываемости должна быть Π_2 , растворных смесей $\Pi_k 1$.
 - 9.4.4 Изготовление образцов из смесей по 9.4.3 и их испытание проводят по ГОСТ 31383.

9.5 Испытание добавок, повышающих морозостойкость

- 9.5.1 Эффективность действия добавок, повышающих морозостойкость бетонов и растворов, оценивают по увеличению марки по морозостойкости бетонов или растворов основных составов по сравнению с контрольным составом.
- 9.5.2 Общие условия испытания на морозостойкость должны соответствовать требованиям ГОСТ 10060.0—95, раздел 4, и ГОСТ 10060.2—95, раздел 6, для бетонов, ГОСТ 5802—86, раздел 10, для растворов со следующими дополнениями.
- 9.5.2.1 Смеси контрольного и основных составов должны иметь марку по удобоукладываемости $\Pi 3$ для бетонных смесей, $\Pi_{\rm k} 2$ для растворных смесей.
- 9.5.2.2 Образцы для испытаний контрольного и основных составов изготавливают и хранят по ГОСТ 10180 для бетонов и ГОСТ 5802 для растворов. Число образцов контрольного состава на шесть сроков испытания, основных составов на восемь сроков испытания.
- 9.5.2.3 Образцы бетона должны соответствовать требованиям ГОСТ 10060.0—95, пункт 4.9, метод предварительного насыщения образцов 5%-ным раствором хлористого кальция пункт 4.11 указанного стандарта. Насыщение образцов раствора по ГОСТ 5802—86, пункт 10.6.4.
- 9.5.2.4 Образцы бетонов контрольного и основных составов (по одной серии от каждого состава) после их насыщения испытывают на сжатие по ГОСТ 10180, растворов по ГОСТ 5802. Оставшиеся образцы подвергают испытанию на морозостойкость: бетонов ускоренным методом при многократном замораживании и оттаивании по ГОСТ 10060.0 (третий метод), растворов по ГОСТ 5802.
- 9.5.2.5 Прочность при сжатии контрольного и основных составов определяют после каждого числа циклов, указанного в ГОСТ 10060.0—95, таблица 3, для бетонов и в ГОСТ 28013—98, пункт 4.11, для растворов.
- 9.5.2.6 После определения марки по морозостойкости бетона (раствора) контрольного состава его испытание прекращают, а бетоны (растворы) основных составов продолжают испытывать в течение числа циклов, соответствующих увеличению их морозостойкости на две марки по сравнению с контрольным составом, после чего образцы испытывают на прочность при сжатии.
- 9.5.2.7 Снижение прочности при сжатии образцов бетонов (растворов) контрольного и основных составов после испытания на морозостойкость не должно превышать 5 % по сравнению с прочностью на сжатие образцов перед их установкой на испытание.

9.6 Испытание добавок, повышающих коррозионную стойкость

- 9.6.1 Эффективность добавок, повышающих коррозионную стойкость бетонов и растворов, оценивают по увеличению стойкости бетонов и растворов по отношению к коррозионно-активным средам и внутренней коррозии.
- 9.6.2 Испытание добавок, повышающих коррозионную стойкость бетонов и растворов, проводят по следующим методикам:
 - при воздействии коррозионно-активных сред по ГОСТ 27677 и ГОСТ 31383;
- при определении стойкости к внутренней коррозии по ГОСТ 8269.0—97 (пункт 4.22.3 при испытании по ускоренной методике, 4.22.4 при испытании в течение года).

9.7 Испытание расширяющих добавок

- 9.7.1 Эффективность действия расширяющих добавок оценивают по значениям деформаций расширения образцов основных составов, твердеющих без осевого упругого ограничения.
- 9.7.2 Расплыв конуса основных составов смесей ($\mathsf{L}:\mathsf{\Pi}=\mathsf{1}:\mathsf{1}$) должен быть 120—145 мм по ГОСТ 310.4.
- 9.7.3 Образцы-балочки размером 40 × 40 × 160 мм, предназначенные для определения линейных деформаций, изготавливают и хранят по ГОСТ 310.4 с учетом следующих дополнений.
- 9.7.3.1 В торцах образцов-балочек по центральной продольной оси устанавливают реперы на глубину не более 2 см.
- 9.7.3.2 Через (24 \pm 2) ч хранения в ванне с гидравлическим затвором образцы-балочки расформовывают и индикатором часового типа измеряют их длину l_1 с точностью до 0,01 мм.

После измерения образцы-балочки полностью погружают в горизонтальном положении в ванну с водой по ГОСТ 23732 температурой (20 \pm 2) °C.

9.7.3.3 По истечении 27 сут образцы-балочки извлекают из воды и измеряют их длину l_2 с точностью до 0,01 мм.

9.7.3.4 Линейное расширение образцов-балочек Δl , %, вычисляют по формуле

$$\Delta l = \left| \frac{l_2 - l_1}{l_1} \right| 100, \tag{10}$$

10 Методы испытаний добавок, придающих бетонам и растворам специальные свойства

10.1 Испытание противоморозных добавок

10.1.1 Испытание противоморозных добавок для «холодных» бетона и раствора

- 10.1.1.1 Эффективность действия противоморозных добавок для «холодных» бетона и раствора оценивают сравнением прочности бетонов и растворов основных составов, твердевших при заданной отрицательной температуре, с прочностью бетона и раствора контрольного состава, твердевшего в нормальных условиях.
- 10.1.1.2 Марка по удобоукладываемости контрольного и основных составов бетонной смеси должна быть $\Pi 3$, растворной смеси $\Pi_{\kappa} 2$.
- 10.1.1.3 Из смесей отбирают пробы для изготовления образцов для испытания на прочность при сжатии.
- 10.1.1.4 Образцы бетона изготавливают и испытывают на сжатие по ГОСТ 10180, раствора по ГОСТ 5802.
- 10.1.1.5 Образцы контрольного состава должны в течение 28 сут твердеть в нормальных условиях, после чего должны быть испытаны на сжатие.
- 10.1.1.6 Образцы основных составов непосредственно после изготовления должны быть помещены на 28 сут в морозильную камеру с заданной отрицательной температурой (соответствующей виду и рекомендуемой дозировке испытываемой добавки). В морозильной камере образцы укладывают на стеллажи так, чтобы расстояние между образцами, а также между образцами и стенками камеры было не менее 50 мм. Образцы должны быть испытаны на сжатие после оттаивания на воздухе при температуре (20 \pm 2) °C в сроки, указанные в нормативном или техническом документе на добавку конкретного вида.
- 10.1.1.7 Изменение прочности бетонов основных составов по сравнению с контрольным составом ΔR , %, определяют по формуле

$$\Delta R = \frac{R_{28}^{\text{OCH}}}{R_{28}^{\text{KOHTP}}} 100, \tag{11}$$

где $R_{28}^{\rm och}$ и $R_{28}^{\rm Kohtp}$ — прочность бетонов или растворов основных и контрольного составов в возрасте 28 сут, МПа.

10.1.2 Испытание противоморозных добавок для «теплых» бетона и раствора

- 10.1.2.1 Эффективность действия противоморозных добавок для «теплых» бетона и раствора оценивают сравнением прочности бетонов и растворов основных составов, твердевших по режиму, указанному в 10.1.2.6, с прочностью контрольного состава, твердевшего в нормальных условиях.
- 10.1.2.2 Марка по удобоукладываемости контрольного и основных составов бетонной смеси должна быть $\Pi 3$, растворной смеси $\Pi_{\nu} 2$.
- 10.1.2.3 Из смесей контрольного и основных составов отбирают пробы для изготовления образцов для испытания на прочность при сжатии.
- 10.1.2.4 Образцы бетонов изготавливают и испытывают на сжатие по ГОСТ 10180, растворов по ГОСТ 5802.
- 10.1.2.5 Образцы контрольного состава должны твердеть в нормальных условиях в течение 28 сут, после чего они должны быть испытаны на сжатие.
- 10.1.2.6 Образцы основных составов непосредственно после изготовления должны быть помещены на 4 ч в морозильную камеру с заданной отрицательной температурой (соответствующей виду и рекомендуемой дозировке испытываемой добавки). В морозильной камере образцы укладывают на стеллажи так, чтобы расстояние между образцами, а также между образцами и стенками камеры было

FOCT 30459-2008

не менее 50 мм. Последующее твердение образцов должно осуществляться в нормальных условиях в течение 28 сут, после чего они должны быть испытаны на сжатие.

- 10.1.2.7 Изменение прочности основных составов по сравнению с прочностью контрольного состава ΔR , %, определяют по формуле (11).
- 10.1.2.8 Бетоны с противоморозными добавками должны быть испытаны на коррозионное воздействие добавок на бетон или раствор в соответствии с приложением А.

10.2 Испытание гидрофобизирующих добавок

10.2.1 Эффективность действия гидрофобизирующих добавок оценивают по степени уменьшения водопоглощения бетонов и растворов основных составов по сравнению с контрольным составом и по гидрофобизирующей способности добавок.

Гидрофобизирующую способность добавок определяют по ГОСТ 10834, подраздел 3.4.

- 10.2.2 При определении водопоглощения бетонов и растворов контрольного и основных составов марка по удобоукладываемости смеси должна быть П3 для бетонной смеси, $\Pi_{\rm k}2$ для растворной смеси.
- 10.2.3 Образцы бетона изготавливают и испытывают на водопоглощение по ГОСТ 12730.3, раствора по ГОСТ 5802.
- 10.2.4 Твердение бетонов и растворов с гидрофобизирующими добавками проводят по режиму, указанному в нормативном или техническом документе на добавку конкретного вида.
- 10.2.5 При испытании на водопоглощение образцы контрольного состава выдерживают в воде до полного насыщения, основных составов в течение 28 сут.

Уменьшение водопоглощения Π_w вычисляют по формуле

$$\Pi_{W} = \frac{W_{\text{KOHTP}}}{W_{\text{OCH}}},\tag{12}$$

где $W_{\mathrm{контр}}$ — водопоглощение образцов контрольного состава, % по массе; $W_{\mathrm{осн}}$ — водопоглощение образцов основного состава, % по массе.

Приложение А (обязательное)

Определение коррозионного воздействия противоморозных добавок на бетоны и растворы

Испытание в соответствии с настоящим приложением проводят в случае предполагаемого коррозионного воздействия противоморозных добавок на бетоны или растворы.

А.1 Средства испытания

Морозильная камера, обеспечивающая достижение и поддержание заданной отрицательной температуры. Сетчатый стеллаж для размещения образцов-балочек в морозильной камере.

Формы для изготовления образцов-балочек размером 4 × 4 × 16 см по ГОСТ 310.4.

А.2 Порядок подготовки и проведения испытания

- А.2.1 Испытание проводят на образцах-балочках, изготовленных из мелкозернистого бетона, путем их попеременного замораживания в морозильной камере и оттаивания в воздушной среде.
- А.2.2 Приготавливают смесь основного состава с соотношением цемент : песок = 1 : 3, марки по удобоукпадываемости П2 с выбранной оптимальной дозировкой противоморозной добавки.
- А.2.3 Из смеси, приготовленной в соответствии с А.2.2, изготавливают три образца-балочки размером 4 × 4 × 16 см, которые непосредственно после изготовления помещают на 28 сут в морозильную камеру при заданной отрицательной температуре.
- А.2.4 По истечении 28 сут замораживания образцы-балочки оттаивают в воздушно-сухих условиях при температуре плюс (15 ± 5) °C в течение 3—4 ч, после чего образцы расформовывают.
- А.2.5 Последующие циклы замораживания образцов-балочек при заданной отрицательной температуре и оттаивания при температуре плюс (15 ± 5) °C проводят при скорости изменения температуры 3—5 °С/ч.

Число циклов — 50.

А.2.6 По окончании испытания образцы-балочки осматривают. Отсутствие признаков разрушения образцов (растрескивание, выкрашивание ребер, шелушение) после испытания свидетельствует о возможности применения в бетоне испытываемой добавки в оптимальном количестве.

УДК 666.972.16:006.354

MKC 91.100.30

Ключевые слова: добавки для бетонов, отбор проб, определение эффективности, соответствие критерию эффективности, методики испытаний

Редактор Н.Е. Рагузина
Технические редакторы В.Н. Прусакова, И.Е. Черепкова
Корректор Е.И. Рычкова
Компьютерная верстка Д.В. Кардановской

Сдано в набор 08.11.2019. Подписано в печать 13.11.2019. Формат $60 \times 84^{1}/_{8}$. Гарнитура Ариал. Усл. печ. л. 2,33. Уч.-изд. л. 1,80.

Подготовлено на основе электронной версии, предоставленной разработчиком стандарта