ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ ΓΟCT P 53542— 2009

Двигатели авиационные и их составные части ПАЙКА ВЫСОКОЛЕГИРОВАННЫХ СТАЛЕЙ В ВАКУУМЕ

Общие требования к технологическому процессу

Издание официальное

Предисловие

- РАЗРАБОТАН Федеральным государственным унитарным предприятием «Научно-исследовательский институт стандартизации и унификации» (ФГУП «НИИСУ») и Открытым акционерным обществом «Национальный институт авиационных технологий» (ОАО «НИАТ»)
 - 2 ВНЕСЕН Техническим комитетом по стандартизации ТК 323 «Авиационная техника»
- 3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 15 декабря 2009 г. № 804-ст
 - 4 ВВЕДЕН ВПЕРВЫЕ
 - 5 ПЕРЕИЗДАНИЕ. Октябрь 2019 г.

Правила применения настоящего стандарта установлены в статье 26 Федерального закона от 29 июня 2015 г. № 162-ФЗ «О стандартизации в Российской Федерации». Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе «Национальные стандарты», а официальный текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

Содержание

1 Область применения
2 Нормативные ссылки
3 Термины и определения
4 Подготовка поверхности деталей под пайку
4.1 Механическая обработка
4.2 Травление и обезжиривание
4.3 Нанесение покрытий
4.4 Хранение деталей после подготовки поверхности под пайку
5 Требования к припоям
6 Требования к подготовке узлов под пайку
6.1 Сборка и фиксация соединяемых деталей
6.2 Нанесение припоя
6.3 Ограничение растекания припоя по поверхности
7 Требования к оборудованию для пайки
8 Требования к технологическому процессу вакуумной пайки
9 Контроль качества паяных соединений
9.1 Общие положения
9.2 Неразрушающие методы контроля
9.3 Разрушающие методы контроля
10 Дефекты паяных соединений и их исправление
11 Требования безопасности
12 Метрологическое обеспечение
Приложение А (обязательное) Конструктивные и технологические характеристики
паяных соединений
Библиография

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Двигатели авиационные и их составные части

ПАЙКА ВЫСОКОЛЕГИРОВАННЫХ СТАЛЕЙ В ВАКУУМЕ

Общие требования к технологическому процессу

Aviation engines and their components. Brazing of high-alloy steels in vacuum. General requirements for technological process

Дата введения — 2010—07—01

1 Область применения

Настоящий стандарт распространяется на авиационные двигатели и их составные части и устанавливает общие требования к технологическому процессу вакуумной высокотемпературной пайки деталей из коррозионно-стойких, жаропрочных и жаростойких сталей.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ 8.585 Государственная система обеспечения единства измерений. Государственная поверочная схема для средств измерений длины и времени распространения сигнала в световоде, средней мощности, ослабления и длины волны оптического излучения для волоконно-оптических систем связи и передачи информации

ГОСТ 166 (ИСО 3599—76) Штангенциркули. Технические условия

ГОСТ 201 Тринатрийфосфат. Технические условия

ГОСТ 701 Кислота азотная концентрированная. Технические условия

ГОСТ 857 Кислота соляная синтетическая техническая. Технические условия

ГОСТ 1465 Напильники. Технические условия

ГОСТ 2184 Кислота серная техническая. Технические условия

ГОСТ 5009 Шкурка шлифовальная тканевая. Технические условия

ГОСТ 5100 Сода кальцинированная техническая. Технические условия

ГОСТ 6456 Шкурка шлифовальная бумажная. Технические условия

ГОСТ 6507 Микрометры. Технические условия

ГОСТ 7827 Растворители марок Р-4, Р-4A, Р-5, Р-5A, Р-12 для лакокрасочных материалов. Технические условия

ГОСТ 8984 Силикагель-индикатор. Технические условия

ГОСТ 10354 Пленка полиэтиленовая. Технические условия

ГОСТ 15171 Присадка АКОР-1. Технические условия

ГОСТ 17299 Спирт этиловый технический. Технические условия

ГОСТ 18188 Растворители марок 645, 646, 647, 648 для лакокрасочных материалов. Технические условия

ГОСТ 20487 Пайка. Метод испытаний для оценки влияния жидкого припоя на механические свойства паяемого материала

ГОСТ 21548 Пайка. Метод выявления и определения толщины прослойки химического соединения

ГОСТ 21549 Пайка. Метод определения эрозии паяемого материала

FOCT P 53542-2009

ГОСТ 22300 Реактивы. Эфиры этиловый и бутиловый уксусной кислоты. Технические условия ГОСТ 24054 Изделия машиностроения и приборостроения. Методы испытаний на герметичность. Общие требования

ГОСТ 25706 Лупы. Типы, основные параметры. Общие технические требования

ГОСТ 26126 Контроль неразрушающий. Соединения паяные. Ультразвуковые методы контроля качества

ГОСТ 26446 Соединения паяные. Методы испытаний на усталость

ГОСТ 27947 Контроль неразрушающий. Рентгенотелевизионный метод. Общие требования

ГОСТ 28830 Соединения паяные. Методы испытаний на растяжение и длительную прочность

ГОСТ Р ИСО 857-2 Сварка и родственные процессы. Словарь. Часть 2. Процессы пайки. Термины и определения

ГОСТ Р 55064 Натр едкий технический. Технические условия

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя «Национальные стандарты» за текущий год. Если заменен ссылочный стандарт, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого стандарта с учетом всех внесенных в данную версию изменений. Если заменен ссылочный стандарт, на который дана датированная ссылка, то рекомендуется использовать версию этого стандарта с указанным выше годом утверждения (принятия). Если после утверждения настоящего стандарта в ссылочный стандарт, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение рекомендуется применять без учета данного изменения. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применены термины по ГОСТ Р ИСО 857-2.

4 Подготовка поверхности деталей под пайку

4.1 Механическая обработка

- 4.1.1 Для очистки поверхности деталей от оксидной пленки механическим путем применяют зачистку напильником по ГОСТ 1465, или металлической щеткой, или наждачной шкуркой на бумажной основе по ГОСТ 6456, или на тканевой основе по ГОСТ 5009.
- 4.1.2 Детали, имеющие припуск на поверхностях, подлежащих пайке, можно паять после механической обработки и последующего обезжиривания при условии соблюдения сроков межоперационного хранения, оговариваемых ниже. Поверхность литых деталей, подлежащих пайке, должна быть механически обработана.
- 4.1.3 Чистота обработки поверхности деталей, паяемых капиллярной пайкой, должна быть выполнена в пределах от Ra 3,2 до Ra 0,8 с желательным направлением рисок вдоль затекания припоя. Если припой размещен в сборочном зазоре под пайку, то шероховатость поверхности не имеет существенного значения и может быть выполнена по более высокому классу.

4.2 Травление и обезжиривание

- 4.2.1 В случае необходимости удаления оксидных пленок химическим путем проводят травление сталей в ваннах со смесью следующих кислот:
 - кислота серная по ГОСТ 2184, раствор концентрацией от 70 до 100 г/л;
 - кислота соляная по ГОСТ 857, раствор концентрацией от 180 до 220 г/л;
 - кислота азотная по ГОСТ 701, раствор концентрацией от 10 до 20 г/л.

Температура водного раствора — от 40 °C до 70 °C, время выдержки — от 2 до 10 мин.

После травления детали рекомендуется промыть в воде при температуре от 40 °C до 50 °C, а затем в проточной холодной воде.

- 4.2.2 Химическое обезжиривание легированных сталей проводят методом растворения жиров и масел в ванне с одним из принятых на практике составов.
 - натр едкий по ГОСТ 55064, раствор концентрацией от 30 до 50 г/л;

- сода кальцинированная по ГОСТ 5100, раствор концентрацией от 20 до 35 г/л;
- тринатрийфосфат по ГОСТ 201, раствор концентрацией от 40 до 60 г/л.

Температура водного раствора — от 60 °C до 80 °C, время выдержки — от 10 до 25 мин. После обезжиривания детали промывают в воде при температуре от 40 °C до 50 °C, а затем в проточной холодной воде.

- 4.2.3 Обезжиривание деталей, доступ к очищаемым поверхностям которых затруднен, производят в ультразвуковых ваннах.
- 4.2.4 Обезжиривание небольших по площади локальных областей поверхности деталей, загрязненных маслами, производят путем протирки их чистой ветошью, смоченной нефрасом с антистатическими добавками по ГОСТ 15171 или спиртом по ГОСТ 17299.

4.3 Нанесение покрытий

- 4.3.1 Рекомендуется производить нанесение гальванических покрытий никеля толщиной от 5 до 20 мкм в случае, когда условия лайки или состав основного металла не обеспечивают смачивание и растекание припоев по поверхности, необходимые для формирования качественных паяных соединений. При этом в процессе формирования соединений покрытие должно быть полностью растворено в расплавленном припое.
- 4.3.2 Рекомендуется никелировать под вакуумную пайку детали из сталей, содержащих более 1 % Ті, более 0,5 % АІ и более 1 % Ті + АІ (например, сталь ЭИ696).

4.4 Хранение деталей после подготовки поверхности под пайку

- 4.4.1 Детали, прошедшие обработку под пайку, хранят в сухом проветриваемом помещении с температурой воздуха от 10 °C до 35 °C и относительной влажностью от 35 % до 60 %.
- 4.4.2 Детали из легированных сталей после травления и стальные детали, покрытые никелем, хранят в помещении в пакетах из полиэтилена по ГОСТ 10354 с силикагелем по ГОСТ 8984 не более 48 ч.

Примечание 1 — Срок хранения может быть увеличен до 10 суток по согласованию с главным металлургом или главным сварщиком предприятия при условии обеспечения качества паяных соединений согласно требованиям чертежа.

Примечание 2 — Необходимость повторного травления и нанесения покрытия никеля и их режимы определяют в каждом случае по решению главного металлурга предприятия.

5 Требования к припоям

- 5.1 Марки припоев для вакуумной лайки легированных сталей, их характеристики и требования к ним приведены в таблице А.1 (приложение А).
- 5.2 Выбор припоя осуществляют в соответствии с условиями эксплуатации данного узла и его конструктивными особенностями и на основании приведенных в паспорте на припой рекомендаций по его применению.

6 Требования к подготовке узлов под пайку

6.1 Сборка и фиксация соединяемых деталей

6.1.1 При сборке деталей рекомендуемый сборочный зазор под капиллярную пайку составляет от 0,05 до 0,1 мм.

Выполнение данного зазора при сборке деталей для последующей пайки с локальным или общим нагревом рекомендуется осуществлять без фиксирующего сборочного приспособления посредством следующих приемов, применяемых в зависимости от конструктивных особенностей нахлесточного, стыкового или таврового соединений:

- путем соединения деталей прессовой посадкой, или с предварительным изготовлением на паяемых поверхностях фиксирующих конструктивных элементов типа пуклевок, или с предварительным помещением в сборочный зазор проволоки или фольги, зафиксированной контактной сваркой;
 - путем соединения деталей методом прихватки точечной или дуговой сваркой;
 - путем соединения деталей методом клепки.

- 6.1.2 Фиксирующее сборочное приспособление для пайки следует применять в случае, когда без него фиксация деталей, обеспечивающая требуемые зазоры, невозможна из-за конструктивных особенностей или размеров узла. Приспособлением следует пользоваться только в случае необходимости, так как оно требует затрат на изготовление, увеличивает трудоемкость сборки и время нагрева.
- 6.1.3 Конструкция приспособления определяется геометрией соединения, конфигурацией и размером узла, а также способом его нагрева и техническими возможностями оборудования. Приспособление должно удовлетворять следующим требованиям:
 - обеспечивать необходимые паяльные зазоры;
 - предотвращать деформацию узла и образование трещин в паяных швах при охлаждении узла;
- иметь минимальный контакт с паяемым узлом и не вступать во взаимодействие с паяемым металлом или окислять паяемый металл;
 - иметь минимальную массу и не затруднять равномерный нагрев деталей;
- не препятствовать созданию вакуума при нагреве и быстрой откачке газов из полостей узла при его нагреве в вакууме.
 - 6.1.4 Фиксацию соединяемых пайкой деталей с помощью приспособления осуществляют за счет:
 - механического поджатия деталей с помощью клиньев или резьбовых прижимов;
 - поджатия деталей под действием тяжести грузов;
- разности коэффициентов термического расширения металла паяемого узла и материала приспособления.
- 6.1.5 Изготовленное приспособление перед использованием следует очистить, обезжирить, подвергнуть отжигу в вакууме и хранить после пайки, предохраняя от загрязнения.

6.2 Нанесение припоя

- 6.2.1 Для механизированной (без участия паяльщика в формировании паяного шва) высокотемпературной пайки расположенных отдельно соединений припой применяют в виде готовых форм из проволоки, фольги, прессованного порошка в виде ленты на органической основе (кольца, шайбы, прокладки и т. п.), в виде паст или покрытий, которые следует наносить гальваническим или термовакуумным способом или методом плакирования.
- 6.2.2 Для механизированной пайки узлов с большим числом соединений, расположенных близко друг от друга в одной или нескольких плоскостях, припой наносят в виде фольги на плоскость соединения или применяют покрытия из припоя при условии обеспечения взаимного прижатия деталей в процессе пайки или их сборки с запрессовкой.

Допускается комбинированное нанесение припоя в виде готовых форм из порошка и в виде покрытий из припоя.

6.2.3 Припои в виде порошков (композиционные припои) используют для пайки вертикальных швов, соединений сложной конфигурации, соединений с широким зазором или для нанесения тонких слоев на паяемую поверхность.

Припои в виде порошка наносят путем засыпания его в зазор или насыпания в форме валика около зазора с последующей пропиткой связующим.

Для нанесения тонких (менее 100 мкм) слоев порошковых припоев рекомендуется использовать установки или устройства для равномерного насыпания порошка с последующей пропиткой его связующими (при пайке сотовых уплотнений). Допускается комбинированное применение композиционного припоя — порошка-наполнителя и формованного припоя (полосы, кольца и т. п.), помещаемого рядом с валиком наполнителя (при пайке теплообменников).

- 6.2.4 Порошковые припои в виде паяльных паст наносят шпателем или шприцевыми дозирующими устройствами.
- 6.2.5 При ручном нанесении припоя в качестве связующего применяют 2%—10%-ный (по весу) раствор сополимера марки БМК-5 в растворителе Р-5 по ГОСТ 7827, или в растворителе 648 по ГОСТ 18188, или в бутилацетате по ГОСТ 22300. При приготовлении паяльной пасты на основе раствора связующего ТБМ-60 необходимо руководствоваться рекомендациями соответствующей отраслевой документации.
- 6.2.6 После нанесения порошковых припоев следует избегать ударов и встряхиваний узла, особенно до испарения растворителя.
- 6.2.7 Припой перед пайкой рекомендуется помещать непосредственно в зазор в виде готовых форм, особенно если он вызывает интенсивную химическую эрозию, содержит легко испаряемые элементы, имеет широкий температурный диапазон кристаллизации или плохо смачивает основной металл.

- 6.2.8 При нанесении припоя рядом с соединением рекомендуется располагать его относительно зазора таким образом, чтобы жидкий припой тек в сторону увеличивающегося градиента температур по направлению подвода тепла при пайке.
 - 6.2.9 При нанесении припоя следует руководствоваться следующими принципами:
- при расплавлении и растекании припоя направления действия гравитационных и капиллярных сил должны совпадать или не быть противоположными:
- расплавленный припой в процессе заполнения паяльных зазоров не должен в совокупности с конструктивными элементами узла образовывать замкнутых полостей (за исключением специальных требований к герметизации этих полостей).

6.3 Ограничение растекания припоя по поверхности

- 6.3.1 Для предотвращения и ограничения растекания припоя по поверхности деталей следует применять один или сочетание нескольких следующих способов:
- нанесение шлателем, кисточкой или распылителем паст или суспензий из порошкообразного графита, из окислов титана, алюминия, хрома или циркония, замешанных на воде, спирте этиловом, 3%—5%-ном растворе сополимера марки БМК-5, растворителе P-5;
 - хромирование поверхности;
 - изготовление технологических некапиллярных канавок на пути течения припоя;
 - ограничение температуры и времени выдержки пайки.

7 Требования к оборудованию для пайки

- 7.1 Для пайки легированных сталей в вакууме необходимо использовать печи с водоохлаждаемым корпусом, оборудованные системой откачки, которая обеспечивает вакуум в рабочей камере печи не менее 1,33 · 10⁻² Па (10⁻⁴ мм рт. ст.).
- 7.2 Мощность вакуумной печи и размеры ее рабочей камеры должны обеспечивать заданные термические режимы нагрева под пайку паяемого узла и температурные перепады на узле.
- 7.3 Вакуумные печи для пайки по способу загрузки могут быть камерного типа (с горизонтально расположенной рабочей камерой), шахтного типа (с загрузкой узлов в рабочую камеру сверху), кол-пакового типа (с перемещением камеры вверх й загрузкой узлов на неподвижное днище камеры) или элеваторного типа (загрузка снизу с перемещением днища камеры на позицию загрузки узлов при стационарном положении камеры). По характеру режима работы вакуумные печи для пайки могут быть периодического и полунепрерывного действия. В первом случае печь состоит из одной рабочей камеры, во втором кроме рабочей камеры печь имеет шлюзовые камеры загрузки и выгрузки или одну совмещенную шлюзовую камеру, а также одну или несколько камер охлаждения. По характеру транспортирования узлов печи полунепрерывного действия могут быть туннельного или карусельного типа.
- 7.4 Для нагрева при высокотемпературной пайке в вакуумных печах применяют нагреватели электросопротивления из тугоплавких металлов (молибдена, вольфрама) или из композитного углеродного материала. В качестве средства нагрева может быть использован электронный луч, сканирующий поверхность узла.
- 7.5 Вакуумные печи рекомендуется оснащать системой напуска нейтрального газа, способствующего снижению скорости испарения элементов с низким давлением паров в припое при нагреве под пайку или с целью обеспечения ускоренного охлаждения после пайки [1]. Для достижения более высоких скоростей охлаждения узлов после пайки могут быть применены печи с принудительной конвекцией нейтрального газа, находящегося в рабочей камере печи под давлением выше атмосферного.
 - 7.6 Тип и мощность печи выбирают в зависимости от следующих параметров:
 - массы, конфигурации, размеров изделия и пространственного расположения паяных соединений;
 - необходимой производительности;
 - удобства и технической возможности осуществления операции загрузки выгрузки узлов;
 - термических режимов лайки и охлаждения;
 - технической оснащенности производства;
 - условий формирования паяных соединений.
- 7.7 Вакуумная печь для пайки должна иметь одну или более тарированных термопар для контроля и управления процессом нагрева под пайку.
- 7.8 Температурная однородность по объему рабочей камеры лечи в стационарном режиме нагрева должна быть не менее ± 10 °C. Для обеспечения этой величины лечи с рабочей камерой большого

объема (более 0,3 м³) должны быть снабжены несколькими секциями нагревателей, управляемыми автономно.

- 7.9 Средства откачки должны обеспечивать вакуум в рабочей камере печи не менее 1,33 · 10⁻² Па (10⁻⁴ мм рт. ст.) как в процессе нагрева под пайку, так и при температуре пайки. Термопарные и ионизационные преобразователи должны замерять вакуум непосредственно в рабочей камере.
- 7.10 Конструкция вакуумной печи должна обеспечивать натекание не более 0,066 л · Па/с (0.5 л · мм рт. ст./с).
- 7.11 Вакуумные печи для пайки рекомендуется оснащать системой управления для обеспечения автоматизированного нагрева по заданной температурно-временной зависимости с выводом информации на графический дисплей и документированием работы установки в реальном режиме времени, что позволяет исключить брак по вине оператора и диагностировать состояние печи. Адаптивная система управления должна автоматически снижать скорость нагрева при снижении вакуума и так же автоматически повышать скорость при восстановлении заданного уровня вакуума.
- 7.12 Внедрение, отладку, эксплуатацию и ремонт вакуумного оборудования следует осуществлять по технической документации завода — изготовителя оборудования и в соответствии с инструкцией по эксплуатации.

8 Требования к технологическому процессу вакуумной пайки

- 8.1 Процесс пайки в вакуумных печах электросопротивления рекомендуется применять для безокислительного нагрева узлов сложной конфигурации и с объемным расположением паяных швов. Пайка может быть штучная — для крупно- и среднегабаритных узлов (сотовых уплотнений, направляющих аппаратов компрессора, топливных коллекторов) и групповая — для мелких и среднегабаритных узлов (трубопроводов, лопаток, форсунок, крыльчаток, теплообменников).
- 8.2 Процесс пайки в вакуумных печах с нагревом сканирующим электронным лучом рекомендуется применять при необходимости локального нагрева под пайку объемных узлов, имеющих соединения, лежащие в одной наружной плоскости (трубчатых теплообменников), а также нагрева партии мелких изделий (крыльчаток, форсунок), установленных в одной плоскости. Габариты наружной поверхности узлов, подвергаемой прямому нагреву сканирующим электронным лучом, определяются углом отклонения от вертикальной оси луча и расстоянием от нагреваемой поверхности до электронно-лучевой пушки.
- 8.3 При пайке в вакууме должен быть обеспечен текущий постоянный контроль за следующими параметрами:
 - степенью разрежения в течение термического цикла;
 - скоростью нагрева;
 - температурой пайки (при установленных температурных перепадах на нагреваемом узле);
- длительностью и температурой промежуточных выдержек (при необходимости их применения),
 длительностью выдержки при температуре пайки;
 - скоростью охлаждения;
 - температурой выгрузки паяного узла.
- 8.4 Контроль за температурой нагрева под пайку следует осуществлять горячими спаями термопар, которые надежно контактируют с металлом паяемого узла.
- 8.5 В случае отсутствия адаптивной системы управления скорость нагрева следует согласовывать с показаниями вакуумметра.
- 8.6 При пайке электронным лучом следует учитывать, что вертикальные элементы деталей, параллельные лучу, нагреваются медленнее, чем горизонтальные элементы поверхности, перпендикулярные потоку электронов. В этом случае с целью обеспечения равномерного нагрева всех элементов узла следует осуществлять промежуточные выдержки или замедленный нагрев с применением повторно-кратковременного режима включения электронного луча.
- 8.7 Во избежание хрупкого разрушения легированных сталей при пайке припоями системы Cu-Ni-Mn нагрев должен быть равномерным, без резких температурных перепадов на узле, вызывающих образование растягивающих напряжений.
- 8.8 Если основной металл после пайки должен быть термообработан, то при общем нагреве узла необходимо применять припой с температурой пайки выше температуры термообработки или совмещать операции пайки и термообработки.

- 8.9 Нагрев легированных сталей от температур выше 1100 °С до температуры пайки рекомендуется осуществлять с возможно более высокими скоростями и малыми выдержками при температуре пайки во избежание образования крупнозернистой структуры и ухудшения свойств основного металла (жаропрочности, сопротивления усталости, ударной вязкости).
- 8.10 Никелевые и медные припои, содержащие Мп, следует укладывать в закрытые канавки или в сборочные зазоры (для уменьшения испарения Мп), или применять испарители Мп в замкнутом объеме (для подавления его испарения из припоя), или паять путем нагрева электронным лучом при скорости нагрева выше 50 град/мин (для растекания припоя со скоростью, превышающей скорость испарения Мп). В последнем случае припой может быть уложен на открытой поверхности.
- 8.11 Для пайки тонкостенных конструкций следует применять наименее эрозионно-активные по отношению к сталям припои: на медной основе припой ВПр2, на никелевой основе припой ВПр50 в соответствии с таблицей А.1 (приложение А).
- 8.12 Последующая сварка узлов по паяным швам или по поверхности, луженной припоем (особенно на основе Cu), не рекомендуется из-за образования горячих трещин в сварном шве вследствие образования в его структуре легкоплавких фаз.

9 Контроль качества паяных соединений

9.1 Общие положения

- 9.1.1 Основными методами управления качеством являются организация и проведение необходимых мероприятий по подготовке производства, правильно разработанный и внедренный технологический процесс, надлежащая эксплуатация и плановый ремонт оборудования с обязательным документированием этих мероприятий.
- 9.1.2 Применяемые для пайки припои и другие вспомогательные материалы должны соответствовать требованиям стандартов, технических условий или паспортным данным.
- 9.1.3 Паяемые детали и сборочные узлы должны соответствовать всем данным, указанным в конструкторской документации, согласованной с технологическими службами завода-изготовителя.
- 9.1.4 Каждая паяная сборочная единица должна быть снабжена технологическим паспортом с отметкой о проведении всех операций технологического процесса.
- 9.1.5 Виды и методы контроля паяных изделий устанавливают в конструкторской документации на изделие.

9.2 Неразрушающие методы контроля

- 9.2.1 Контроль методом радиационной дефектоскопии с использованием проникающих ионизирующих излучений и ультразвуковой контроль применяют с целью обнаружения различного рода внутренних дефектов. Паяные узлы с помощью этих методов контролируют по ГОСТ 27947 и ГОСТ 26126.
- 9.2.2 Контроль испытанием на герметичность следует применять для обнаружения сквозных дефектов паяных соединений по ГОСТ 24054.

9.3 Разрушающие методы контроля

- 9.3.1 Методы контроля с разрушением паяных узлов следует применять при выборочных испытаниях в соответствии с требованиями конструкторской документации и нормативной технической документации на изделие.
- 9.3.2 Механические свойства паяных соединений и стали следует проверять на контрольных образцах-свидетелях, паянных в условиях, тождественных условиям пайки изделия.

Вид и объем механических испытаний устанавливаются конструкторской документацией. Образцы для испытания на растяжение изготавливают по ГОСТ 28830, на усталость — по ГОСТ 26446, для оценки влияния жидкого припоя на механические свойства паяемого материала — по ГОСТ 20487.

9.3.3 Металлографический анализ следует выполнять на шлифах, вырезанных из образцов-свидетелей и технологических образцов, имитирующих паяный узел. При металлографическом анализе оцениваются: структура и размер зерна стали, степень заполнения паяльных зазоров, правильность формы галтели, наличие трещин, пористости и непропаев, а также характер и степень взаимодействия припоя с основным металлом по ГОСТ 21548 и ГОСТ 21549. Рекомендуемая степень эрозии основного металла не должна превышать 10 % от его толщины в области галтели и 5 % — в области нахлестки [2]. Периодичность металлографического анализа и его количественные показатели по лористости, эрозии и непропаям устанавливает соответствующая служба главного специалиста предприятия-изготовителя по согласованию с конструкторским бюро — разработчиком изделия.

- 9.3.4 Данные о сопротивлении срезу паяных образцов внахлестку из различных сталей приведены в таблице А.2 (приложение А).
- 9.3.5 Наиболее достоверным критерием правильно выбранной конструкции паяного узла и технологии пайки являются результаты эксплуатационных испытаний [1], которые проводят на стадии опытного производства.

10 Дефекты паяных соединений и их исправление

10.1 Нормы и виды допустимых дефектов паяных соединений устанавливаются в каждом отдельном случае службами главного сварщика (главного технолога) и согласовываются с конструкторским бюро на основании анализа результатов производственно-конструкторских испытаний натурных узлов. Нормы и виды дефектов могут устанавливаться с помощью эталонов на каждый вид и тип паяного соединения.

В отсутствие в технической документации указаний на нормы допустимых дефектов следует иметь в виду, что в паяных соединениях не допускаются трещины, видимые непропаи и наличие нерасплавившегося припоя. При пайке порошковыми припоями шероховатая поверхность галтелей не является браковочным признаком.

- 10.2 Типичные наружные и внутренние дефекты, возникающие при пайке, причины образования этих дефектов и способы их устранения приведены в таблице А.3 (приложение А).
- 10.3 Паяные соединения, не отвечающие требованиям технической документации, следует исправлять перепайкой или подпайкой. Допустимое число перепаек и подпаек определяется возможностью снижения эксплуатационных характеристик узла и устанавливается в каждом отдельном случае соответствующими службами главного сварщика по согласованию с конструкторским бюро разработчика изделия.
- 10.4 Ремонтная технология пайки должна разрабатываться индивидуально в каждом конкретном случае в зависимости от конфигурации изделия, геометрии соединения, применяемых материалов и условий работы изделия.
- 10.5 Применение ремонтной технологии должно быть согласовано со службами конструкторского бюро после проведения соответствующих испытаний изделия.

11 Требования безопасности

При высокотемпературной пайке в вакуумных установках следует выполнять требования [3] (разделы 2.5, 3, 4.5, 6—11).

12 Метрологическое обеспечение

- 12.1 Температуру паяемых узлов в процессе нагрева следует измерять термопарами хромельалюмелевыми типа ТХА (предел измерения — 1000 °C), платинородий-платиновыми типа ТПП (предел измерения — 1300 °C) и вольфрам-рениевыми типа ТВР (предел измерения — 1800 °C) по ГОСТ 8.585.
- 12.2 Контроль за температурой нагрева следует осуществлять контрольно-измерительными теплофизическими приборами с точностью не менее 0,5 %.
- 12.3 Вакуум в рабочей камере следует контролировать вакуумметрами ВИТ2, ВИТ2А, ВТТ-18-2, ВИ-18 и т. п. с термопарными и ионизационными датчиками-преобразователями (диапазон измерений соответственно 1,3⋅10⁻²—6,6⋅10⁻¹ Па и 1,3⋅10⁻⁵—8⋅10⁻¹ Па) со стрелочной или цифровой индикацией.
- 12.4 Сборочные зазоры между соединяемыми деталями до пайки следует измерять непосредственно щупом, изготовленным по 2-му классу точности, или косвенно замером линейных размеров входящих в узел деталей штангенциркулем по ГОСТ 166, микрометром по ГОСТ 6507 и другими средствами измерений. С их помощью контролируют требуемые линейные размеры узла после пайки.
- 12.5 При ручном управлении для измерения технологического времени пайки пользуются часами или секундомером механическим, отвечающими соответствующим техническим условиям.
 - 12.6 При контроле паяных узлов внешним осмотром пользуются лупами до *10 по ГОСТ 25706.

Приложение А (обязательное)

Конструктивные и технологические характеристики паяных соединений

Таблица А.1 — Припои для вакуумной пайки легированных сталей

Марка	Марка Солос Паяемы		Темпера	тура, °С	05	14	
припоя	Состав	материал	плавления	пайки	Область применения	Форма припоя	
ВПр2	Cu-Mn-Ni	12X18H10T X15H9Ю X17H5M3	От 960 до 980	От 1050 до 1080	Тонкостенные дета- ли, теплообменники с рабочей температу- рой до 450 °C и др.	Лист, полосы, порошок	
ВПр4	Cu-Mn-Ni-Co	12X18H10T	От 940 до 980	От 1050 до 1090	Трубопроводы, сото- вые уплотнения	Лист, полосы, порошок	
ВПр13 (ПСрМц МН23)	Cu-Ag-Mn-Ni	07X15H7ЮM2 08X17H5M3 09X15H5Д2T 03X11H10M2T	От 850 до 910	От 940 до 970	Тонкостенные дета- ли, сотовые конструк- ции и др.	Лист, фольга	
ВПр7	Ni-Mn-Co	Коррозионно- стойкие, жаро- прочные стали: 15X16H2AM 15X12H2MФBAБ 16X11H2B2MФ и др.	От 1100 до 1120	От 1160 до 1180	Трубопроводы, фор- сунки, лопатки на- правляющего аппа- рата компрессора, теплообменники с ра- бочей температурой до 600 °С, корпусные детали ГТД, топлив- ный коллектор и др.	Лист, лента, порошок	
ВПр50	Ni-Cr-Si-B	12X18H10T, жаропрочные стали	От 1030 до 1120	От 1130 до 1160	Тонкостенные детали, сотовые уплотнения, теплообменники и др.	Порошок, аморфная лента	

Таблица А.2 — Сопротивление срезу паяных соединений из листовых материалов при различных температурах

Паяемый	Сопротивление срезу, МПа, при температуре, °C							
материал — сталь	20	200	300	400	500	700	800	
			Припой ВП	p2				
Х15Н9Ю	От 206 до 294	От 196 до 294	-	От 186 до 235		-	-	
Х15Н5Д2Т	От 284 до 314	От 263 до 294	-	От 196 до 263	-	-	-	
12X18H10T	От 260 до 300	От 206 до 216	От 167 до 196		-	-	_	
			Припой ВП	p4				
12X13	От 206 до 243	-	От 196 до 225	-	-	-		
14X17H2	От 260 до 318	-	От 254 до 308	-	От 63,5 до 105	-	-	
Х15Н5Д2Т	От 196 до 352	-	От 284 до 314	-	От 254 до 274	-	-	
12X18H10T	От 330 до 390	От 276 до 316	От 245 до 274	От 255 до 300	- :	+	-	
			Припой ВПр	13				
03X11H10M2T	От 280 до 345	-	_	-	- -	-	-	

ГОСТ Р 53542-2009

Окончание таблицы А.2

Паяемый	Сопротивление срезу, МПа, при температуре, °C							
материал — сталь	20	200	300	400	500	700	800	
			Припой ВГ	7p7				
12X18H10T	От 440 до 510	От 420 до 440		От 365 до 395	_	От 185 до 215	От 167 до 176	
			Припой ВП	lp50				
12X18H10T	От 275 до 295	-	-	_	-	-	-	

Таблица А.3 — Типичные дефекты паяных соединений

Тип дефекта	Вероятная причина образования дефекта	Возможные способы устранения дефекта		
Непропай	Плохая смачиваемость и незатехание при- поя в паяльный зазор из-за недостаточно чистой паяемой поверхности, неудален- ных оксидных пленок перед пайкой	Более тщательная очистка поверхности о жиров, масел и грязи. Использование раствора, эффективно удаляющего оксидную пленку с поверхно сти при предварительной подготовке		
	То же из-за образования оксидных пленок в процессе нагрева под пайку	Повышение степени вакуумирования улуч- шением работы откачных систем. Устранение негерметичности камеры, уменьшение степени натекания. Применение технологических покрытий из никеля		
	Неправильное расположение прилоя	Изменение геометрии соединения для обеспечения правильной укладки припоя или положения узла при пайке, чтобы обе- спечить заполнение припоем паяльного зазора		
	Температура припоя достигает темпера- туры плавления раньше, чем температура узла в области соединения	Обеспечение равномерного нагрева		
	Конструкция приспособления или геоме- трия узла не обеспечивает рекомендуе- мую величину паяльного зазора и его рав- номерность при пайке: припой плохо или неравномерно затекает в зазор	Изменение конструкции приспособления, обеспечение технологичности конструкции узла и геометрии соединения для обеспе- чения оптимального зазора при пайке		
Неспай	Наличие стойких оксидных пленок на по- верхности	Применение технологических покрытий из никеля. Замена применяемой стали на аналог с меньшим содержанием AI и Ti		
Основной металл и паяный шов окис- лены, несмотря на	Большое натекание или недостаточный вакуум, приводящие к окислению стали при охлаждении	Улучшение работы вакуумной системы. Устранение натекания в рабочую камеру вакуумной печи		
удовлетворительное формирование со- единений и отсут- ствие непропаев	Выгрузка узла из камеры вакуумной лечи при слишком высокой температуре	Выгрузка узла при его температуре ниже 200 °C		
Чрезмерная эрозия основного металла в виде подрезов	Завышенная температура пайки. Увеличенное время выдержки при температуре пайки	Более строгий температурно-временной режим пайки		
	Большое количество припоя	Применение минимального количества припоя		
	Большая эрозионная активность припоя	Использование припоя с меньшей эрози- онной активностью		

Окончание таблицы А.3

Тил дефекта	Вероятная причина образования дефекта	Возможные способы устраненяя дефекта			
Чрезмерная эрозия основного металла в виде «ручьев» на по- верхностях, приле-	Избирательное растворение припоем основного металла по границам зерен	Уменьшение времени выдержки и температуры пайки. Замена припоя на менее эрозионно-активный			
гающих к галтелям паяного соединения	Стекание излишков припоя по поверхно- сти детали в процессе пайки	Правильная дозировка припоя			
Пористость в пая- ном шве	Выделение газов из основного металла и припоя	Применение быстрых способов нагрева. Закладывание припоя в закрытые пазы или в сборочный зазор. Замена припоя с исключением легкоиспа- ряемых компонентов			
	Неполное удаление элементов связующе- го при пайке паяльными пастами из по- рошкообразных припоев	Увеличение времени сушки пасты после ее нанесения. Увеличение времени нагрева до достиже- ния температуры 700 °C			
Неровная поверх- ность галтели, рых- лоты, острые вы-	Испарение элементов-депрессантов при- поя в процессе нагрева (например, Мп в припоях на основе Сu или Ni)	Применение быстрых способов нагрева			
ступы при неполном заполнении паяль- ного зазора	Широкий температурный диапазон кри- сталлизации припоя	Применение припоя с узким диапазоном кристаллизации			
	Недостаточная температура пайки	Повышение температуры пайки			
	Частичное окисление припоя, уложенного рядом с зазором	Предотвращение окисления припоя			
Наплывы припоя	Избыток припоя	Оптимальная дозировка припоя			
	Неправильное расположение припоя или изделия в процессе лайки	Изменение геометрии соединения, пра- вильное расположение припоя и изделия, чтобы направление силы тяжести не про- тиводействовало или совпадало с направ- лением течения припоя в паяльный зазор			
	Нежелательное течение припоя к более го- рячим областям вследствие неправильно- го и неравномерного нагрева соединения	Равномерный нагрев соединения, обеспе- чение градиента температур, способству- ющего затеканию припоя в паяльный зазор			
Отсутствие галтелей	Недостаточное количество припоя	Обеспечение требуемой дозировки припоя			
	Перегрев при пайке	Более строгий контроль за температурой пайки			
Трещины в паяном шве	Деформация паяных соединений при ох- лаждении, вызванная внешним воздей- ствием	Исключение источников внешнего воздей- ствия, приводящих к образованию трещин			
	Деформации, вызванные термическими напряжениями: - в результате различных коэффициентов термического расширения соединяемых деталей, узла и приспособления для пайки; - вследствие неравномерного охлаждения узла; - вследствие неравномерного охлаждения узла и приспособления для пайки	Обеспечение технологичности конструкции узла. Применение материалов с близкими коэффициентами термического расширения. Обеспечение медленного охлаждения узла. Изменение конструкции приспособления для равномерного охлаждения			
Трещины в около- шовной зоне	Охрупчивающее воздействие припоя на основной металл при наличии растягива- ющих структурных или деформационных напряжений до пайки	Предварительная термообработка, снимающая растягивающие напряжения. Совмещение термического цикла пайки с термообработкой			
	Охрупчивающее воздействие припоя по границам зерен вследствие избирательно- го растворения основного металла в при- пое	Применение припоя, равномерно раство- ряющего основной металл. Замена основного металла			

Библиография

- [1] Рекомендации по проектированию, изготовлению и контролю ответственных паяных узлов. Стандарт Американского общества сварки AWS C3.3—90
- [2] Технические требования по печной пайке. Стандарт Американского общества сварки AWS C3.6—90
- [3] ПОТ РМ 022—2002 Межотраслевые правила по охране труда при выполнении работ по пайке и лужению изделий. Утверждены Приказом Минтруда России от 17 июня 2003 г. № 41

УДК 621.721:006.354 OKC 49.050

Ключевые слова: авиационные двигатели, пайка, легированные стали, вакуум, требования к технологическому процессу

Редактор Е.И. Мосур Технические редакторы В.Н. Прусакова, И.Е. Черепкова Корректор Е.Р. Ароян Компьютерная верстка А.В. Софейчук

Сдано в набор 09.10.2019. Подписано в печать 29.11.2019. Формат 60 × 84.1/8. Гарнитура Ариал. Усл. печ. л. 1,86. Уч.-изд. л. 1,50.

Подготовлено на основе электронной версии, предоставленной разработчиком стандарта

ИД «Юриспруденция», 115419, Москва, ул. Орджоникидзе, 11. www.jurisizdat.ru y-book@mail.ru

Создано в единичном исполнении во ФГУП «СТАНДАРТИНФОРМ» для комплектования Федерального информационного фонда стандартов, 117418 Москва, Нахимовский пр-т, д. 31, к. 2. www.gostinfo.ru info@gostinfo.ru