ФЕДЕРАЛЬНОЕ АГЕНТСТВО

ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ ΓΟCT P 53709— 2009

Скважины нефтяные и газовые

ГЕОФИЗИЧЕСКИЕ ИССЛЕДОВАНИЯ И РАБОТЫ В СКВАЖИНАХ

Общие требования

Издание официальное

Предисловие

- РАЗРАБОТАН Ассоциацией научно-технического и делового сотрудничества по геофизическим исследованиям и работам в скважинах (АИС) и Межрегиональной общественной организацией «Евро-Азиатское геофизическое общество» (МОО «ЕАГО»)
- 2 ВНЕСЕН Техническим комитетом по стандартизации ТК 431 «Геологическое изучение, использование и охрана недр»
- 3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 15 декабря 2009 г. № 1151-ст
- 4 В настоящем стандарте реализован Федеральный закон от 21 февраля 1992 г. № 2395-І «О недрах» в части геологического изучения, рационального использования и охраны недр, а также Федеральные законы от 21 июля 1997 г. № 116-ФЗ «О промышленной безопасности опасных производственных объектов» в части безопасного ведения работ, связанных с пользованием недр, от 9 января 1996 г. № 3-ФЗ «О радиационной безопасности населения» и от 26 июня 2008 г. № 102-ФЗ «Об обеспечении единства измерений»
 - 5 ВВЕДЕН ВПЕРВЫЕ
 - 6 ПЕРЕИЗДАНИЕ. Август 2019 г.

Правила применения настоящего стандарта установлены в статье 26 Федерального закона от 29 июня 2015 г. № 162-ФЗ «О стандартизации в Российской Федерации». Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе «Национальные стандарты», а официальный текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

Содержание

1 Область применения	1
2 Нормативные ссылки	1
3 Термины, определения и сокращения	1
4 Общие положения	2
5 Требования к составу ГИРС и условиям их проведения	3
5.1 Принципы формирования состава ГИРС	3
5.2 ГИРС, проводимые в опорных и параметрических скважинах	3
5.3 ГИРС, проводимые в структурных, поисковых, оценочных, разведочных	
и эксплуатационных скважинах	4
5.4 Основные требования к проведению ГИРС для решения геологических задач	6
5.5 Состав ГИРС для изучения технического состояния обсаженных скважин	6
5.6 Состав ГИРС при мониторинге разработки нефтяных и газонефтяных месторождений	7
5.7 Состав ГИРС при мониторинге разработки газовых, газоконденсатных месторождений	
и эксплуатации подземных хранилищ газа	8
6 Требования к объемам и качеству ГИРС	9
7 Обеспечение проведения ГИРС	. 10
8 Требования к подготовке скважин для проведения ГИРС	. 10
9 Требования к соблюдению правил безопасности и охраны недр при проведении ГИРС	. 11
10 Действия при инцидентах и авариях, возникающих в процессе проведения ГИРС	. 11
Приложение А (рекомендуемое) Задачи, решаемые с помощью ГИРС при разведке	
и мониторинге разработки месторождений УВС, создании и эксплуатации	
подземных хранилищ газа	. 14
Библиография	. 16

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Скважины нефтяные и газовые

ГЕОФИЗИЧЕСКИЕ ИССЛЕДОВАНИЯ И РАБОТЫ В СКВАЖИНАХ

Общие требования

Oil and gas wells. Geophysical researches and works in wells. General requirements

Дата введения — 2011—07—01

1 Область применения

Настоящий стандарт устанавливает виды, объемы, стадии и порядок проведения геофизических исследований и работ в нефтяных и газовых скважинах и требования к ним.

Настоящий стандарт предназначен для применения при геологическом изучении, разведке и добыче углеводородного сырья, сооружении и эксплуатации подземных хранилищ газа, а также при проведении аудита запасов углеродного сырья.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ Р 53239 Хранилища природных газов подземные. Правила мониторинга при создании и эксплуатации

ГОСТ Р 53240 Скважины поисково-разведочные нефтяные и газовые. Правила проведения испытаний

ГОСТ Р 53375 Скважины нефтяные и газовые. Геолого-технологические исследования. Общие требования

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя «Национальные стандарты» за текущий год. Если заменен ссылочный стандарт, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого стандарта с учетом всех внесенных в данную версию изменений. Если заменен ссылочный стандарт, на который дана датированная ссылка, то рекомендуется использовать версию этого стандарта с указанным выше годом утверждения (принятия). Если после утверждения настоящего стандарта в ссылочный стандарт, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение рекомендуется применять без учета данного изменения. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту ссылку.

3 Термины, определения и сокращения

- В настоящем стандарте применен следующий термин с соответствующим определением:
- 3.1.1 геофизические исследования и работы в скважинах; ГИРС: Измерение характеристик различных по природе естественных или искусственных физических полей, а также потока, состава и

ГОСТ Р 53709-2009

свойств флюидов, пространственного положения скважин и геометрических размеров сечения стволов; работы в скважинах, связанные с вторичным вскрытием, испытанием и освоением пластов, а также с интенсификацией притока флюидов.

Примечание — Различают спедующие виды геофизических исследований и работ в скважинах:

- каротаж исследования в околоскважинном пространстве;
- геолого-технологические исследования в процессе бурения;
- определение технического состояния конструктивных элементов скважин и технологического оборудования;
- промыслово-гефизические исследования при испытании, освоении и в процессе эксплуатации скважин;
- отбор образцов пород и проб пластовых флюидов.
- 3.2 В настоящем стандарте применены следующие сокращения:
- АК акустический каротаж:
- АКЦ акустическая цементометрия;
- БК боковой каротаж;
- БКЗ боковое каротажное зондирование;
- БМК боковой микрокаротаж;
- ВИКИЗ высокочастотное индукционное каротажное изопараметрическое зондирование;
- ВСП вертикальное сейсмическое профилирование;
- ГГК-ЛП гамма-гамма-каротаж литоплотностной;
- ГГК-П гамма-гамма-каротаж плотностной:
- ГГК-Ц гамма-гамма-цементометрия:
- ГДК гидродинамический каротаж;
- ГК гамма-каротаж интегральный;
- ГК-С гамма-каротаж спектрометрический:
- ГТИ геолого-технологические исследования скважин;
- ДК диэлектрический каротаж;
- ИК индукционный каротаж;
- ИНГК импульсный нейтронный гамма-каротаж;
- ИНГК-С импульсный спектрометрический нейтронный гамма-каротаж;
- ИНК импульсный нейтронный каротаж;
- ИННК импульсный нейтрон-нейтронный каротаж;
- ИПК испытание пластов с помощью приборов на кабеле;
- ИПТ испытание пластов с помощью инструментов на трубах;
- КО отбор керна с помощью приборов на кабеле;
- КС метод кажущегося сопротивления;
- ЛМ локация муфт колонн;
- МК микрокаротаж;
- НГК нейтронный гамма-каротаж;
- НК нейтронный каротаж;
- НКТ насосно-компрессорные трубы;
- ПЖ промывочная жидкость;
- ПС метод потенциалов самопроизвольной поляризации;
- ПХГ подземные хранилища газа;
- Т термометрия:
- УВС углеводородное сырье;
- ЯМК ядерный магнитный каротаж.

4 Общие положения

4.1 Геофизические исследования и работы в скважинах, пробуренных для поиска, разведки и добычи нефти и газа, проводят при их строительстве, освоении и эксплуатации для решения геологических, технических и технологических задач, подсчета запасов месторождений УВС и мониторинга их разработки, создания и эксплуатации подземных хранилищ газа, а также при проведении природоохранных мероприятий. Решаемые с помощью ГИРС задачи приведены в приложении А. При этом используются различные по физической природе методы геофизических исследований: электрические, электромагнитные, радиоактивные, акустические, ядерные магнитные и другие.

- 4.2 Общие исследования проводят по всему стволу скважины от забоя до устья. На основании геологического прогноза в скважинах выделяют ранее не изученные, перспективные или содержащие нефть и газ интервалы для проведения детальных исследований и работ. Если рекомендуемого настоящим стандартом состава ГИРС недостаточно для решения поставленных задач, по согласованию с заказчиком разрабатывают и применяют специальные методы и технологии ГИРС.
- 4.3 Геологическое изучение с помощью ГИРС проводят в разрезах скважин всех категорий опорных, параметрических, поисково-оценочных и разведочных. В поисково-оценочных и разведочных скважинах, а также в эксплуатационных скважинах при доразведке и уточнении запасов результаты ГИРС используются совместно с результатами определения фильтрационно-емкостных и физических свойств образцов керна, а также состава и свойств отобранных проб флюидов.
- 4.4 В процессе строительства скважин проводятся геолого-технологические исследования, которые в соответствии с ГОСТ Р 53375 включают в себя комплексные исследования содержания, состава и свойств пластовых флюидов и горных пород в циркулирующей промывочной жидкости, характеристик и параметров технологических процессов на различных этапах строительства скважин с привязкой результатов исследований ко времени контролируемого технологического процесса и к разрезу исследуемой скважины.
- 4.5 После обсадки скважин проводится вторичное вскрытие пластов путем перфорации обсадной колонны, цемента и пород прострелочно-взрывным, сверлящим или другим методом. Испытание пластов, освоение пластов и скважин, а также интенсификацию притоков в скважинах проводят с помощью приборов и оборудования, закрепленного на кабеле и/или бурильных трубах в соответствии с ГОСТ Р 53240.
- 4.6 При мониторинге разработки месторождений УВС с помощью ГИРС решаются задачи по исследованию процессов вытеснения нефти и газа в пласте, оценке эффективности применения методов повышения нефтеотдачи, определению эксплуатационных характеристик пластов. Мониторинг эксплуатации ПХГ осуществляется в соответствии с требованиями ГОСТ Р 53239.
- 4.7 Результаты ГИРС используются для оценки ущерба, нанесенного недрам вследствие некачественного строительства скважин и нарушений технологии добычи.
- 4.8 При разработке месторождений УВС в зоне распространения многолетне-мерзлых пород должен проводиться геолого-геофизический мониторинг криолитозоны с целью выявления и прогнозирования процесса растепления при строительстве и эксплуатации скважин.

5 Требования к составу ГИРС и условиям их проведения

5.1 Принципы формирования состава ГИРС

- 5.1.1 Состав ГИРС формируется в соответствии с назначением скважин, прогнозируемым геологическим разрезом и техническими условиями строительства и эксплуатации скважин. В состав ГИРС включают методы, освоенные в отечественной практике, а также новые методы по мере их разработки и апробации. Состав ГИРС уточняют для каждого района, площади, месторождения, скважины или группы скважин в соответствии с проектными условиями бурения и прогнозируемым геологическим разрезом. Требования к составу ГИРС должны быть включены в проектную документацию на геологическое изучение недр, строительство скважин, разработку месторождений и создание ПХГ.
- 5.1.2 ГИРС должны проводиться с применением цифровой компьютеризованной каротажной техники и комбинированных скважинных приборов (модулей).

5.2 ГИРС, проводимые в опорных и параметрических скважинах

5.2.1 Состав ГИРС, которые проводятся в опорных и параметрических скважинах, приведен в таблице 1.

Таблица 1 — Состав ГИРС, проводимых в опорных и параметрических скважинах

Вид исследований и работ	Состав ГИРС
Общие исследования по всему разрезу скважин	ГТИ, ПС, КС (один, два зонда из состава БКЗ), БК, ИК, ГК, НК, АК, ГГК-П, ВСП, ИК, ВИКИЗ, профилеметрия, измерение естественной температуры пород
Детальные исследования в неизученной ранее части разреза и в интервалах предполагаемой продуктивности	БКЗ, МК, БМК, ГГК-ЛП

Окончание таблицы 1

Вид исследований и работ	Состав ГИРС
Детальные исследования и работы в интервалах пред- полагаемой продуктивности сложных коллекторов (тре- щинных, глинистых, битуминозных)	ДК, ГДК, ИПК, ИПТ, ГК-С, ИНК, ГГК-ЛП, ЯМК, электрическое и акустическое сканирование, наклонометрия, каротаж магнитной восприимчивости
Исследования и работы в интервалах предполагаемого содержания нефти и газа для определения положения межфлюидных контактов и изучения пластовых давлений	гдк, ипк, ипт
Работы в интервалах предполагаемой продуктивности при низком выносе керна	ко

- 5.2.2 При выделении и изучении сложных коллекторов рекомендуется проводить повторные исследования при смене условий в скважине (расформировании зоны проникновения, замене промывочной жидкости) с применением искусственных короткоживущих радионуклидов. Повторные исследования методом ИК проводятся при бурении на пресных ПЖ, методом БК при бурении на минерализованных ПЖ. При вскрытии газоносного разреза проводятся повторные исследования методом НК в течение нескольких месяцев по мере испытания объектов в колонне.
- 5.2.3 Для изучения технического состояния открытого ствола скважин, бурение которых не завершено, ГИРС включают в себя инклинометрию, профилеметрию, резистивиметрию и термометрию по всему стволу скважины.
- 5.2.4 В интервалах, намечаемых для испытания в открытом стволе в процессе бурения скважины, ГИРС включает в себя: ПС (при электрическом сопротивлении ПЖ выше 0,2 Ом · м), БК (или ИК), ГК, НК, профилеметрию, проводимые непосредственно перед испытанием.
- 5.2.5 Состав ГИРС при испытаниях объектов в колонне приведен в таблице 2. При выполнении кислотных обработок и мероприятий по интенсификации притоков исследования проводят до и после воздействия на пласт.
- 5.2.6 При решении других задач, связанных с испытаниями скважины (например, контроль за гидроразрывом пласта, обработкой призабойной зоны, установление места прихвата НКТ, положения пакеров), исследования проводят по специальным программам.

Таблица 2 — Состав ГИРС при испытаниях в колонне

Задача	Условие проведения исследований	Состав ГИРС
Уточнение выбора объекта и привязка к разрезу	Обсаженная скважина без НКТ, пласты неперфорированный и пер- форированный до вызова притока	ЛМ, ГК, НК (ИНК), Т
Контроль процесса притока и мероприятий по его интенсифи-	НКТ перекрывают интервал перфорации	ЛМ, НК (ИНК), ГК, Т, барометрия
кации	НКТ не перекрывают интервал пер- форации	ЛМ, ГК, НК (ИНК), Т, барометрия, рас- ходометрия (термоанемометрия), влагометрия, резистивиметрия

5.3 ГИРС, проводимые в структурных, поисковых, оценочных, разведочных и эксплуатационных скважинах

5.3.1 В открытом стволе структурных, поисковых, оценочных и разведочных скважин для решения геологических и технических задач проводятся ГИРС, состав которых указан в таблице 3.

Таблица 3 — ГИРС, проводимые в структурных, поисковых, оценочных и разведочных скважинах

Вид исследований и работ	Состав ГИРС
Общие исследования по всему разрезу скважин	ГТИ, ПС, КС (1, 2 зонда из состава БКЗ), БК, ГК, НК, АК, ГГК-П, ИК, ВИКИЗ, Т, профилеметрия, инклинометрия, резистивиметрия, измерение естественной температуры пород, ВСП

Окончание таблицы 3

Вид исследований и работ	Состав ГИРС
Детальные исследования в интервалах предполагае- мой продуктивности	БКЗ, МК, БМК, ЯМК, ГК-С, ГГК-ЛП, наклонометрия
Детальные исследования и работы при наличии в интервалах предполагаемой продуктивности коллекторов (трещинных, глинистых, битуминозных)	ДК, ГДК, ИПК, ИПТ, акустическое и электрическое ска- нирование, ЯМК
Исследования и работы для определения положения межфлюидных контактов и пластовых давлений в ин- тервалах предполагаемой продуктивности	гдк, ипк, ипт, инк, нк, ямк
Работы при низком выносе кёрна	ко

- 5.3.2 Для оценочной скважины, проектируемой как базовая при изучении новых и сложных типов продуктивных разрезов, в интервале продуктивных пластов должна обеспечиваться детальная привязка керна по глубине к данным каротажа. Рекомендуется вскрытие продуктивного разреза в базовой скважине проводить с применением промывочной жидкости с углеводородной основой. При бурении оценочных скважин с применением непроводящей промывочной жидкости вместо электрического каротажа (ПС, БКЗ, БК, БМК, МК) проводят электромагнитный каротаж (ИК, ВИКИЗ, ДК), а в разрезах с высокой минерализацией пластовых вод (св. 50 г/л) дополнительно проводят ИНК.
- 5.3.3 В оценочных и разведочных скважинах, введенных в пробную эксплуатацию, исследования следует проводить методами расходометрии, термометрии, влагометрии, резистивиметрии, барометрии, ГК, ЛМ, а также шумометрии для определения профиля притока. Эти исследования проводят по специальным программам.
 - 5.3.4 ГИРС, проводимые в открытом стволе эксплуатационных скважин, приведены в таблице 4.

Таблица 4 — Состав ГИРС, проводимых в открытом стволе эксплуатационных скважин

Вид исследований и работ Общие исследования по всему разрезу скважин Детальные исследования в продуктивных интервалах		Состав ГИРС	
		ПС, КС (1 или 2 зонда из состава БКЗ), БК, ГК, НК АК, ГГК-П, ИК, ВИКИЗ, профилеметрия, инклинометрия, резистивиметрия, ГТИ БК, БКЗ, МК, БМК, ГК-С, ГГК-ЛП, профилеметрия	
			Детальные исследования и работы
	Для уточнения положения межфлюидных контактов, текущей насыщенности и пластовых давлений в про- дуктивных интервалах	гдк, ипк, ипт, ямк, инк	
	При неоднозначной гео- логической интерпретации материалов ГИРС в про- дуктивных интервалах раз- реза	ГДК, ИПК, ИПТ, КО, повторные исследования после проведения испытаний	
	Для обеспечения модели- рования месторождений и при проведении трехмер- ной сейсморазведки	ВСП, наклонометрия	

5.3.5 Исследования в скважинах с углом наклона более 45° и в скважинах с горизонтальным окончанием ствола, в том числе в так называемых «боковых стволах», планируют и проводят с применением

специальных технологий геофизических исследований и геолого-технологического сопровождения проводки скважин. Состав геофизических исследований в скважинах с горизонтальным окончанием ствола и в «боковых стволах» приведен в таблице 5.

Таблица 5— Состав геофизических исследований в горизонтальных участках ствола эксплуатационных скважин и в «боковых стволах»

Вид исследований		Состав геофизических исследований	
Общие исследования	Песчано-глинистый разрез	ГТИ, ГК, ИК, ВИКИЗ, НК, ПС (градиент ПС), инклино- метрия, резистивиметрия	
	Карбонатный разрез	ГТИ, ИК, ВИКИЗ, ГК, БК (псевдобоковой), НК, ПС (градиент ПС), инклинометрия, резистивиметрия	
Детальные исследования	В сложных геолого-технических условиях	АК, ГГК, ГК-С, ИННК, профилеметрия	
Специальные исследования	В сложных геолого-технических условиях	Азимутальные модифихации аппаратуры основных методов геофизических исследований скважин	

5.4 Основные требования к проведению ГИРС для решения геологических задач

- 5.4.1 Этапы, интервалы и очередность проведения ГИРС должны быть определены в проектах на строительство скважин.
- 5.4.2 Общие исследования проводят после завершения бурения интервалов, намеченных для перекрытия кондуктором, технической и эксплуатационной колоннами. В глубоких скважинах исследования проводят в интервалах не более 1000 м.

Детальные исследования проводят после завершения бурения перспективного или продуктивного интервала скважины. При большой толщине продуктивных (перспективных) пород интервал исследований должен быть не более 400 м.

- 5.4.3 В выбранных интервалах в первую очередь проводят электрические исследования, затем проводят АК, ГК, НК, ГГК, профилеметрию, инклинометрию. Завершают ГИРС испытанием пластов (ИПК, ИПТ), гидродинамическими исследованиями (ГДК) и отбором образцов пород керноотборником на кабеле.
- 5.4.4 ГИРС в открытом стволе проводят при заполнении его той же промывочной жидкостью, которая была использована при бурении.
- 5.4.5 Объемы и качество ГИРС в пробуренных на месторождении скважинах должны гарантировать получение информации, достаточной для подсчета запасов нефти и горючих газов в соответствии с требованиями действующих нормативных документов, а также необходимой для построения постоянно действующих геолого-технологических моделей месторождений, обоснования коэффициентов извлечения УВС, составления проектных технологических документов по разработке месторождений.
- 5.4.6 Объемы и качество ГИРС, проводимых при разведке объектов ПХГ, должны обеспечивать определение характеристик подземных резервуаров, гидродинамического режима разреза, распространения, выдержанности, однородности и свойств пород-коллекторов и флюидоупоров, получение исходной информации для построения цифровых геолого-технологических моделей ПХГ, проектирования строительства и эксплуатации ПХГ.
- 5.4.7 Объемы, периодичность и качество ГИРС, проводимых в эксплуатационных скважинах с целью мониторинга разработки месторождений нефти и газа и эксплуатации ПХГ, должны обеспечивать уточнение геолого-технологических моделей, фактических запасов нефти и газа, уточнение технологий и режимов разработки месторождений и эксплуатации ПХГ, проектирование, контроль и оценку результатов геолого-технологических мероприятий, проводимых в скважинах (например, гидроразрывы пластов и другие виды воздействия на призабойную зону).

5.5 Состав ГИРС для изучения технического состояния обсаженных скважин

- 5.5.1 Для изучения состояния обсадных колонн проводят акустическую дефектоскопию, гаммагамма-толщинометрию, термометрию, трубную профилеметрию, электромагнитную дефектоскопию и толщинометрию, электромагнитную локацию муфт.
- 5.5.2 Для изучения состояния цементного кольца за колонной проводят акустическую цементометрию, гамма-гамма-цементометрию, термометрию.

- 5.5.3 Для выявления затрубного движения жидкости и газа проводят НК, высокочувствительную термометрию, акустическую шумометрию, используют технологии закачки жидкости с добавкой веществ-индикаторов, короткоживущих радионуклидов.
- 5.5.4 При детальных исследованиях применяют акустические и гамма-гамма-методы сканирования, электромагнитную дефектоскопию и трубную профилеметрию.
 - 5.5.5 Исследования в дефектных колоннах проводят по индивидуальным программам.
- 5.5.6 В состав ГИРС для изучения технического состояния обсаженных скважин обязательно включают ГК.

5.6 Состав ГИРС при мониторинге разработки нефтяных и газонефтяных месторождений

- 5.6.1 Состав ГИРС при мониторинге разработки нефтяных и газонефтяных месторождений, объем исследований и периодичность их проведения, обеспечивающие системность наблюдений, определяются в специальных разделах технологических схем и проектов разработки с учетом геолого-технических условий конкретных объектов разработки. Состав ГИРС определяют в соответствии с решаемыми задачами и условиями проведения исследований (технология эксплуатации, конструкция скважины, заполнение ствола) в соответствии с таблицей 6.
- 5.6.2 Основной информацией для проведения геофизического мониторинга при разработке нефтяных и газонефтяных месторождений являются данные ГИРС, полученные в процессе строительства скважин.
- 5.6.3 Базовый комплекс геофизических исследований проводят после завершения испытания разведочной и освоения эксплуатационной скважин, а также при вводе скважин в эксплуатацию после ремонта. Полученную информацию сохраняют в документации на конкретную скважину.

Таблица 6 — Состав ГИРС для мониторинга разработки нефтяных и газонефтяных месторождений

Devision control	Состав ГИРС		
Решаемая задача	Общие исследования	Детальные исследования	
Определение профиля притока (по- глощения), выявление интервалов притока, поглощения и перетоков	ГК, ЛМ, НК. Т, механическая расхо- дометрия, термокондуктивная рас- ходометрия, резистивиметрия, вла- гометрия, барометрия	Шумометрия, плотностеметрия, тер- моанемометрия	
Определение состава притока мно- гофазных флюидов	ГК, НК, ЛМ, Т, механическая расхо- дометрия, барометрия, шумометрия, влагометрия, резистивиметрия, тер- мокондуктивная расходометрия	ИННК, гамма-гамма-плотнометрия	
Определение профиля приемистости	ГК, ЛМ, Т, механическая расходометрия, барометрия, резистивиметрия	Шумометрия, закачка короткоживу- щих радионуклидов	
Определение начального и текущего насыщения пластов в неперфориро- ванных скважинах при минерализа- ции пластовых вод менее 50 г/л	ИНГК-С, ГК-С, ГК, ЛМ, НК, ИННК, Т, барометрия, влагометрия, резисти- виметрия	АК, электрический каротаж обсаженных скважин	
Определение начального и текущего насыщения пластов в неперфориро- ванных скважинах при минерализа- ции пластовых вод более 50 г/л	ИННК, ГК, ГК-С, ЛМ, НК, Т	ИНГК-С. АК, электрический каротаж обсаженных скважин	
Оценка конденсатной составляющей газонасыщенной залежи	ГК-С, НК, ИНГК-С, ИННК, ЛМ, Т	AK	
Определение текущего насыщения пластов в перфорированных скважи- нах и интервалов заколонных цирку- ляций	ИННК (с использованием технологии закачки в пласт нейтронпоглощаю- щих веществ), НК, ГК, ЛМ, Т, бароме- трия, влагометрия, резистивиметрия	Механическая расходометрия, электрический каротаж обсаженных скважин	
Определение гидродинамических параметров разрабатываемых пла- стов	ГК, ЛМ, Т, механическая расходометрия, барометрия (КВД, КВУ), дифференциальная барометрия	Шумометрия, резистивиметрия, вла- гометрия	

Окончание таблицы 6

Anna and a second	Состав ГИРС		
Решаемая задача	Общие исследования	Детальные исследования	
Определение уровней и границ раз- дела жидкости в стволе скважины	ГК, ЛМ, Т, влагометрия, барометрия, резистивиметрия	Резистивиметрия	
Контроль продвижения нагнетатель- ных вод и выработки залежи	Индикаторные исследования	Дифференциальная барометрия	
Мониторинг освоения скважин	ГК, ЛМ, Т, барометрия, влагометрия, резистивиметрия, термокондуктив- ная расходометрия		

- 5.6.4 Для оценки нефтенасыщенности и газонасыщенности разрабатываемых продуктивных пластов в обсаженных скважинах используют различные модификации нейтронного каротажа со стационарными и импульсными источниками нейтронов, кислородно-углеродный каротаж, акустический каротаж, электрический каротаж обсаженных скважин. В скважинах с открытым забоем и в скважинах с неметаллическими колоннами используют ИК, ЯМК, ДК. В необсаженных скважинах дополнительно используют ИПК, ГДК, ИПТ.
- 5.6.5 Для изучения геологического строения криолитозоны с целью определения ее состояния в процессе разработки месторождения необходимо проведение общих исследований в зоне многолетне-мерзлых пород в открытых стволах эксплуатационных скважин. Для оценки состояния зоны многолетне-мерзлых пород (растепление или обратное промерзание в моменты длительного простоя скважин) используют термометрию.
- 5.6.6 В обсаженных скважинах в состав ГИРС обязательно включают локацию муфт обсадной колонны, а также ГК или НК.

5.7 Состав ГИРС при мониторинге разработки газовых, газоконденсатных месторождений и эксплуатации подземных хранилищ газа

- 5.7.1 Состав ГИРС, проводимых в процессе мониторинга разработки газовых и газоконденсатных месторождений и эксплуатации ПХГ, определяется геолого-промысловыми характеристиками залежей и хранилищ, техническими и технологическими особенностями их эксплуатации, способом вскрытия продуктивной толщи и решаемыми задачами в соответствии с таблицей 7.
- 5.7.2 В зависимости от вида флюида, заполняющего ствол скважины в исследуемом интервале (газ, жидкость, газожидкостная смесь), в состав ГИРС включают:
 - акустические методы только для жидкой среды;
 - механическую расходометрию только для газовой или жидкой среды;
- нейтронные методы (НГК, ИННК) при любом заполнении ствола. При смешанном газожидкостном заполнении ствола результаты НК могут использоваться только на качественном уровне.
- 5.7.3 Достоверные характеристики изучаемого объекта (естественная гамма-активность, нейтронные параметры, естественное температурное поле, первоначальное техническое состояние скважин), используемые в качестве исходных для сравнительного анализа данных разновременных наблюдений, должны быть получены до начала разработки в сроки, обеспечивающие наименьшее искажение этих характеристик.
- 5.7.4 Для ПХГ, создаваемых в водоносных структурах, такие исследования проводят до начала первого цикла закачки газа. Для ПХГ, создаваемых в истощенных газовых пластах, в качестве исходной информации используют результаты исследований, проведенных между окончанием разработки и началом циклической эксплуатации хранилища.
- 5.7.5 Степень влияния на регистрируемые параметры подземного скважинного оборудования, а также заполняющего скважину флюида должна быть установлена с помощью проведения повторных исследований.
- 5.7.6 При создании ПХГ в истощенных газовых пластах с использованием скважин старого эксплуатационного фонда необходимо проведение в них детальных исследований технического состояния обсадных колонн и качества затрубной изоляции с целью определения возможности эксплуатации этих скважин либо необходимости и способов их ликвидации.

Таблица 7— Состав ГИРС при мониторинге разработки газовых и газоконденсатных месторождений и эксплуатации ПХГ

12.000000000000000000000000000000000000	Состав ГИРС		
Решаемая задача	Общие исследования	Детальные исследования	
Оценка характера насыщенности, выявление интервала обводнения и интервала дренирования	нк, т	ИННК, ИНГК, АК	
Определение профиля и состава притока	 Т. ЛМ, барометрия, расходометрия, шумометрия, влагометрия, гамма- плотнометрия, термоанемометрия 	иннк, ингк	
Мониторинг режима работы сква- жины	НК, барометрия, высокочувстви- тельная термометрия, влагометрия, резистивиметрия, расходометрия, шумометрия, гамма-плотнометрия	ИННК, ИНГК, скважинная трубная профилеметрия	
Оценка целостности и несущей спо- собности обсадной колонны, герме- тичности затрубного пространства	НК, ЛМ, АКЦ, ГГК-Ц, высокочув- ствительная термометрия, элек- тромагнитная или индукционная дефектоскопия, шумометрия	Скважинная трубная профилеме- трия, магнито-импульсная дефек- тоскопия, акустическое сканирова- ние	

6 Требования к объемам и качеству ГИРС

- 6.1 Объемы и качество ГИРС должны обеспечивать:
- получение информации по геологическому изучению недр, необходимой для оценки и учета извлекаемых и оставляемых в недрах запасов нефти и газа в соответствий с требованиями государственной экспертизы запасов полезных ископаемых;
- документирование технологических процессов проводки и завершения скважин, фактических конструкций скважин и определения их соответствия проектным решениям;
 - определение эксплуатационных характеристик пластов и степени их выработки.
- 6.2 Контроль соответствия объемов, сроков, безопасности и качества выполнения ГИРС, а также требованиям национальных стандартов, нормативных и проектных документов проводится органами исполнительной власти, осуществляющими государственный геологический контроль и надзор за изучением, использованием и охраной недр, а также государственный надзор за безопасным проведением работ, связанных с пользованием недрами.
- 6.3 Отдельные виды исследований, которые по согласованному решению заказчика и исполнителя ГИРС невозможно провести вследствие неудовлетворительного состояния открытого ствола скважины, проводят с помощью геофизических приборов для проведения исследований на бурильных трубах или в обсаженной скважине.
- 6.4 Регистрация данных геофизических исследований осуществляется с помощью средств, обеспечивающих возможность передачи первичной информации в цифровом виде по каналам связи и ее архивацию в электронных базах и банках данных. При регистрации должны быть обеспечены метрологический контроль и контроль качества. Аналоговая регистрация первичных данных не допускается.
 - 6.5 Итоговые результаты ГИРС должны содержать:
- данные различных видов исследований, зарегистрированные в цифровом виде на магнитных или иных долговременных носителях, и их визуализированные копии;
- материальные носители информации (пробы жидкостей, газов, пород, отобранные с помощью приборов на кабеле и инструментов на трубах);
 - заключения по итогам проведения ГИРС в скважине;
 - отчет о результатах общей интерпретации ГИРС в скважине.
- 6.6 Заключения по результатам исследований отдельных интервалов бурящихся скважин могут включать в себя рекомендации по проведению последующих технологических операций: продолжение бурения, испытание в открытом стволе, отбор грунтов и проб пластовых флюидов, слуск обсадной колонны.
- 6.7 Окончательное заключение по итогам проведенных ГИРС должно содержать информацию о задачах и составе исследований, методиках исследований и средствах обработки данных, результатах их интерпретации, включая геологическую.

6.8 Рекомендации окончательного заключения должны содержать материалы для обоснования программы испытаний в открытом стволе, целесообразности крепления скважины, обоснования программы испытаний в обсаженной скважине, программы ГИРС при последующих технологических операциях в скважине.

7 Обеспечение проведения ГИРС

- 7.1 Геофизические исследования и работы в скважинах проводят в соответствии с проектными технологическими документами на геологическое изучение недр, строительство скважин и разработку месторождений, а также разделами договоров либо других документов, регламентирующих взаимодействие заказчика и производителя ГИРС.
- 7.2 ГИРС проводят с помощью геофизической аппаратуры, оборудования и материалов, допущенных к применению в установленном порядке и соответствующих требованиям действующих в Российской Федерации нормативных документов. При этом должны соблюдаться следующие требования:
- аппаратура и оборудование, при эксплуатации которых применяют источники ионизирующих излучений, должны иметь заключение органа исполнительной власти в области промышленной безопасности, осуществляющего надзор за ядерной и радиационной безопасностью;
- аппаратура и оборудование, при эксплуатации которых используют взрывчатые вещества и материалы, должны иметь разрешение на применение от органа исполнительной власти в области промышленной безопасности, осуществляющего надзор за безопасным пользованием недрами;
- на применяемую аппаратуру, оборудование и технологии организация исполнитель ГИРС должна иметь эксплуатационную документацию и руководствоваться ею;
- в случае внесения каких-либо изменений в конструкцию аппаратуры и оборудования они должны быть согласованы с организацией-разработчиком и отражены в эксплуатационной документации;
- для проведения измерений в скважине допускается использовать аппаратуру, прошедшую калибровку. Калибровка должна выполняться в соответствии с действующей нормативной документацией.
 - 7.3 Организация исполнитель ГИРС должна иметь:
- выданные в установленном порядке лицензии и разрешения на осуществление соответствуюших видов деятельности;
 - службу и систему контроля качества работ:
- метрологическую службу, отвечающую требованиям Федерального закона № 102-ФЗ «Об обеспечении единства измерений»;
- испытательные установки и стенды (или гарантированный доступ к ним) для проведения входных и периодических испытаний аппаратуры и оборудования ГИРС, предусмотренных эксплуатационной документацией и действующими нормативными документами;
 - службу и систему обеспечения охраны труда и промышленной безопасности;
 - персонал, обученный и аттестованный в установленном порядке.

8 Требования к подготовке скважин для проведения ГИРС

- 8.1 Пользователи недр не должны использовать при проводке скважин технологии, промывочные жидкости и режимы проводки скважин, исключающие проведение ГИРС, предусмотренных настоящим стандартом.
- 8.2 Заказчик ГИРС обязан обеспечить подготовку скважин для качественного, безопасного и безаварийного проведения ГИРС, что должно быть отражено в соответствующем документе, согласованном между представителем заказчика и исполнителем ГИРС. Подготовку скважин для проведения ГИРС осуществляют в соответствии с требованиями нормативных документов, утвержденных в установленном порядке, а также [1].
 - 8.3 Для эффективного и безопасного проведения ГИРС необходимо:
- подготовить скважину и ее обсадную колонну для обеспечения беспрепятственного спуска и подъема скважинной геофизической аппаратуры и/или оборудования по всему стволу скважины до забоя в течение времени, необходимого для проведения ГИРС;
- подготовить устьевое оборудование и противовыбросовые устройства для установки геофизического спуско-подъемного оборудования и лубрикаторных устройств при работе в скважинах с

герметизированным устьем, фиксации (крепления) на устье геофизической скважинной аппаратуры и оборудования или их секций;

- подготовить механизмы для проведения спуско-подъемных операций и погрузо-разгрузочных работ с геофизической скважинной аппаратурой и оборудованием;
- подготовить агрегаты и системы промывки скважины для предотвращения аварийных ситуаций и использования отдельных видов геофизической скважинной аппаратуры и оборудования;
- подготовить электрооборудование скважины для энергопитания геофизической аппаратуры и оборудования с соблюдением норм безопасности при технической эксплуатации электроустановок [2];
- подготовить площадки для размещения, монтажа, технологических перемещений геофизической аппаратуры и оборудования на скважине, места временного хранения взрывчатых материалов, радиоактивных веществ и выполнения работ с ними;
- обеспечить освещение скважины для проведения ГИРС в темное время суток в соответствии с требованиями действующих нормативных документов;
- подготовить устройства водо- и теплоснабжения, обеспечивающие возможность эксплуатации геофизической аппаратуры и оборудования, в том числе при отрицательных температурах;
- подготовить подъездные пути к скважине, обеспечивающие возможность аварийной эвакуации геофизической аппаратуры и оборудования, а также персонала.
- 8.4 При проведении специальных исследований и работ по индивидуальным проектам должны быть предусмотрены меры, обеспечивающие безопасность и безаварийность проводимых работ.

9 Требования к соблюдению правил безопасности и охраны недр при проведении ГИРС

- 9.1 При разработке проектно-сметной документации на проведение ГИРС необходимо предусматривать мероприятия, обеспечивающие соблюдение требований действующей нормативной документации по безопасности, надзорной и разрешительной деятельности в нефтяной и газовой промышленности [3]. [4].
- 9.2 Организация, осуществляющая проведение ГИРС, должна иметь службу безопасности труда и обеспечивать:
 - выполнение требований безопасности, предусмотренных при проведении ГИРС;
- выполнение требований безопасности, предусмотренных эксплуатационной документацией на используемые аппаратуру, оборудование, технологии;
- разработку, согласование с соответствующими органами государственного надзора и соблюдение требований нормативной документации системы управления безопасностью труда.
 - 9.3 Заказчик должен ознакомить исполнителя ГИРС:
 - с общими мерами безопасности при проведении работ на скважине;
- с порядком действий при возникновении аварий, путями эвакуации, местами возможного укрытия, а также сигналами оповещения;
- с местом расположения средств пожаротушения, органов управления противовыбросовыми устройствами и способами приведения их в действие.
 - 9.4 Исполнитель ГИРС должен ознакомить заказчика:
 - с возможной производственной опасностью проводимых ГИРС;
 - с расположением и обозначением опасных зон геофизических работ;
 - с сигналами оповещения об опасности и порядком действий при их включении.

Персонал заказчика, принимающий участие в работах с геофизической аппаратурой и оборудованием (например, погрузо-разгрузочные и спуско-подъемные работы, установка датчиков геофизической аппаратуры на элементах буровой установки), должен быть проинструктирован исполнителем ГИРС в установленном порядке.

10 Действия при инцидентах и авариях, возникающих в процессе проведения ГИРС

10.1 Инцидентом при проведении ГИРС считается отказ или повреждение технических устройств, отклонение от режима технологического процесса, нарушение положений нормативных и правовых

актов и документов, устанавливающих правила проведения работ на опасном производственном объекте. К инцидентам при проведении ГИРС относят следующие:

- прихват, заклинивание геофизической аппаратуры или оборудования в стволе или на устье скважины:
 - потеря управления источником ионизирующего излучения;
 - выход из строя спуско-подъемного геофизического оборудования;
 - выход из строя геофизического оборудования герметизации устья скважины;
- повреждение геофизического кабеля, препятствующее дальнейшему проведению спуско-подъемных операций.
- 10.2 Аварией при проведении ГИРС считают опасное техногенное происшествие, создающее угрозу жизни и здоровью людей и приводящее к разрушению применяемых технических устройств, неконтролируемому взрыву и/или выбросу опасных веществ, потере управления источником ионизирующих излучений, а также к нанесению ущерба окружающей природной среде. К авариям при проведении ГИРС относят следующие:
- несанкционированное оставление и/или разрушение геофизической аппаратуры или оборудования в стволе скважины;
- самопроизвольное и/или несанкционированное срабатывание прострелочно-взрывной аппаратуры, а также иных технических средств, которое приводит к разрушению скважинного или околоскважинного пространства и/или технических средств.

К радиационно-опасным авариям относят следующие:

- оставление аппаратуры с источником ионизирующих излучений или источника ионизирующих излучений в скважине;
 - повреждение (разгерметизация) закрытого источника ионизирующих излучений;
- потерю источника ионизирующих излучений при транспортировании к месту проведения работ или временного хранения;
- разрушение (разгерметизация) содержащих радионуклиды емкостей или оборудования, предназначенного для их закачки в скважину.
- 10.3 Геофизические исследования и работы в скважинах должны быть прекращены, а кабель и скважиный прибор извлечены из скважины при:
 - появлении нефтегазопроявлений и переливов промывочной жидкости;
 - поглощении промывочной жидкости с понижением уровня более чем на 15 м/ч;
 - возникновении затяжек кабеля при подъеме;
- неоднократных (более трех) остановках скважинной аппаратуры или оборудования при спуске,
 кроме как на известных уступах и в кавернах;
 - проведении на буровой работ, не связанных с ГИРС и мешающих их проведению;
- возникновении неисправности лаборатории, подъемника, скважинной аппаратуры или оборудования, кабеля;
- ухудшении метеоусловий: видимость менее 20 м, скорость ветра более 20 м/с, обледенение кабеля.

Примечание — Ограничения на проведение работ при ухудшении метеоусловий определяются в порядке, установленном в регионе деятельности геофизического предприятия.

- 10.4 При спуске в скважину запрещается преодолевать сужения, в том числе за счет глинистой корки, нанося удары скважинными приборами или прострелочно-взрывным оборудованием.
- 10.5 Работы по ликвидации последствий аварии при ГИРС проводят по разработанному заказчиком ГИРС плану. Планы по ликвидации последствий аварий в процессе проведения ГИРС с использованием взрывчатых материалов и/или источников ионизирующих излучений согласовывают с соответствующими органами исполнительной власти, осуществляющими государственный надзор за безопасным использованием недр, а также за ядерной и радиационной безопасностью.

Безопасность при ликвидации последствий радиационно-опасной аварии обеспечивают в соответствии с требованиями санитарных правил обеспечения радиационной безопасности [5].

- 10.6 При ликвидации последствий радиационных аварий проводят:
- непрерывный радиационный контроль промывочной жидкости и бурильного инструмента, извлекаемых из скважины;
- исследования, подтверждающие отсутствие разгерметизации источника ионизирующих излучений;

- дозиметрический контроль персонала, принимающего участие в работах по ликвидации последствий аварии (группа A).
- 10.7 При радиационной аварии с разгерметизацией закрытого источника ионизирующих излучений дополнительно проводят:
- дозиметрический контроль персонала, не принимающего участия в ликвидации последствий аварии (группа Б) и населения:
- мероприятия по защите персонала, населения и окружающей среды, в том числе с помощью средств защиты, дезактивации и санитарной обработки;
- гигиеническую оценку радиационной обстановки и индивидуальных доз облучения персонала и отдельных групп населения, а также лиц, принимавших участие в аварийных работах.
- 10.8 В случае ликвидации последствий радиационной аварии в скважине путем установки цементных мостов проводят мероприятия в соответствии с 10.6.

Приложение A (рекомендуемое)

Задачи, решаемые с помощью ГИРС при разведке и мониторинге разработки месторождений УВС, создании и эксплуатации подземных хранилищ газа

А.1 Геологическое изучение месторождений УВС

- А.1.1 Изучение геологического разреза скважин:
- разделение разреза на литолого-стратиграфические комплексы и типы (терригенный, карбонатный, хемогенный, вулканогенный, кристаллический);
 - разделение разреза на пласты, их привязку по глубине вдоль оси скважины и по абсолютным глубинам;
 - выделение стратиграфических реперов;
 - привязка отбираемого керна по глубине;
 - литологическое изучение интервалов разреза, не охарактеризованных отбором керна;
 - определение коллекторских свойств и характера насыщенности пород:
- разделение разреза на пласты мощностью от 0,4 м, определение литотипов пород, характера насыщения коллекторов, положения межфлюидальных контактов.
 - А.1.2 Оценка и подсчет запасов месторождений УВС, а также определение характеристик ПХГ:
 - литологическое и стратиграфическое расчленение и корреляция разрезов пробуренных скважин;
 - выделение в разрезе скважин коллекторов всех типов и количественное определение их параметров;
- разделение коллекторов на продуктивные и водоносные, а продуктивных коллекторов на газо- и нефтеносные;
- определение положений межфлюидных контактов, наличия и характеристик переходных зон, эффективных газо- и нефтенасыщенных толщин;
 - определение коэффициентов пористости, газо- и нефтенасыщенности, проницаемости, вытеснения;
 - определение пластовых давлений и температур;
 - определение неоднородности пластов (объектов);
 - прогнозирование потенциальных дебитов УВС.

А.2 Строительство, эксплуатация, подземный и капитальный ремонт скважин

А.2.1 Обеспечение процесса строительства скважин:

- получение оперативной информации о соответствии фактических технологических параметров бурения их значениям, установленным в геопого-технологических заданиях;
 - выявление и предупреждение аварийных ситуаций в процессе бурения;
 - представление рекомендаций по оптимизации процесса бурения и испытанию перспективных пластов;
 - информационное обеспечение и контроль процессов цементирования, испытания и освоения скважин.

А.2.2 Оценка технического состояния открытого ствола скважин:

- определение пространственного положения ствола скважины;
- определение геометрии сечения ствола, выделение желобов, каверн, сальников, мест выпучивания и течения глин, прогнозирование интервалов прихвата (заклинивания) аппаратуры или оборудования;
 - выявление зон флюидопроявлений и поглощений.

А.2.3 Ликвидация последствий аварий при бурении:

- выявление интервалов прихвата (заклинивания) бурового инструмента;
- ликвидация прихвата (заклинивания) прострелочно-взрывными методами, встряхивание, обрыв или резка бурильных, насосно-компрессорных и обсадных труб;
- выявление оставленных в скважине металлических предметов, ликвидация посторонних предметов в скважине и очистка забоя;
 - установка с помощью кабельных устройств разделительных и изоляционных мостов в стволе скважины;
 - навигация при бурении специальных скважин для глушения фонтанов.

А.2.4 Исследование состояния обсадных колонн:

- определение диаметров, толщин и целостности обсадных колонн (кондуктора, технических и эксплуатационных колонн), глубин их башмаков;
- определение износа и повреждений обсадных колонн (кондуктора, технических и эксплуатационных колонн), прогнозирование аварийных ситуаций в процессе бурения и эксплуатации скважины;
- определение наличия и местоположения элементов технологической оснастки обсадных колонн (центраторов, скребков, турбулизаторов, заколонных пакеров);
 - регистрация расположения муфт обсадных колонн.

- А.2.5 Исследования и работы при эксплуатации, капитальном и подземном ремонте скважин:
- уточнение фактической конструкции скважины;
- оценка технического состояния обсадной колонны и цементного кольца, выявление негерметичности колонн, цемента, наличие затрубных перетоков;
 - определение интервалов поступления воды в скважину;
 - оценка технического состояния насосно-компрессорных труб и лифтового оборудования;
- проведение специальных исследований при различных технологических операциях в процессе ремонта (определение вырезанных участков эксплуатационных колонн, определение качества гравийной упаковки и др.);
- проведение технологических операций по установке разделительных мостов, пробок, по вторичному вскрытию и интенсификации притоков;
- контроль геолого-технологических мероприятий, проводимых в скважинах (гидроразрывы пластов, обработка и другие воздействия на призабойную зону), оценка их эффективности.

А.3 Вскрытие и испытание пластов, освоение скважин, интенсификация притоков

А.3.1 Вторичное вскрытие пластов:

- проведение перфорации обсадной колонны, цемента и пород;
- контроль за спуском в скважину перфоратора на кабеле или на трубах;
- привязка интервала перфорации к геологическому разрезу;
- регистрация факта срабатывания перфоратора;
- определение фактического положения интервала перфорации;
- определение качества вторичного вскрытия.
- А.3.2 Испытания пластов с помощью оборудования на кабеле и/или бурильных трубах:
- вызов притока, отбор герметизированных проб жидкостей и газов из пласта;
- регистрация диаграмм давления и притока в процессе испытания;
- уточнение положений межфлюидных контактов, оценка гидродинамической однородности пластов.
- А.3.3 Испытание и освоение скважин:
- выявление возможностей заколонной циркуляции, негерметичности изоляционного моста и колонны (оценка качества разобщения объектов испытания);
 - выявление связи объектов испытания с соседними пластами в процессе испытания;
 - мониторинг режима и состава притока;
 - определение гидродинамических параметров исследуемых объектов.
 - А.3.4 Интенсификация притоков в скважинах:
 - обоснование возможности и способов интенсификации притоков;
- воздействие на призабойную зону пластов энергией и продуктами взрыва, горения пороховых зарядов и горюче-окислительных составов;
- акустические, тепловые, электрические, электрогидравлические и импульсные депрессионные воздействия на призабойную зону пластов с помощью аппаратов, спускаемых на кабеле и на трубах;
- мониторинг процесса и результатов гидроразрывов, кислотных обработок и других геолого-технологических мероприятий.

А.4 Мониторинг разработки месторождений УВС и эксплуатации ПХГ

- А.4.1 Исследование процесса вытеснения нефти и газа в пласте:
- определение характера текущей насыщенности пласта нефть, газ, вода (на качественном уровне);
- количественное определение текущих или остаточных коэффициентов нефтенасыщенности и газонасыщенности.
 - А.4.2 Определение эксплуатационных характеристик пласта:
- определение профиля притока в эксплуатационных скважинах и профиля приемистости в нагнетательных скважинах;
 - определение отдающих и поглощающих интервалов;
 - определение мест притока нефти, газа и воды, выявление обводненных интервалов;
 - определение межколонных перетоков газа;
 - определение давления и продуктивности пластов и прослоев.
 - А.4.3 Исследования скважин для выбора оптимального режима работы технологического оборудования:
- определение статических и динамических уровней жидкости, водонефтяного, газонефтяного и газоводяного раздела в стволе, выявление жидкостных и гидратных пробок, отложений парафина;
- определение положения технологического оборудования в скважине (например, глубины спуска насоса, воронки лифтовых труб и пакеров).

Библиография

- [1] РД 153-39.0-072—01 Техническая инструкция по проведению геофизических исследований и работ приборами на кабеле в нефтяных и газовых скважинах (утверждена Приказом Минэнерго России от 7 мая 2001 г. № 134)
- [2] Правила технической эксплуатации электроустановок потребителей (утверждены Приказом Минэнерго РФ от 13 января 2003 г. № 6)
- [3] ПБ 08-624—03 Правила безопасности в нефтяной и газовой промышленности
- [4] Типовая инструкция по безопасности геофизических работ в процессе бурения скважин и разработки нефтяных и газовых месторождений (утверждены Приказом Минтопэнерго РФ от 12 июня 1996 г. № 178)
- [5] СП 2.6.1-799—99 Основные санитарные правила обеспечения радиационной безопасности (ОСПОРБ—99) (утверждены Главным государственным санитарным врачом Российской Федерации 27 декабря 1999 г.)

УДК 622.276.550.8:006.354

OKC 75.180.10

Ключевые слова: скважины нефтяные и газовые, геофизические исследования и работы, мониторинг разработки месторождений, оценка технического состояния скважин

> Редактор переиздания Н.Е. Рагузина Технические редакторы В.Н. Прусакова, И.Е. Черепкова Корректор Е.Р. Ароян Компьютерная верстка А.В. Софейчук

Сдано в набор 23.08.2019. Подписано в печать 18.09.2019. Формат 60 × 84¹/₈. Гарнитура Ариал. Усл. печ. л. 2,33. Уч.-изд. л. 2,15.

Подготовлено на основе электронной версии, предоставленной разработчиком стандарта

ИД «Юриспруденция», 115419, Москва, ул. Орджоникидзе, 11. www.jurisizdat.ru y-book@mail.ru

Создано в единичном исполнении во ФГУП «СТАНДАРТИНФОРМ» для комплектования Федерального информационного фонда стандартов, 117418 Москва, Нахимовский пр-т, д. 31, к. 2. www.gostinfo.ru info@gostinfo.ru