## ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ



НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ ΓΟCT P 53777— 2010

#### ЛИГАТУРЫ АЛЮМИНИЕВЫЕ

Технические условия

Издание официальное



#### Предисловие

Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. № 184-ФЗ «О техническом регулировании», а правила применения национальных стандартов Российской Федерации — ГОСТ Р 1.0—2004 «Стандартизация в Российской Федерации. Основные положения»

#### Сведения о стандарте

- РАЗРАБОТАН Техническим комитетом по стандартизации ТК 297 «Материалы и полуфабрикаты из легких и специальных сплавов» (ОАО «Всероссийский институт легких сплавов») и ООО «Интермикс Мет»
- 2 ВНЕСЕН Техническим комитетом по стандартизации ТК 297 «Материалы и полуфабрикаты из легких и специальных сплавов»
- 3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 25 марта 2010 г. № 34-ст
  - 4 ВВЕДЕН ВПЕРВЫЕ
  - 5 Издание (март 2012 г.) с Изменением № 1, принятым 30 ноября 2011 г.

Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячно издаваемых информационных указателях «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

© Стандартинформ, 2010 © СТАНДАРТИНФОРМ, 2012

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

#### Содержание

| 1 | Область применения                                     |
|---|--------------------------------------------------------|
| 2 | Нормативные ссылки                                     |
| 3 | Технические требования                                 |
| 4 | Правила приемки                                        |
| 5 | Методы испытаний                                       |
| 6 | Маркировка, улаковка, транспортирование и хранение     |
| 7 | Требования безопасности и охраны окружающей среды      |
| 8 | Гарантии предприятия-изготовителя                      |
| П | риложение А (обязательное) Цветовая маркировка лигатур |

#### ЛИГАТУРЫ АЛЮМИНИЕВЫЕ

#### Технические условия

Master alloys of aluminium. Specifications

Дата введения — 2010-07-01

#### 1 Область применения

Настоящий стандарт распространяется на алюминиевые лигатуры (далее — лигатуры), получаемые методом плавления и используемые в металлургической и литейной промышленности.

Лигатуры предназначены для легирования и модифицирования при производстве деформируемых и литейных алюминиевых сплавов.

#### 2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ 12.1.005—88 Система стандартов безопасности труда. Общие санитарно-гигиенические требования к воздуху рабочей зоны

ГОСТ 12.1.007—76 Система стандартов безопасности труда. Вредные вещества. Классификация и общие требования безопасности

ГОСТ 7727—81 Сплавы алюминиевые. Методы спектрального анализа

ГОСТ 11739.2—90 Сплавы алюминиевые литейные и деформируемые. Методы определения бора

ГОСТ 11739.3—99 Сплавы алюминиевые литейные и деформируемые. Методы определения бериллия

ГОСТ 11739.4—90 Сплавы алюминиевые литейные и деформируемые. Методы определения висмута

ГОСТ 11739.5—90 Сплавы алюминиевые литейные и деформируемые. Методы определения ванадия

ГОСТ 11739.6—99 Сплавы алюминиевые литейные и деформируемые. Методы определения железа

ГОСТ 11739.7—99 Сплавы алюминиевые литейные и деформируемые. Методы определения кремния

ГОСТ 11739.9—90 Сплавы алюминиевые литейные и деформируемые. Методы определения кадмия

ГОСТ 11739.11—98 Сплавы алюминиевые литейные и деформируемые. Методы определения магния

ГОСТ 11739.12—98 Сплавы алюминиевые литейные и деформируемые. Методы определения марганца

ГОСТ 11739.13—98 Сплавы алюминиевые литейные и деформируемые. Методы определения меди

#### **FOCT P 53777-2010**

- ГОСТ 11739.15—99 Сплавы алюминиевые литейные и деформируемые. Методы определения натрия
- ГОСТ 11739.16—90 Сплавы алюминиевые литейные и деформируемые. Методы определения никеля
- ГОСТ 11739.17—90 Сплавы алюминиевые литейные и деформируемые. Методы определения олова
- ГОСТ 11739.18—90 Сплавы алюминиевые литейные и деформируемые. Методы определения свинца
- ГОСТ 11739.19—90 Сплавы алюминиевые литейные и деформируемые. Методы определения сурьмы
- ГОСТ 11739.20—99 Сплавы алюминиевые литейные и деформируемые. Метод определения титана
- ГОСТ 11739.21—90 Сплавы алюминиевые литейные и деформируемые. Методы определения хрома
- ГОСТ 11739.23—99 Сплавы алюминиевые литейные и деформируемые. Методы определения циркония
- ГОСТ 11739.24—98 Сплавы алюминиевые литейные и деформируемые. Методы определения цинка
- ГОСТ 11739.25—90 Сплавы алюминиевые литейные и деформируемые. Методы определения скандия
  - ГОСТ 19433—88 Грузы опасные. Классификация и маркировка
- ГОСТ 24231—80 Цветные металлы и сплавы. Общие требования к отбору и подготовке проб для химического анализа
  - ГОСТ 31340—2007 Предупредительная маркировка химической продукции. Общие требования

П р и м е ч а н и е — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регупированию и метрологии в сети Интернет или по ежегодно издаваемому информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по соответствующим ежемесячно издаваемым информационным указателям, опубликованным в текущем году. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

#### 3 Технические требования

- 3.1 Изготовление, контроль и приемку лигатур на предприятии-изготовителе проводят по техническим документам, утвержденным на предприятии-изготовителе с учетом требований настоящего стандарта.
- 3.2 Марки и химический состав лигатур должны соответствовать указанным в таблице 1. Цветовая маркировка лигатур приведена в приложении А.
  - Массовая доля элементов, указанная в таблице 1, максимальная, если не указаны пределы.

В процентах

|            |         |           |           |          |           | Macc      | Массовая доля |      |                   |                                       |                 |           |
|------------|---------|-----------|-----------|----------|-----------|-----------|---------------|------|-------------------|---------------------------------------|-----------------|-----------|
| Марка      |         |           |           |          |           |           |               |      |                   |                                       | Прочие элементы | итноменты |
|            | Кремний | Железо    | Медь      | Марганец | Магнии    | хром      | Никель        | Цинк | Другие элементы   | N N N N N N N N N N N N N N N N N N N | Каждый          | Сумма     |
| AIB3       | 6,0     | 6,0       | -         | _        | 1         | -         | -             | 1    | Bop: 2,5-3,5      | -                                     | 0,04            | 1,0       |
| AIB4       | 0,3     | 0,3       | 1         | 1        | 1         | 1         | 1             | 1    | Bop: 3.5-4.5      | 1                                     | 0,04            | 0,1       |
| AIB5       | 0,3     | 6,0       | 1         | -        | 1         | 1         | 1             | 1    | 5op: 4.5-5.5      | 1                                     | 0,04            | 0,1       |
| AIBe5      | 0,3     | 0,3       | 1         | 1        | 90'0      | 1         | 1             | 1    | Бериллий: 4,56,0  | 1                                     | 0,04            | 0,1       |
| AlBi3      | 0,3     | 0,3       | 1         | 1        | 1         | 1         | 1             | 1    | Висмут: 2,7-3,3   | 1                                     | 0,04            | 0,1       |
| AlCa6      | 0,3     | 0,3       | 1         | 0,05     | 0.05      | 1         | 1             | 1    | Кальций: 5,0—7,0  | 1                                     | 0,04            | 1,0       |
| AICa10     | 0,3     | 0.3       | 1         | 1        | 1         | J         | 1             | 1    | Кальций; 9,0—11,0 | 1                                     | 0,04            | 0,1       |
| AICo10     | 0,2     | 0,3       | 1         | 1        | 1         | 1         | 1             | 1    | Кобальт: 9,0—11,0 | 1                                     | 0,04            | 0,1       |
| AICr5 (A)  | 0,2     | 0,3       | 0,05      | 0,05     | 0,05      | 4,55,5    | 1             | 90'0 | 1                 | 1                                     | 0,04            | 0,1       |
| AICr5 (B)  | 0,5     | 2'0       | 0.2       | 0,4      | 0,5       | 4,5-5,5   | 0.2           | 0,2  | 1                 | 0,1                                   | 0,04            | 0,1       |
| AlCr10     | 0,2     | 0,3       | 0'02      | 0,05     | 0,05      | 9,0-11,0  | 1             | 0.05 | 1                 | 0,03                                  | 0,04            | 1,0       |
| AICr20 (A) | 0,3     | 0,3       | 1         | 1        | 1         | 18,0-22,0 | 1             | 1    | 1                 | 1                                     | 0.04            | 1,0       |
| AICr20 (B) | 0.5     | 0,7       | 0,2       | 0.4      | 6,0       | 18,0-22,0 | 0.2           | 0,2  | 1                 | 0,1                                   | 0,04            | 0,1       |
| AICu33 (A) | 0,3     | 6,0       | 31,0-35,0 | 1        | 1         | 1         | 1             | 90'0 | _                 | 1                                     | 0,04            | 0,1       |
| AICu33 (B) | 0,5     | 0,7       | 31,0-35,0 | 0,4      | 0,5       | 0,1       | 0,2           | 0,2  | 1                 | 0,1                                   | 0,04            | 0,1       |
| AICu50 (A) | 0,3     | 6,0       | 47,0-53,0 | 0,05     | 0,05      | ı         | 1             | 0,05 | ı                 | 0,03                                  | 0,04            | 1,0       |
| AICu50 (B) | 0,5     | 0,7       | 47,0-53,0 | 0.4      | 0,5       | 0,1       | 0,2           | 0,2  | 1                 | 0,1                                   | 0.04            | 1,0       |
| AIFe10 (A) | 0,3     | 9,0-11,0  | 1         | 1        | ı         | ı         | 1             | 1    | 1                 | I                                     | 0,04            | 1,0       |
| AlFe10 (B) | 0,5     | 9,0-11,0  | 0,2       | 0,4      | 6,0       | 0,1       | 0,2           | 0,2  | 1                 | 0,1                                   | 0,04            | 0,1       |
| AlFe20     | 0,3     | 18,0-22,0 | 1         | 0,2      | 1         | 1         | 1             | 1    |                   | 1                                     | 0,04            | 1,0       |
| AlMg10     | 0,3     | 6,0       | 1         | I        | 9,0-11,0  | ı         | 1             | ł    | ı                 | I                                     | 90,0            | 1,0       |
| AlMg20     | 6,0     | 6,0       | I         | 1        | 18,0-22,0 | 1         | 1             | 1    | 1                 | J                                     | 0,04            | 0,1       |

#### **FOCT P 53777-2010**

Продолжение таблицы 1

|             |           |        |      |           |           | W    | Массовая доля |      |                                                                    |       |         |                 |
|-------------|-----------|--------|------|-----------|-----------|------|---------------|------|--------------------------------------------------------------------|-------|---------|-----------------|
| Марка       |           |        |      | ,         |           |      |               |      |                                                                    |       | Прочиез | Прочие элементы |
|             | Кремний   | Железо | Медь | Марганец  | Магний    | Xpow | Нимель        | Цинк | Другие элементы                                                    | Титан | Каждый  | Сумма           |
| AIMg50      | 6,0       | 6,0    | 1    | I         | 47,0—53,0 | 1    | -             | 1    | 1                                                                  | 1     | 0,04    | 0,1             |
| AlMn 10 (A) | 6,0       | 6,4    | 0,04 | 9,0-11,0  | 0,04      | 1    | 1             | 0,04 | 1                                                                  | 0,03  | 0,04    | 0,1             |
| AIMn 10 (B) | 0.5       | 0.7    | 0,2  | 9,0-11,0  | 0,5       | 0.1  | 0,2           | 0,2  | 1                                                                  | 0.1   | 0.04    | 0,1             |
| AIMn20 (A)  | 0,3       | 0,4    | 0,04 | 18,0-22,0 | 0.04      | 1    | 1             | 0,04 | _                                                                  | 0,03  | 0,04    | 0,1             |
| AIMn20 (B)  | 9'0       | 7'0    | 0,2  | 18,0-22,0 | 0,5       | 1,0  | 0,2           | 0,2  | _                                                                  | 0,1   | 0,04    | 0,1             |
| AIMn60 (A)  | 0.3       | 0,3    | 1    | 58,0-64,0 | 1         | 1    | 1             | 1    | _                                                                  | 1     | 0,04    | 0,1             |
| AlMn60 (B)  | 0.3       | 1,0    | 1    | 58,0-64,0 | 1         | 1    | t             | 1    | 1                                                                  | 1     | 0,04    | 0,1             |
| AINI10      | 6.0       | 6,0    | 1    | 1         | 1         | 1    | 9,0-11,0      | 1    | _                                                                  | I     | 0,04    | 0,1             |
| AINI20      | €'0       | 6,0    | _    | 1         | 1         | 1    | 18,0-22,0     | 1    | _                                                                  | 1     | 0,04    | 0,1             |
| AISb 10     | 0,3       | 0,3    | 1    | 1         | 1         | 1    | 1             | 1    | Cypswa: 9,0-11,0                                                   | 1     | 0,04    | 0,1             |
| AISc2 (A)   | 0,05      | 90'0   | 0,01 | 0,01      | 0,1       | 1    | 1             | 1    | Скандий: 1,7—2,3<br>Фтор: 0,01<br>Кальций: 0,01<br>Суммя РЗЭ: 0,01 | 1     | 0,04    | 0,1             |
| AISc2 (B)   | 0,3       | 6,0    | 90'0 | 0,05      | 0,1       | 1    | 1             | 1    | Скандий: 1,7—2,3<br>Фтор: 0,01<br>Кальций: 0,01<br>Сумма РЗЭ: 0,01 | Ī     | 0.04    | 0.1             |
| AISc5 (A)   | 0,05      | 0,05   | 10,0 | 0,01      | 0,1       | 1    | 1             | 1    | Скандий: 4,7—5,3<br>Фтор: 0,01<br>Кальций: 0,01<br>Суммя РЗЭ: 0,01 | ī     | 0,04    | 0,1             |
| AISc5 (B)   | 0,3       | 0,3    | 0,05 | 0,05      | 0,1       | 1    | 1             | 1    | Скандий: 4,7—5,3<br>Фтор: 0,01<br>Кальций: 0,01<br>Сумма Р3Э: 0,01 | 1     | 0,04    | 0,1             |
| AISi20 (A)  | 18,0-22,0 | 6,0    | 1    | -         | 1         | 1    | 1             | 1    | Кальций; 0,06                                                      | Ι     | 0,04    | 0,1             |

В процентах

| 7  |
|----|
| ž  |
| ŝ  |
| 9  |
| ٤  |
| ę  |
| ₹  |
| ž  |
| ઠ  |
| 8  |
| ٥  |
| ٦. |

|                |           |        |      |          |        | M    | Массовая доля |      |                                                                                    |          |                 |         |
|----------------|-----------|--------|------|----------|--------|------|---------------|------|------------------------------------------------------------------------------------|----------|-----------------|---------|
| Марка лигатуры |           |        |      |          |        |      |               |      |                                                                                    |          | Прочие элементы | пементы |
|                | Кремний   | Железо | Медь | Марганец | Малний | Хром | Никель        | Цинк | Другие элементы                                                                    | Тиган    | Каждый          | Сумма   |
|                | 18,0-22,0 | 7,0    | 0,2  | 0,4      | 5'0    | 0,1  | 0.2           | 0,2  | Кальций: 0,06                                                                      | 0,1      | 0.04            | 0.1     |
|                | 47,0-53,0 | 0,3    | 0,05 | 0.05     | 0,05   | 0,05 | 0,05          | 0,05 | Кальций: 0,15                                                                      | 0,05     | 0,04            | 0,1     |
|                | 47,0—53,0 | 2'0    | 0,2  | 6,4      | 9'0    | 0,1  | 0,2           | 0,2  | Кальций; 0,15                                                                      | 0,1      | 0,04            | 1,0     |
|                | 6,0       | ٤,0    | 1    | _        | ı      | _    | -             | _    | Стронций: 3,23,8<br>Кальций: 0,03<br>Фосфор: 0,01                                  | 1        | 0,04            | 0,1     |
|                | 6,0       | 0.3    | 1    | 1        | 90'0   | -    | 1             | Î    | Стронций: 4,5—5,5<br>Барий: 0,05<br>Кальций: 0,05<br>Фосфор: 0,01                  | 1        | 0,04            | 0,1     |
|                | 6,0       | 6,0    | 1    | 1        | 0,1    | ı    | 1             | I    | Стронций: 9,0—11,0<br>Барий: 0,1<br>Кальций: 0,1<br>Фосфор: 0,01                   | 1        | 0,04            | 0,1     |
| AISr10Ti1B0,2  | 6,0       | 6,0    | 1    | Ī        | 0,1    | 1    | 1             |      | Стронций: 9,0—11,0<br>Бор: 0,15—0,25<br>Барий: 0,1<br>Кальций: 0,1<br>Фосфор: 0,01 | 0,8-1,2  | 0,04            | 0,1     |
|                | 0,2       | 6.0    | 0,05 | 0,05     | 0,05   | I    | 1             | 0,05 | Ванадий: 0,2                                                                       | 2,0-3,0  | 0,04            | 0,1     |
|                | 0,2       | 0,3    | 0,05 | 90'0     | 0,05   | ı    | _             | 0,05 | Ванадий: 0,2                                                                       | 4,5-5,5  | 0.04            | 0,1     |
|                | 0,2       | 0,3    | 1    | ı        | 1      | T    | 1             | I    | Ванадий: 0,3                                                                       | 9,0-11,0 | 0.04            | 0.1     |
|                | 0,3       | 0.7    | 0,2  | 0.4      | 9'0    | 0.1  | 0,2           | 0,2  | Ванадий: 0,5                                                                       | 9,0-11,0 | 0,04            | 0,1     |
|                | 0,3       | 0,3    | 1    | Ī        | 1      | 1    | I             | 1    | Бор: 0,8—1,2<br>Ванадий: 0,2                                                       | 2,7-3,5  | 0,04            | 0,1     |
|                | 0,2       | 6,0    | 1    | 1        | 1      | 1    | 1             | 1    | Бор: 0,15—0,25<br>Ванадмй: 0,15                                                    | 4,5-5,5  | 0,04            | 0,1     |

В процентах

Окончание теблицы 1

|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |        |          |        | W    | Массовая доля |      |                                  |         |                 |         |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------|----------|--------|------|---------------|------|----------------------------------|---------|-----------------|---------|
| Марка лигатуры |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |        |          | 3      |      |               |      |                                  |         | Прочие элементы | лементы |
|                | Крем ний                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Железо    | Медь   | Марганец | Магния | wodx | Николь        | Цинк | Другие элементи                  | Титан   | Каждый          | Сумма   |
| AITi580,6      | €'0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6,0       | 1      | 1        | 1      | 1    | 1             | 1    | Бор; 0,5—0,8<br>Ванадий: 0,2     | 4,5—5,5 | 0,04            | 1,0     |
| AITI581        | 2*0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6,0       | 1      | 1        | 1      | 1    | 1             | 1    | Бор: 0,9—1,1<br>Ванадий: 0,15    | 4,5-5,5 | 0,04            | 1,0     |
| AIV5           | 6,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,4       | 1      | 0,15     | 1      | 1    | 1             | _    | Ванадий: 4,0—6,0                 | 1       | 0,04            | 0,1     |
| AIV10          | 6,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,3       | 1      | 1        | 1      | 1    | 1             | -    | Ванадий: 9,0—11,0                | 1       | 0,04            | 0,1     |
| AIZr2,5        | 6,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,3       | 1      | 1        | -      | 1    | 1             | 1    | Цирконий: 2,0—3,0                | 1       | 0.04            | 0,1     |
| AlZr5 (A)      | 0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,3       | 0,05   | 0,05     | 0,05   | 1    | 13            | 90'0 | Цирконий: 4,5—5,5                | 1       | 0.04            | 0,1     |
| AIZr5 (B)      | 6,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,45      | 0,1    | 1        | _      | 1    | 0.1           | 1    | Цирконий: 4,5—5,5                | 0,1     | 0.04            | 0,1     |
| AlZr10 (A)     | 0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.3       | 90'0   | 0,05     | 0,05   | 1    | 1             | 0,05 | Цирконий: 9,0—11,0               | 1       | 0.04            | 0,1     |
| AlZr10 (B)     | 0,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,45      | 0,2    | 1        | 1      | 1    | 0.2           | 1    | Цирконий: 9,0—11,0<br>Олово: 0,2 | 0,2     | 0,04            | 0,1     |
| AlZr15         | 0,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,4       | 1      | 1        | _      | 1    | 1             | 1    | Цирконий: 13,5—16,0              | 1       | 0,04            | 0,1     |
| AIP2,5         | 6,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,3       | 0.6    | 1        | I      | 1    |               | 1    | Фосфор: 1,0—5,0                  | 0,05    | 0,04            | 0.1     |
| AIP2,5A        | 6,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,3       | 4,5    | 1        | 1      | 1    | 1             | 1    | Фосфор: 1,0—5,0                  | 0,05    | 0,04            | 1,0     |
| TOTAL PIO      | the safe and a supplemental and the safe and | arely con | No. 4) |          |        |      |               |      |                                  |         |                 |         |

# (Измененная редакция, Изм. № 1).

Примечания

1 В графу «Другие элементы» включены элементы: бармй, бериллий, бор, ванадий, висмут, кальций, кобаль т, олово, скандий, стронций, сурьма, цирконий, фосфор, фтор, редкоземельные элементы (РЗЭ), которые должны быть проанализированы в установленном порядке.

2 В графу «Прочие элементы» («Сумма») включены все элементы, массовая доля которых равна или более 0.01 % каждого из элементов в отдельности. Прочие элементы не определяются, а гарантируются предприятием — изготовителем лигатур.

В лигатурах, кроме лигатуры марки AIZ r10 (В), максимальное содержание олова не должно превышать 0,02 %.

4. Предприятие-изготовитель гарантирует в лигатурах содержание суммы свинец + кадмий ≤ 0,0095 %, а в лигатурах, не легированных бериллием, содержание бериллия ≤ 0,0001 %.

- $3.4\,$  Лигатуры изготовляют в виде вафельных пластин массой не более  $10\,$  кг или в виде прутка диаметром  $(9,5\pm0,5)\,$ мм, смотанного в бухту массой не более  $180\,$ кг. Лигатуру AISc изготовляют в виде пластин, отлитых в кокильную изложницу, с последующей обрезкой литника. Лигатуру марки AIMn60 поставляют в виде чешуек размером  $1-10\,$ мм. Некоторые лигатуры, вследствие их металлургических характеристик и состава, выпускают в виде кусков неправильной формы или разломанных вафельных пластин
- 3.5 Размеры вафельных пластин подлежат согласованию между изготовителем и потребителем лигатур. Рекомендуемые размеры вафельных пластин:  $440 \times 220 \times 50$ ,  $500 \times 200 \times 50$  или  $300 \times 200 \times 50$  мм.
- 3.6 Поверхность вафельных пластин должна быть чистой. На поверхности не допускаются шлаковые и другие инородные включения, видимые невооруженным глазом. На поверхности допускаются следы окисных плен, следы вырубки или зачистки дефектов.
- 3.7 Наличие на поверхности прутков и макрошлифе шлаковых и других инородных включений, видимых невооруженным глазом, не допускается.
- 3.8 Плавка должна быть идентифицирована соответствующим номером. Форма образцов и условия их отбора для химического и спектрального анализов определяются технологическими инструкциями предприятия-изготовителя. Каждый образец должен быть отобран от расплавленного металла из печи, жидкого потока, отлитой пластины или прутка после завершения процесса обработки.

#### 4 Правила приемки

- 4.1 Лигатуры принимают партиями массой не более 1000 кг. Партия должна состоять из продукции одной марки, одного размера, одной или нескольких плавок и быть оформлена одним документом о качестве, содержащим:
  - товарный знак или наименование предприятия-изготовителя и товарный знак;
  - наименование потребителя;
  - марку продукции, вид продукции, цветовую маркировку согласно приложению А;
  - номер партии, номера плавок;
  - количество грузовых мест, их массы нетто и брутто;
  - результаты химического анализа каждой плавки в объеме требований таблицы 1;
  - обозначение настоящего стандарта.

Документ о качестве должен иметь печать предприятия-изготовителя и подпись руководителя службы качества.

- 4.2 На предприятии-изготовителе контроль лигатур осуществляют в следующем объеме:
- требования к качеству поверхности на наличие дефектов 100 %;
- масса партии 100 %;
- маркировка 100 %;
- качество упаковки 100 %;
- химический состав лигатуры каждая плавка.
- 4.3 При получении неудовлетворительных результатов химического и спектрального анализов хотя бы по одному из показателей по нему проводят повторный анализ на удвоенном количестве образцов, взятых от той же партии. Результаты повторного анализа распространяют на всю партию.
- 4.4 Предприятие-потребитель достоверность химического анализа лигатур, проводимого предприятием-изготовителем, определяет на отобранных образцах двух процентах пластин, бухт от партии, но не менее чем на одной пластине, бухте каждой плавки.

#### 5 Методы испытаний

- 5.1 Отбор, подготовка проб и хранение запасных проб для определения химического состава лигатур — в соответствии с ГОСТ 24231. Допускается отбор стружки для химического анализа проводить методом фрезерования торцевой поверхности темплета, отрезанного на расстоянии одной четвертой длины вафельной пластины.
- 5.2 Для определения химического состава лигатур, изготовляемых в виде прутка диаметром 9,5 мм, смотанного в бухту, отбирают образцы длиной до 300 мм от бухты. Из этих образцов на токарном станке отбирают стружку, далее — в соответствии с ГОСТ 24231.

- 5.3 Химический состав лигатур определяют по ГОСТ 7727, ГОСТ 11739.2 ГОСТ 11739.7, ГОСТ 11739.9, ГОСТ 11739.11 ГОСТ 11739.13, ГОСТ 11739.15 ГОСТ 11739.21, ГОСТ 11739.23 ГОСТ 11739.25, а также по методикам предприятий-изготовителей, согласованным с потребителем.
- 5.4 Качество поверхности продукции проверяют осмотром без применения увеличительных приборов, массу определяют взвешиванием на механических или электронных весах, обеспечивающих необходимую точность взвешивания.
- 5.5 Для проведения химического анализа лигатур в виде пластин отбирают образцы толщиной 20 мм в поперечном сечении с противоположных концов фрагмента.

#### 6 Маркировка, упаковка, транспортирование и хранение

- 6.1 На каждую пластину и бухту лигатур с двух противоположных торцевых сторон несмываемой краской должна быть нанесена цветовая маркировка полосой или полосами шириной от 10 до 15 мм каждая в соответствии с приложением А.
- 6.2 На каждую пластину лигатур должна быть нанесена маркировка несмываемой краской с указанием номера плавки. Допускается маркировка металлическим клеймом. Высота цифр составляет не менее 15 мм.
- 6.3 Маркировка лигатур должна быть нанесена на ярлык, прикрепленный к упаковке блока или бухте, и содержать следующую информацию:
  - товарный знак или наименование предприятия-изготовителя и товарный знак;
  - наименование и марку продукции, вид продукции, цветовую маркировку;
  - номер партии;
  - массы брутто и нетто:
  - результаты химического анализа каждой плавки в объеме требований таблицы 1.
- 6.4 Пластины лигатур поставляют партиями, упакованными в блоки, на деревянных поддонах. Бухты лигатур в виде прутка поставляют упакованными по 2—3 бухты на деревянных поддонах. Бухту сматывают одним жгутом (отрезком) прутка. Блоки пластин или бухты лигатур крепят лентой к деревянным поддонам и упаковывают в полиэтиленовую пленку для защиты от попадания влаги.
- 6.5 Упаковка пластин или бухт должна обеспечивать их сохранность при транспортировании и не должна разрушаться при погрузке, перегрузке и хранении.
- 6.6 Чешуйчатую лигатуру марки AlMn60 поставляют в биг-бегах массой 500 или 1000 кг, прикрепляя ярлык с маркировкой согласно 6.3.
- 6.7 Транспортирование лигатур осуществляют всеми видами транспорта в крытых транспортных средствах.
- 6.8 Лигатуры должны храниться в крытых сухих помещениях в условиях, исключающих попадание на нее влаги и активных химических веществ.
- 6.9 При маркировке лигатур следует учитывать требования ГОСТ 31340 (в части предупреждения об особых рисках).

#### 7 Требования безопасности и охраны окружающей среды

- 7.1 При изготовлении лигатур алюминий-бериллий требования безопасности определяются наличием бериллия, который по степени воздействия на организм относится к первому классу опасности по ГОСТ 12.1.007. Воздух в рабочей зоне должен соответствовать санитарно-гигиеническим требованиям ГОСТ 12.1.005.
- 7.2 При изготовлении остальных марок лигатур согласно таблице 1 требования безопасности определяются аэрозолями алюминия преимущественно фиброгенного действия, которые по степени воздействия на организм относятся к третьей степени опасности по ГОСТ 12.1.007. Воздух в рабочей зоне должен соответствовать санитарно-гигиеническим требованиям ГОСТ 12.1.005.
- 7.3 По условиям транспортирования и хранения лигатуры всех марок относят к 9-му классу опасности категории 923 по ГОСТ 19433.

#### 8 Гарантии предприятия-изготовителя

- 8.1 Предприятие-изготовитель гарантирует соответствие лигатур требованиям настоящего стандарта при соблюдении условий транспортирования и хранения.
  - 8.2 Гарантийный срок хранения лигатур 10 лет со дня изготовления.

### Приложение А (обязательное)

#### Цветовая маркировка лигатур

#### Таблица А.1

| Марка лигатуры | Цветовая маркировка                         |  |
|----------------|---------------------------------------------|--|
| AIB3           | Одна желтая полоса                          |  |
| AIB4           | Две желтые полосы                           |  |
| AIB5           | Три желтые полосы                           |  |
| AlBe5          | Одна серая и одна оранжевая полосы          |  |
| AIBi3          | Одна желтая и одна фиолетовая полосы        |  |
| AlCa6          | Одна белая и одна голубая полосы            |  |
| AlCa10         | Одна белая и одна оранжевая полосы          |  |
| AICo10         | Одна оранжевая и одна светло-голубая полосы |  |
| AICr5 (Á)      | Одна фиолетовая полоса                      |  |
| AICr5 (B)      | Одна фиолетовая и одна серая полосы         |  |
| AlCr10         | Две фиолетовые полосы                       |  |
| AlCr20 (A)     | Три фиолетовые полосы                       |  |
| AlCr20 (B)     | Три фиолетовые и одна серая полосы          |  |
| AlCu33 (A)     | Две оранжевые полосы                        |  |
| AlCu33 (B)     | Три оранжевые полосы                        |  |
| AlCu50 (A)     | Три оранжевые и одна красная полосы         |  |
| AlCu50 (B)     | Три оранжевые и одна белая полосы           |  |
| AlFe10 (A)     | Одна черная и одна коричневая полосы        |  |
| AlFe10 (B)     | Одна черная и одна зеленая полосы           |  |
| AlFe20         | Одна черная и одна оранжевая полосы         |  |
| AlMg10         | Одна белая и одна черная полосы             |  |
| AlMg20         | Одна белая и одна фиолетовая полосы         |  |
| AIMg50         | Одна белая и две фиолетовые полосы          |  |
| AlMn10 (A)     | Одна коричневая полоса                      |  |
| AlMn10 (B)     | Одна коричневая и одна белая полосы         |  |
| AlMn20 (A)     | Две коричневые и одна белая полосы          |  |
| AlMn20 (B)     | Две коричневые и одна оранжевая полосы      |  |
| AlMn60 (A)     | Две коричневые полосы                       |  |
| AlMn60 (B)     | Три коричневые полосы                       |  |
| AINi10         | Одна серая полоса                           |  |
| AINI20         | Две серые полосы                            |  |
| AJSb10         | Одна белая и одна желтая полосы             |  |
| AlSc2 (A)      | Одна золотистая полоса                      |  |
| AISc2 (B)      | Две золотистые полосы                       |  |
| AISc5 (A)      | Три золотистые полосы                       |  |
| AISc5 (B)      | Четыре золотистые полосы                    |  |

#### ГОСТ Р 53777-2010

#### Окончание таблицы А.1

| Марка лигатуры | Цветовая маркировка                       |  |
|----------------|-------------------------------------------|--|
| AISI20 (A)     | Одна белая полоса                         |  |
| AISi20 (B)     | Одна белая и одна зеленая полосы          |  |
| AISi50 (A)     | Три белые полосы                          |  |
| AISi50 (B)     | Две белые и одна красная полосы           |  |
| AISr3,5        | Одна светло-голубая полоса                |  |
| AlSr5          | Одна светло-голубая и одна желтая полосы  |  |
| AlSr10         | Две светло-голубые полосы                 |  |
| AISr10Ti1B0,2  | Одна светло-голубая и одна красная полосы |  |
| AITi2,5        | Две красные полосы                        |  |
| AITI5          | Одна красная полоса                       |  |
| AITi10 (A)     | Одна красная и одна черная полосы         |  |
| AITi10 (B)     | Одна красная и одна зеленая полосы        |  |
| AITi3B1        | Одна зеленая и одна коричневая полосы     |  |
| AlTi5B0,2      | Одна зеленая и одна черная полосы         |  |
| AITi580,6      | Одна зеленая и одна желтая полосы         |  |
| AITi5B1        | Одна зеленая полоса                       |  |
| AIV5           | Одна черная полоса                        |  |
| AIV10          | Две черные полосы                         |  |
| AlZr2,5        | Одна темно-синяя и одна оранжевая полосы  |  |
| AIZr5 (A)      | Одна темно-синяя полоса                   |  |
| AlZr5 (B)      | Одна темно-синяя и одна красная полосы    |  |
| AlZr10 (A)     | Две темно-синие полосы                    |  |
| AlZr10 (B)     | Две темно-синие и одна красная полосы     |  |
| AlZr15         | Одна темно-синяя и одна зеленая полосы    |  |
| AIP2,5         | Одна белая и одна красная полосы          |  |
| AIP2,5A        | Одна белая и две красные полосы           |  |

(Измененная редакция, Изм. № 1).

| УДК 669.71+669.715:006.354       | OKC 77.120              | B51    | OK∏ 17 1224 |
|----------------------------------|-------------------------|--------|-------------|
| Ключевые слова: алюминиевые лига | туры, марки, химический | состав |             |

# Редактор М.И. Максимова Технический редактор В.Н. Прусакова Корректор В.Е. Нестерова Компьютерная верстка Л.А. Круговой

Подписано в печать 22.05.2012. Формат 60 × 84 ½. Гарнитура Ариал. Печать офсетная. Усл. печ. л. 1,86. Уч. изд. л. 1,40. Тираж 25 экз. Зак. 473.

ФГУП «СТАНДАРТИНФОРМ», 123995 Москва, Гранатный пер., 4.

www.gostinfo.ru info@gostinfo.ru

Набрано во ФГУП «СТАНДАРТИНФОРМ» на ПЭВМ.

Отпечатано в филиале ФГУП «СТАНДАРТИНФОРМ» — тип. «Московский печатник», 105062 Москва, Лялин пер., 6.

Изменение № 1 ГОСТ Р 53777—2010 Лигатуры алюминиевые. Технические условия

Утверждено и введено в действие Приказом Федерального агентства по техническому регулированию и метрологии от 30.11.2011 № 660-ст

**Дата введения** 2012-09-01

Раздел 3. Таблицу 1 дополнить обозначениями марок лигатур — AIP2,5; AIP2,5A и соответствующими показателями массовой доли химических элементов: (см. с. 46).

Приложение А. Таблицу А.1 дополнить марками лигатур — AIP2,5; AIP2,5A с соответствующей цветовой маркировкой:

| Марка лигатуры | Цветовая маркировка              |
|----------------|----------------------------------|
| AIP2,5         | Одна белая и одна красная полосы |
| AIP2,5A        | Одна белая и две красные полосы  |

| Марка   |       |             |     |       |     |     | M acc | М ассовая доля | 10.1191              |      |        |            |
|---------|-------|-------------|-----|-------|-----|-----|-------|----------------|----------------------|------|--------|------------|
| натури  | яня   | 30          | 3)  | пон   | йн  | is  | 402   | 30             | Другие               | ш    | Прочие | чие<br>нты |
|         | Кремп | огоЖ        | r»M | Mapra | ним | odX | эхиН  | ниЦ            | MEMONTA              | пиТ  | Кахлый | Суния      |
| AIP2,5  | 0,3   | 0.3 0.3     | 0.6 | T.    | 1   | -   | 1     | 1              | Фосфор: 1,0—5,0      | 0.05 | 0.04   | 1'0        |
| AIP2,5A | 0,3   | 0.3 0.3 4.5 | 4.5 | 1     | 1   | 1   | 1     | 1              | Фосфор: 1.0-5.0 0.05 | 0.05 | 0.04   | 1'0        |

(MYC No 2 2012 r.)