ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ ΓΟCT P 53168— 2008

Система радионавигационная «Чайка»

СИГНАЛЫ ПЕРЕДАЮЩИХ СТАНЦИЙ

Технические требования

Издание официальное

Предисловие

- 1 РАЗРАБОТАН Федеральным государственным унитарным предприятием «Научно-технический центр современных навигационных технологий «Интернавигация»
 - 2 ВНЕСЕН Техническим комитетом по стандартизации ТК 363 «Радионавигация»
- 3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 18 декабря 2008 г. № 607-ст
- 4 Настоящий стандарт разработан с учетом основных нормативных положений международного документа «Технические характеристики сигнала, излучаемого «Лоран-С» Министерства транспорта США и Береговой охраны США («Specification of the Transmitted Loran-C Signal, COMDTINST M 16562.4A 1994. United States Department of Transportation; United States Coast Guard»)
 - 5 ВВЕДЕН ВПЕРВЫЕ
 - 6 ПЕРЕИЗДАНИЕ. Май 2020 г.

Правила применения настоящего стандарта установлены в статье 26 Федерального закона от 29 июня 2015 г. № 162-ФЗ «О стандартизации в Российской Федерации». Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе «Национальные стандарты», а официальный текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

Содержание

1 Область применения	*
2 Термины, определения и сокращения	*
2.1 Термины и определения	1
2.2 Сокращения	2
3 Излучения радионавигационной системы «Чайка»	3
3.1 Излучаемый импульс	3
3.2 Группы импульсов	.10
3.3 Мерцание	. 12
3.4 Бланкирование	. 12
3.5 Доступность сигнала	.12
3.6 Спектр	.13

Введение

Радионавигационная система «Чайка» относится к классу импульсно-фазовых гиперболических наземных радионавигационных систем длинноволнового диапазона, обеспечивающих навигацию, определение местоположения и времени в их рабочей зоне. Система «Чайка» является аналогом системы «Лоран-С», созданной впервые в 1956 г. в США. Исключение составляют незначительные отклонения, касающиеся формы и спектра частот элементарного радиоимпульса системы «Чайка», что отражено в тексте настоящего стандарта.

Благодаря большой дальности действия относительно высокой точности определения координат и времени указанные системы получили широкое распространение на территории США, России и многих других стран мира.

Нормативным документом для зарубежных производителей аппаратуры наземных станций и аппаратуры потребителей системы «Лоран-С» является «Specification of the Transmitted Loran-C Signal» Министерства Транспорта и Береговой охраны США.

Применение технологии EUROFIX в импульсно-фазовой радионавигационной системе (ИФРНС) «Чайка» позволило передавать корректирующую информацию для дифференциальных подсистем ГЛОНАСС/GPS и другие информационные сообщения на расстояние 600—1000 км путем специальной времяимпульсной модуляции навигационных сигналов ИФРНС. В итоге работ по их совершенствованию системы «Чайка» и «Лоран-С» признаны основными системами функционального дополнения спутниковых радионавигационных систем ГЛОНАСС/GPS. Созданы средства, позволившие осуществить интегральное использование преимуществ систем с наземным базированием и спутниковых радионавигационных систем. Таким образом, возникли реальные предпосылки для значительного расширения круга потенциальных потребителей и производителей аппаратуры модернизированных ИФРНС в России и других странах мира.

Это определило необходимость разработки стандарта на параметры сигналов, излучаемых наземными станциями российской системы «Чайка».

Перспектива развития и использования системы в будущем определена Федеральной программой по воссозданию и развитию системы ГЛОНАСС, а также соглашениями на правительственном уровне о создании объединенных цепей ИФРНС «Чайка» — «Лоран-С»:

- российско-американской,
- российско-корейско-японской,
- российско-корейской,
- российско-норвежской,
- украинско-российской и
- белорусско-российской.

Система радионавигационная «Чайка»

СИГНАЛЫ ПЕРЕДАЮЩИХ СТАНЦИЙ

Технические требования

Chayka radionavigation system. Transmitter signals. Technical requirements

Дата введения — 2010—01—01

1 Область применения

Настоящий стандарт распространяется на сигналы передающих станций и устанавливает технические требования к ним. В стандарте приведено техническое описание параметров сигналов, излучаемых передающими наземными станциями различных цепей импульсно-фазовой радионавигационной системы (ИФРНС) «Чайка». Настоящий стандарт предназначен для применения разработчиками, производителями и потребителями аппаратуры ИФРНС «Чайка».

2 Термины, определения и сокращения

2.1 Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями:

- 2.1.1 антенный ток (Antenna Current): Электрический ток сигнала передающей станции, измеренный в цепи, соединяющей противовес (заземление) передающей антенны с передатчиком.
- 2.1.2 производная от антенного тока (Derívative of Antenna Current): Напряжение на вторичной обмотке измерительного трансформатора напряжения, включенного в цепь антенного тока, эквивалентное сигналу в дальней зоне.

П р и м е ч а н и е — Производная от антенного тока используется для измерения параметров сигнала, излучаемого наземной станцией ИФРНС «Чайка».

- 2.1.3 Е-поле (E-Field Transformation): Результат трансформации антенного тока в напряжение, возникающее за пределами «ближнего дальнего» Е-поля передающей антенны, причем фронт радиоимпульса в Е-поле описывается производной от фронта радиоимпульса антенного тока.
- 2.1.4 ближнее поле (Near-Field): Область, ограниченная радиусом от передающей антенны, равным двум длинам волны высокочастотного заполнения радиоимпульса, в которой существуют статические и квазистатические нераспространяющиеся составляющие электрического и магнитного полей.
- 2.1.5 дальнее поле (Far- Field): Область, ограниченная радиусом от передающей антенны, превышающим 5—10 длин волны высокочастотного заполнения радиоимпульса, в которой присутствуют распространяющиеся (волновые) составляющие электрического и магнитного полей.
- 2.1.6 «ближнее» дальнее поле (Near Far-Field): Границы области между ближним и дальним полями, лежащие в пределах от 2 до 10 длин волн несущей частоты сигнала от передающей антенны, причем в этой области существуют распространяющиеся составляющие электрического и магнитного полей, как и в дальнем поле, но характеристики подстилающей поверхности на них не влияют.
- 2.1.7 фронт радиоимпульса (Pulse Leading Edge; PLE): Часть радиоимпульса в диапазоне между начальным и максимальным его значениями.

- 2.1.8 срез [спад] радиоимпульса (Pulse Trailing Edge; PTE): Часть радиоимпульса, следующая за его максимумом.
- 2.1.9 стандартная точка отсчета (Standard Sampling Point; SSP): Точка на огибающей радиоимпульса на 25-й микросекунде после начала импульса, в которой проводят расчет или измерение напряженности поля в дальней зоне.
- 2.1.10 стандартный переход через нуль (Standard Zero Crossing; SZC): Переход к положительному значению сигнала через нуль на 30 мкс при положительном фазовом коде антенного тока (напряжения), синхронизированный по фазе со стандартом частоты станции.

П р и м е ч а н и е — Стандартная точка пересечения нуля является опорной при измерении параметров сигнала.

- 2.1.11 рассогласование фазы и огибающей радиоимпульса (Envelope-to-Cycle Difference; ECD): Расхождение во времени между фазой высокочастотного заполнения (несущей частоты) радиоимпульса и огибающей радиоимпульса.
- 2.1.12 разность времени (Time Difference; TD): Интервал времени между моментами приема сигналов от ведущей и ведомой станций на одинаковой частоте повторения групп радиоимпульсов.
- 2.1.13 период повторения фазового кода групп (Pulse Code Interval; PCI): Интервал времени, через который повторяется фазовый код группы импульсов передающей станции.
- 2.1.14 период повторения групп импульсов (Group Repetition Interval; GRI): Интервал времени, измеряемый между третьим положительным переходом через нуль высокочастотного заполнения в первом импульсе группы импульсов любой станции и третьим переходом через нуль в первом импульсе группы импульсов той же станции в последующей группе импульсов, выражаемый в микросекундах.

П р и м е ч а н и е — Все станции в цепи имеют одинаковый период повторения групп импульсов. Период повторения групп является отличительным признаком конкретной цепи и может изменяться от 40000 до 99990 мкс на значение, кратное 10 мкс.

- 2.1.15 максимальный уровень излучаемого сигнала (Peak Radiated Power; PRP): Величина, представляющая собой среднеквадратичное значение непрерывного синусоидального сигнала, удвоенная амплитуда (полный размах) колебаний которого равна удвоенной амплитуде колебаний несущей частоты, в максимуме огибающей радиоимпульса.
- 2.1.16 бланкирование [приоритетное, альтернативное] (Blanking Priority or Alternate): Подавление импульсов одной частоты повторения на передающей станции, работающей в двух цепях с различными периодами ловторения групп сигналов, в период перекрытия во времени групп сигналов другой частоты повторения.

П р и м е ч а н и е — Приоритетное бланкирование осуществляется в отношении сигналов одной и той же частоты повторения. Альтернативное подавление осуществляется попеременно на каждой из частот повторения.

- 2.1.17 мерцание сигнала ведомой [ведущей] станции (Blink): Периодическое исключение одного или нескольких импульсов в сигнале наземной станции для информирования потребителей о нарушениях в работе этой станции.
- 2.1.18 ведущая наземная станция; ВЩ (Master; M): Наземная станция, по сигналам которой осуществляется синхронизация излучения сигналов ведомых наземных станций цепи радионавигационной системы.
- 2.1.19 ведомая наземная станция; ВМ (Secondary; S): Наземная станция цепи радионавигационной системы, сигналы которой синхронизируются по сигналам ведущей наземной станции.
- 2.1.20 псевдодальность; ПД (Pseudo range; PR): Измеренная дальность до наземной станции цепи радионавигационной системы, отличающаяся от истинной дальности, полученной посредством измерения времени распространения радионавигационного сигнала по радиолинии «наземная станция определяющийся объект», значением поправки, обусловленной несинхронностью шкал времени наземной станции и аппаратуры потребителя РНС.

2.2 Сокращения

В настоящем стандарте применены следующие сокращения:

ВМ — ведомая станция;

ВЩ — ведущая станция;

ВЧ — высокочастное (заполнение), несущая частота радиоимпульса;

ДВ — длинные волны (длинноволновый);

ГЛОНАСС — глобальная навигационная спутниковая система России;

ГНСС — глобальные навигационные спутниковые системы;

ИФРНС — импульсно-фазовая радионавигационная система;

ОРНС — объединенная радионавигационная система;

ПД — псевдодальность;

РАЦ — российско-американская цель станций ОРНС «Чайка»/«Лоран-С»;

РНС — радионавигационная система;

РСДН — радиотехническая система дальней навигации;

СЕВ ВТ — система единого времени высокой точности;

СКП — среднеквадратичная погрешность;

CD — Code Delay (кодовая задержка);

CW — Continues Wave (непрерывный, синусоидальный сигнал);

ECD — Envelope-to-Cycle Difference (расхождение фазы и огибающей):

EUROFIX — информационно-навигационная система, в которой применен специальный вид модуляции шести последних навигационных импульсов группы импульсов ИФРНС «Loran-C» («Чайка») для передачи телекоммуникационной информации;

FERNS — Far-Eastern Radionavigation Service (дальневосточная радионавигационная служба);

GPS — Global Positioning System (глобальная система позиционирования);

НЕА — Harbor Entrance Accuracy (требуемая точность определений при входе в порт и подходе к нему морских судов);

NELS — North European Loran System [Service] (Североевропейская система [служба] LORAN-C);

PC — Phase Code (фазовый код);

RNP 0,3 — Radio Navigation Parameter (допуск для грубого захода на посадку воздушных судов);

TD — Time Difference (разность времени):

TOC — Time of Coincidence (время совпадения);

TOT — Time of Transmission (время излучения сигнала).

3 Излучения радионавигационной системы «Чайка»

3.1 Излучаемый импульс

3.1.1 Фронт импульса

Все станции излучают радиоимпульсы со стандартными параметрами фронта. Каждый импульс состоит из высокочастотных колебаний несущей частоты f = 100 кГц, которые увеличиваются по амплитуде в соответствии с заданным законом, а затем спадают со скоростью, зависящей от характеристик конкретного передатчика и передающей антенны.

Антенный ток стандартного радиоимпульса РНС «Чайка», с которым сравнивают форму реального импульса в цепи антенны, для передающих устройств выражают в общем виде экспоненциальносинусоидальной функцией:

$$i(t) = A \exp [-\alpha (t - \tau)] \sin \Omega (t - \tau) \sin (0.2 \pi t + PC).$$
 (3.1)

Фронт радиоимпульса антенного тока выражают экспоненциально-степенной функцией:

$$i(t) = A [(t - \tau)/t_m]^2 \exp [2 - 2 (t - \tau)/t_m] \sin (0.2\pi t + PC) \text{ для } \tau \le t \le t_m + \tau$$

$$u i(t) = 0 \text{ для } t < \tau.$$
(3.2)

В формулах (3.1), (3.2) приняты следующие обозначения:

А — максимальная амплитуда импульса тока в антенне, в амперах (А);

t — время, мкс;

t_m — временной интервал от начала радиоимпульса до его максимума, мкс;

 τ — временной интервал рассогласования между фазой ВЧ-заполнения и кривой огибающей радиоимпульса [далее — Envelope-to-Cycle Difference — (ECD)], мкс. При этом диапазон возможных значений ECD равен ($-5 < \tau < + 5$) мкс;

PC — параметр фазового кодирования (в радианах), который равен нулю при положительном фазовом коде и π — при отрицательном фазовом коде:

 α и Ω — коэффициенты аппроксимации огибающей фронта радиоимпульса, зависящие от параметров полосовой цели передатчика (включая антенну), мкс⁻¹.

Первый полупериод тока антенны обычно короче 5 мкс. При этом когда ECD положительно, первый полупериод начинается во время τ и заканчивается во время t = 5 мкс, τ . е. полупериод имеет длитель-

ность, равную $(5 - \tau)$ мкс. Когда ECD имеет отрицательное значение, первый полупериод начинается во время τ и заканчивается во время t = 0 мкс, и длительность полупериода составляет $|\tau|$ мкс. В связи с этим приведенные ниже допуски на параметры для нескольких начальных полуволн импульса антенного тока имеют повышенное значение по сравнению с допусками для остальных полупериодов фронта.

Примечания

- 1 Сущность трансформации антенного тока в Е-поле в дальней (волновой) зоне заключается в сдвиге (задержке) фазы несущей частоты сигнала приблизительно на 90°С и, как следствие этого, в изменении ЕСD (τ) не более чем на 2,5 мкс. Математически эта трансформация описывается производной от антенного тока.
- 2 Для объективного контроля формы излучаемых импульсов в волновой зоне используют мобильные контрольные пункты, оборудованные специальной измерительной аппаратурой.

3.1.1.1 Фронт радиоимпульсов, излучаемых станциями цепи РСДН-3/10

Для станций цепи РСДН-3/10 (Европейская цепь станций системы «Чайка» с длинными антенными фидерами) фронт должен соответствовать табулированным значениям амплитуд первых восьми полуволн ВЧ-заполнения радиоимпульса в основании антенны (таблица 1) и конкретным значениям длительностей первых пяти полуволн ВЧ-заполнения (таблица 2).

Номер полуволны	Нормированная амплитуда полуволны	Номер полуволны	Нормированная амплитуда полуволны
1	0,05	5	0,56
2	0,12	6	0,73
3	0,24	7	0,86
4	0.40	8	0,96

 Π р и м е ч а н и е — Отклонение реальных значений амплитуд полуволн от значений, приведенных в таблице 1, не должно превышать \pm 5 %.

Таблица 2 — Длительности полуволн ВЧ-заполнения

Номер периода ВЧ	Длительность периода, мкс	Номер периода ВЧ	Длительность периода, мкс
1		4	10,0
2	9,85	5	10,03
3	9,95		

 Π р и м е ч а н и е — Отклонение реальных значений длительности периода от значений, приведенных в таблице 2, не должно превышать \pm 5 %.

Длительность фронта на участке от 0.1 до 0.9 максимума амплитуды радиоимпульса должна составлять (29 ± 1.5) мкс.

3.1.1.2 Фронт радиоимпульсов, излучаемых наземными передающими станциями цепи РСДН-4 Форма кривой огибающей радиоимпульсов U(t), излучаемых наземными станциями Дальневосточной цепи РСДН-4, аппроксимируется выражением:

$$U(t) = U_m e^{-\alpha t} (1 - \cos \Omega t), \qquad (3.3)$$

где

для станций большой мощности РСДН-4:

 $\alpha = 1.0 \cdot 10^4 \text{ 1/c};$

 $\Omega = 6.3 \cdot 10^4 \text{ 1/c}$

для станций малой мощности РСДН-4:

 $\alpha = 0.75 \cdot 10^4 \text{ 1/c};$

 $\Omega = 6.5 \cdot 10^4 \text{ 1/c}$

U_т — амплитуда излучаемого сигнала, В;

t — время, с.

Длительность фронта на участке от 0,1 до 0,9 максимума амплитуды радиоимпульса должна составлять (29 ± 1,5) мкс.

3.1.1.3 Фронт радиоимпульсов, излучаемых наземными передающими станциями РСДН-10

Форма кривой огибающей радиоимпульсов, излучаемых наземными станциями мобильной (транспортабельной) системы РСДН-10, аппроксимируется выражением (3.3):

$$U(t) = U_m e^{-\alpha t} (1 - \cos \Omega t).$$

где $\alpha = (0.7 - 0.8) 10^4$ 1/c;

 $\Omega = (5.7 - 5.9) 10^4 1/c$.

Длительность фронта на участке от 0,1 до 0,9 максимума амплитуды радиоимпульса должна составлять (29 ± 1,5) мкс.

 3.1.1.4 Фронт радиоимпульсов, излучаемых наземными передающими станциями большой мощности РСДН-5 БМ

Нормированные значения амплитуд полуволн ВЧ-заполнения радиоимпульсов наземных станций большой мощности РСДН-5 БМ (северной и северо-западной цепей станций) должны соответствовать эталонным значениям, представленным в таблице 3.

Номер полуволны	Нормированная амплитуда полуволны	Номер полувалны	Нормированная амплитуда полуволны
1	0,030	8	0.616
2	0,053	9	0,720
3	0,100	10	0,900
4	0,183	11	0,983
5	0,266	12	0,983
6	0,383	13	0,983
7	0,496	14	1,000

П р и м е ч а н и е — Отклонение реальных значений амплитуд полуволн от значений, приведенных в таблице 3, не должно превышать ± 5 %.

Длительность фронта на участке от 0,1 до 0,9 максимума амплитуды радиоимпульса должна составлять (29 ± 1,5) мкс.

 З.1.1.5 Фронт радиоимпульсов, излучаемых наземными станциями средней мощности РСДН-5 СМ Форма импульсов, излучаемых наземными станциями средней мощности в северо-западной цепи РНС «Чайка» [с применением двухконтурных радиопередающих устройств (РПУ)] выбрана из условия обеспечения работоспособности серийных приемоиндикаторов РНС «Чайка» и «Лоран-С», поскольку по крайней мере одна из них должна войти в состав российско-норвежской объединенной радионавигационной системы (далее — ОРНС).

Форма импульсов, излучаемых станциями средней мощности северо-западной цепи РНС «Чайка», аппроксимируется формулой

$$E(t) = u(t - \tau_A) \sin \varphi(t), \qquad (3.4)$$

где

u(t) = At при $0 \le t \le 10$ мкс:

 $u(t) = C \exp(-\alpha t) \sin \beta (t - 5)$ при $t \ge 10$ мкс:

С и А — коэффициенты, определяемые через параметры аппроксимации α и β, следующими выражениями:

A = 0, 1 C exp (-10α) sin 5β; C = $(1 + \alpha^2/\beta^2)^{1/2}$ exp $(5\alpha + \alpha/\beta)$ arctg (α/β) ;

 $\varphi(t) = 0.194 \pi (t - \tau_u) - \arctan(q \cot \beta (t - \tau_u)) \text{ pag};$

 $\alpha = 7.854 \cdot 10^{-3} \text{ MKC}^{-1}$;

 $\beta = 3.6 \cdot 10^{-2} \text{ MKC}^{-1}$

FOCT P 53168-2008

 $\tau_{\rm A} = -0.15$ MKC; $\tau_{\rm H} = -2.05$ MKC: q = 0.301; t — время, MKC,

т_л — рассогласование между огибающей и фазой несущей (ECD), мкс.

П р и м е ч а н и е — Параметры аппроксимации подлежат уточнению после завершения экспериментальных работ в составе OPHC.

Длительность фронта радиоимпульса составляет 41.7 мкс.

3.1.1.6 Форма радиоимпульсов, излучаемых наземными станциями объединенной российско-американской цепи станций ИФРНС «Чайка/Лоран-С»

Параметры формы радиоимпульсов, излучаемых станциями Петропавловск-Камчатский и Александровск Сахалинский объединенной российско-американской цепи станций ИФРНС «Чайка/ Лоран-С» [1].

Близость формы радиоимпульсов РНС «Чайка» и «Лоран-С» оценивают по значению среднеквадратичного отклонения уровней первых восьми полуволн на фронте импульса от эталонных значений, рассогласованию фазы и огибающей (ECD) радиоимпульса.

При сравнении форм радиоимпульсов РНС «Чайка» и «Лоран-С» в качестве эталонной формы используется производная от тока (E) в основании антенны наземной станции «Лоран-С», описываемая функцией:

$$E = \{1 + 100/\pi^{2}[1/(t-\tau) - t_{m}]^{2}\}^{-1/2}[(t-\tau)/t_{m} \exp(1 - (t-\tau)/t_{m})]^{2} \sin[0.2\pi t + \arctan(t-\tau)], \tag{3.5}$$

где t — время, мкс,

 $\varphi(t) = \{[1/(t-\tau) - 1/65] \cdot 10/\pi\}^{-1}.$

Контроль параметров радиоимпульсов осуществляется с помощью датчика сигнала, включенного последовательно в цепь передающей антенны вблизи ее основания. В качестве датчика сигнала используется экранированный трансформатор тока, напряжение на выходе которого пропорционально производной от тока в основании антенны.

Параметры, подлежащие контролю и допустимые отклонения:

- а) отклонение от эталонных значений каждой из первых восьми полуволн радиоимпульса должно быть < 3 %;
- б) среднеквадратичное отклонение первых восьми полуволн радиоимпульса РНС «Чайка» от соответствующих полуволн РНС «Лоран-С» должно быть < 1,5 %;
- в) рассогласование фазы и огибающей радиоимпульса (ECD), излучаемого наземной станцией (усредненного по результатам измерения по всем 16 импульсам навигационного кода), должно быть менее 1, 5 мкс;
- г) отклонение ECD от установленного для сигналов наземной станции номинального значения не должно превышать 1 мкс;
- д) временное положение нулей радиоимпульса на выходе датчика сигнала, описываемое производной от тока радиоимпульса в антенне передающей станции «Лоран-С» и их допустимые отклонения должны соответствовать приведенным в таблице 4.

Т а б л и ц а 4 — Временное положение нулей радиоимпульса на выходе датчика сигнала

Временное положение смены полярности ВЧ-заполнения радиоимпульса относительно конца третьего периода, мкс	Допустимое отклонение временного положения нс
-24, 00	2000
-19, 53	1500
-14,80	1000
~09, 90	500
-04, 96	250
-04, 97	100

Примечания

¹ Аналогичные требования предъявляют к наземным станциям ИФРНС «Чайка» при их включении в состав объединенных систем «Чайка»/«Лоран-С» в Дальневосточном регионе Азии (FERNS) и североевропейском регионе (NELS и др.).

2 Необходимым условием является согласование (инверсия) начальной фазы ВЧ-заполнения радиоимпульсов РНС «Чайка» с фазой радиоимпульсов РНС «Лоран-С» при переходе в режим излучения ОРНС.

Время достижения максимума радиоимпульса при этих параметрах аппроксимации приблизительно равно 43,7 мкс.

3.1.1.7 Рассогласование между огибающей и фазой (ECD).

ECD реального импульса РНС «Чайка» определяют следующим образом.

Рассчитывают рассогласование между фронтами реального и стандартного (заданного приведенными выше аналитическими или табулированными значениями) импульсов в виде функционала Δ(τ):

$$\Delta(t) = \left\{ 1/8 \left[\sum_{n=1}^{8} E_n^2(\tau) - \left(\sum_{n=1}^{8} E_n^2(\tau) S_n \right)^2 / \sum_{n=1}^{8} S_n^2 \right] \right\}^{1/2} 100\%, \quad (3.6)$$

где S_n — нормированные амплитуды первых восьми полуволн измеряемого импульса;

 $E_n(\tau)$ — нормированные амплитуды первых восьми полуволн стандартного радиоимпульса, вычисленные при ECD, равном τ .

Рассогласование ECD между огибающей и фазой импульса равно значению τ , при котором функционал $\Delta(\tau)$ принимает минимальное значение.

3.1.1.8 Допуск по максимальной амплитуде полуволн

При любых значениях ECD в диапазоне от минус 1,5 до плюс 1,5 мкс максимальная амплитуда первых восьми полуволн первого импульса каждой группы импульсов должена удовлетворять критерию

$$\Delta S_n = [AS_n - E_n(\tau)] 100 \% \le 0.01,$$
 (3.7)

где А — множитель, определяемый выражением

$$A = \sum_{n=1}^{8} E_n(\tau) S_n / \sum_{n=1}^{8} S_n^2,$$
 (3.8)

где $E_n(\tau)$ и S_n — нормированные уровни восьми максимальных значений амплитуд полуволн для стандартной (при ECD = τ) и реальной (измеренной) форм антенного тока (напряжения).

3.1.1.9 Амплитуды отдельных полуволн (индивидуальные допуски)

Амплитуда каждой отдельной полуволны первого импульса антенного тока (напряжения) каждой группы импульсов должна удовлетворять критерию:

$$|E_n - S_n| \le 0.03$$
; $1 \le n \le 8$. (3.9)

3.1.2 Участок спада импульса

Участок спада импульса — это участок, следующий за максимальным значением импульса, т. е. за пределами интервала t = 43,7 мкс. Им управляют таким образом, чтобы удовлетворить требованию по ширине спектра излучаемого сигнала.

Для различных площадок размещения передатчика и/или различного вида оборудования передатчика участок спада радиоимпульса может существенно различаться по внешнему виду и характеристикам. Независимо от этих различий для каждого импульса и для всех t > 500 мкс, величина u(t) должна удовлетворять следующим критериям.

Категория 1:
$$u(t) \le 0,0014 S$$
. (3.10)

Категория 2:
$$u(t) ≤ 0,033$$
 S. (3. 11)

На рисунке 1 приведена форма радиоимпульсов, излучаемых существующими передатчиками (без подавления остаточных колебаний). Эти передатчики следует отнести ко второй категории. На рисунке 2 приведена форма радиоимпульсов, которые будут излучать передатчики нового поколения после завершения проводимой в настоящее время программы модернизации ИФРНС «Чайка». В этих передатчиках проводится подавление остаточных колебаний, подобное осуществленному в передатчиках системы «Лоран-С». Их можно отнести к передатчикам категории 1. Для каждого импульса на интервале времени после начала импульса ≥ 950 мкс амплитуда должна быть ниже максимальной амплитуды по крайней мере на 56 дБ.

Для передатчиков, излучающих импульсы с повторными колебаниями, уровень повторных колебаний К радиоимпульса определяют по отношению

$$K = S_1/S_{\text{max}} \le 0,013,$$
 (3.12)

где S₁ — амплитуда наибольшей из полуволн повторных колебаний радиоимпульса на удалении более 500 мкс от начала основного импульса;

S_{max} — амплитуда наибольшей полуволны радиоимпульса.

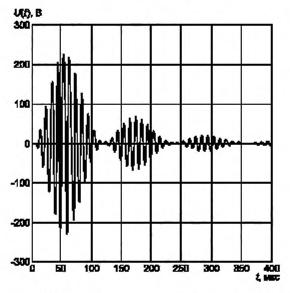


Рисунок 1 — Типичная форма радиоимпульса в антенне тиратронного передатчика ИФРНС «Чайка»

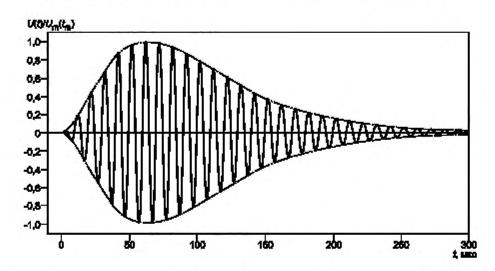


Рисунок 2 — Типичная форма радиоимпульса с экспоненциально-степенной огибающей.

Для ИФРНС «Лоран-С»: $t_{U\max}$ = 65 мкс, $t_{0,5\;U\max}$ = 24 мкс. Для ИФРНС «Чайка»: $t_{U\max}$ = (42 – 44) мкс, $t_{0,5\;U\max}$ = (16 – 17) мкс.

3.1.3 Допуски на времена переходов через нуль высокочастотных колебаний внутри импульса

На рисунке 3 представлен стандартный (принятый за «эталонный» для ОРНС) импульс (с положительным фазовым кодом и ЕСD = 0) с обозначениями полуволн и переходов через нуль. Времена переходов через нуль измерены относительно точки стандартного перехода через нуль (положительный переход через нуль на 30-й микросекунде для импульса с положительным фазовым кодом). При ЕСD в диапазоне от минус 2, 5 мкс до плюс 2, 5 мкс, времена переходов через нуль и допуски на них для первого импульса представлены в таблице 5.

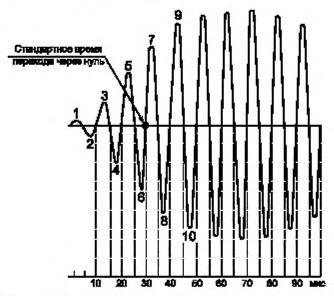


Рисунок 3 — Моменты времени переходов колебаний BЧ через нуль и обозначения полуволн

Примечание — На рисунке представлен импульс с положительной фазой.

Т а б л и ц а 5 — Времена переходов через нуль ВЧ-колебаний (относительно точки стандартного перехода) и допуски

Переход через нуль относи-	DDEMSI, MKC	Допуск, нс. для передатчика категории	
ельно начала импульса, мкс		1	2
5	- 25	± 1000	± 2000
10	- 20	± 100	± 1500
15	- 15	±.75	± 1000
20	- 10	± 50	± 500
25	-5	± 50	± 250
30	Стандар	гный (опорный) переход че	рез нуль
35	5	± 50	± 100
40	10	± 50	± 100
45	15	± 50	± 100
50	20	± 50	± 100
55	25	± 50	± 100
60	30	± 50	± 100

За пределами 60 мкс пересечения нулей соответствуют (100 ± 1) кГц.

3.2 Группы импульсов

3.2.1 Структура группы импульсов

Группы импульсов ведущих (ВЩ) и ведомых (ВМ) станций содержат по восемь навигационных радиоимпульсов, причем каждый последующий импульс отстоит от предыдущего импульса в группе на 1000 мкс ± (25—100) нс в зависимости от категории передатчика (см. таблицу 10).

Группы импульсов ВЩ и ВМ содержат девятый импульс, используемый в передатчиках первого поколения для передачи связной информации, отстоящий от предыдущего восьмого импульса пачки на 1200 мкс.

Десятый импульс в группе ВЩ, отстоящий от предыдущего импульса на 2000 мкс, используют для индикации момента времени (ТОС), когда секундные метки внутренней шкалы времени передающей станции и шкалы времени системы внешней синхронизации по сигналам СЕВ ВТ или ГЛОНАСС/GPS совпадают.

Примечания

- 1 Йимпульс индикации совпадения меток (ТОС) шкал времени может отстоять от восьмого навигационного импульса на 1200, 2400 или 3600 мкс в случае необходимости индикации моментов совпадения меток «1 с», «1 мин», «5 мин» и в зависимости от конкретной цепи станций.
- 2 Реальное положение 9-го и 10-го импульсов группы ВЩ может отличаться от приведенных данных до завершения процесса непрерывно проводимой модернизации комплексов аппаратуры управления и синхронизации передающих станций, находящихся в эксплуатации.

3.2.2 Период повторения группы импульсов

Каждая станция РНС «Чайка» работает с конкретным периодом повторения групп (далее — ППГ), общим для станций одной цепи.

Как и в системе «Лоран-С», разрешенными ППГ является сомножество периодов через 10 мкс в интервале от 40000 до 99990 мкс. Идентификатором ППГ является код ППГ, определяемый в виде значения ППГ в микросекундах, деленного на 10 (например, число 7980 определяет ППГ 79800 мкс).

3.2.3 Синхронизация группы импульсов ведущей станции

Восьмой импульс первой группы импульсов в последовательности излучаемых с положительным фазовым кодом импульсов ВЩ синхронизируется с секундной меткой, передаваемой Системой единого времени высокой точности (далее — СЕВ ВТ) России, или с секундной меткой, передаваемой в сигналах ГНСС ГЛОНАСС/GPS [с учетом поправки для Координированного всемирного времени (UTC), публикуемой в специальных бюллетенях).

Поскольку ППГ цепей различаются, необходимо соотнести синхронизацию всех ВЩ с общей эпохой. Этой эпохой является 0 часов, 0 минут, 0 секунд, 1 января 1958 года.

Среднеквадратичная погрешность (СКП) синхронизации не должна превышать:

- по сигналам ГНСС 40 нс.
- по сигналам СЕВ ВТ 80 нс.

3.2.4 Синхронизация групп импульсов ведомых станций по сигналам ведущих станций

Группы импульсов ведомых станций (ВМ) излучают с тем же ППГ, что и группы импульсов ВЩ. Они должны быть синхронизированы по времени с навигационными сигналами ВЩ.

СКП привязки импульсов ВМ по радионавигационному каналу не должна превышать 100 нс.

Задержку излучения ведомых станций относительно ВЩ выбирают так, чтобы обеспечить удовлетворение следующим критериям внутри каждой цепи повсюду, где могут быть приняты сигналы:

- минимальная разница во времени между сигналами, излучаемыми любой ВМ и ВЩ, равна 10900 мкс:
 - минимальная разность любых двух разностей времени равна 9900 мкс;
 - максимальная разность времени равна ППГ минус минимальная разность 9900 мкс;
- минимальное расстояние между соответствующими точками последнего импульса группы любой станции и первым импульсом следующей группы в той же цепи равно 2900 мкс, за исключением минимального расстояния между девятым импульсом ВЩ и следующим импульсом ВМ той же самой цепи. Значение этого минимального расстояния составляет 1900 мкс, что является следствием применения трех предыдущих критериев.

П р и м е ч а н и е — СКП привязки ВМ по радионавигационному каналу подлежат уточнению с учетом условий приема сигналов для конкретного размещения ВМ.

3.2.5 Синхронизация момента времени излучения ведущих и ведомых станций по сигналам ГНСС

В состав модернизированных ВЩ и ВМ включают приемную аппаратуру ГНСС ГЛОНАСС/GPS, позволяющую осуществлять внешнюю синхронизацию моментов времени излучения (ТОТ) как ВЩ, так и каждой ВМ цепи по сигналам ГНСС.

СКП синхронизации момента времени излучения ВМ относительно ВЩ по сигналам, принимаемым одновременно на ВМ и ВЩ от одного и того же спутника ГНСС, не должна превышать 30 нс.

3.2.6 Фазовое кодирование группы импульсов

Каждая станция РНС «Чайка» (аналогично РНС «Лоран-С») передает группы фазокодированных импульсов в соответствии с таблицей 6. Для идентификации первая группа импульсов излучаемой последовательности названа группой А, а вторая группа, задержанная на один период повторения, группой В.

Излучаемую последовательность, включающую в себя группы A и B, называют периодом фазового кода.

Таблица 6 — Коды фазы радиоимпульсов РНС «Чайка» и «Лоран-С»

Группа	Ведущая станция	Ведомая станция
A	+++-++	+++++*
В	++++++	+-+-++*

Примечания

3.2.7 Равномерность импульсов в группе

Равномерность импульсов в группе зависит не только от используемого оборудования, но и от того, работает станция на одной частоте следования или на двух частотах.

3.2.8 Допуск по равномерности амплитуд от импульса к импульсу

При сравнении с использованием следующего уравнения амплитуда наименьшего импульса в группе не должна отличаться от амплитуды наибольшего импульса той же группы больше, чем задано в таблице 7.

$$D = \left[\frac{I_{pk} \text{Max} - I_{pk} \text{Min}}{I_{pk} \text{Max}} \right] 100\%, \quad (3.13)$$

где D — спад (Droop), %;

- Ink Max значение i(t) в максимуме наибольшего импульса в группе,
- I_{nk} Min значение i(t) в максимуме наименьшего импульса в группе.

Таблица 7 — Допуск по амплитуде от импульса к импульсу спада D

В процентах

Категория передатчика	Одна частота повторения групп	Две частоты повторения групп
1	5	10
11	10	20

3.2.9 Допуск погрешности ECD от импульса к импульсу

Допуск погрешности ECD от импульса к импульсу рассчитывают по разности фронтов от импульса к импульсу и разности пересечений через нуль от импульса к импульсу. Значение ECD любого единичного импульса антенного тока (напряжения) не должно отличаться от среднего значения ECD по всем импульсам, содержащимся в обеих группах A и B, на величину большую, чем приведенная в таблице 8.

Десятый импульс группы ВЩ используют для индикации момента совпадения секундных (минутных, пятиминутных) меток шкал времени ВЩ и СЕВ ВТ.

² В модернизируемых передающих станциях телекоммуникационную информацию передают посредством модуляции шести последних импульсов группы по методу, используемому в системе EUROFIX.

Таблица 8 — Допуски погрешности ЕСО от импульса к импульсу

В микросекундах

Категория передатчика	Одна частота повторения	Две частоты повторения
	0,5	0,7
н	1,0	1,5

3.2.10 Допуск погрешности синхронизации от импульса к импульсу

Импульсы со второго по восьмой синхронизированы по времени с первым импульсом каждой группы. Временные соотношения и допуски стандартных пересечений нулей в импульсах, начиная со второго по восьмой, по отношению к стандартному переходу через нуль первого импульса представлены в таблице 9.

Таблица 9 — Допуски погрешностей синхронизации от импульса к импульсу

В наносекундах

Категория передатчика	Одна частота повторения	Две частоты повторения
7	(N-1) 1000 мкс ± 25 нс	(N-1) 1000 MKC ± 50 HC + C
- 11	(N-1) 1000 MKC ± 50 HC	(N-1) 1000 MKC ± 100 HC + C

П р и м е ч а н и е — N — номер (со 2-го по 8-й) импульсов, которые следуют за первым импульсом каждой группы. Значение коэффициента С равно нулю для импульсов с положительной фазой кода; | C | ≤ 150 нс для импульсов с отрицательной фазой кода. Стандартный переход через нуль первого импульса является опорным временем для всех импульсов внутри каждой группы.

3.3 Мерцание

Мерцание представляет собой комбинацию включения-выключения (включение приблизительно на 0,25 мкс, выключение на 3,75 мкс) первых двух импульсов ведомой станции, указывающую, что базовая линия не может быть использована по следующим причинам:

- разность времени (TD) за пределами допуска;
- расхождение фазы и огибающей (ECD) за пределами допуска;
- ненадлежащий фазовый код или ППГ (GRI);
- импульсная мощность излучения ведущей или ведомой станции менее 50 % установленного значения.

Мерцание продолжается до тех пор, пока не будут устранены условия выхода за пределы допуска.

3.4 Бланкирование

Для обеспечения непрерывного обслуживания потребителей при переходе из зоны действия одной цепи в зону другой цепи некоторые станции должны функционировать в двух цепях в совмещенном режиме, излучая поочередно сигналы на двух частотах повторения групп. От таких станций периодически требуется одновременно излучать перекрывающиеся во времени группы импульсов, относящихся к различным частотам повторения, что практически невыполнимо. В интервалы времени, когда импульсы одной группы перекрывают полностью или частично интервал бланкирования другой группы, импульсы этой группы бланкируются (т. е. подавляются). Интервал бланкирования простирается от 900 мкс перед первым импульсом до 1600 мкс после последнего импульса группы.

Бланкирование может быть приоритетным или осуществляемым на альтернативной основе.

В случае приоритетного бланкирования при каждом перекрытии групп подавляются импульсы одной и той же частоты повторения. Импульсы приоритетной частоты повторения не бланкируются никогда. Приоритет отдают цепи с наибольшим периодом повторения.

При альтернативном бланкировании приоритетная роль перераспределяется между двумя цепями. В течение четырех периодов приоритет отдают одной цепи, затем в течение последующих четырех периодов повторения групп приоритет предоставляют другой цепи. Вид бланкирования указывают в альманахе цепей станций.

3.5 Доступность сигнала

Доступность сигнала каждой передающей станции должна быть 99,98 %. Доступность каждой триады станций, рассчитанная приближенно на ежемесячной основе, включая разрешенные выходы из эфира, должна быть 99,7 %. Базовую линию считают непригодной для использования при одной из следующих ситуаций:

- ТD за пределами допуска;
- ECD за пределами допуска;
- установлен несоответствующий фазовый код или период повторения групп (GRI);
- отключена ведущая или ведомая станция;
- мощность излучения станции менее 50 % номинальной мощности излучения.

Примечания

1 Переключение на резервное оборудование за время менее 60 с рассматривают как непрерывное излучение.
2 До завершения программы модернизации ИФРНС «Чайка» (2011 г.) разрешен уровень доступности 99,5 %.

3.6 Спектр

В РНС «Чайка» для стационарных станций средней и большой мощностей излучения спектр излучения определяется следующими параметрами:

- необходимая ширина полосы частот В_Н = 36 кГц на уровне минус 17 дБ от максимального уровня спектральных составляющих, условно принятого за 0 дБ;
- контрольная ширина полосы частот $B_{\rm K}$ = 50,4 кГц на уровне минус 30 дБ от максимального уровня спектральных составляющих, условно принятого за 0 дБ;
 - наклон ограничительной линии спектра ниже уровня минус 30 дБ, равный минус 12 дБ на октаву.
 В полосе В_ы уровень спектральных составляющих не нормируют.

Для мобильных ИФРНС «Чайка» предельная ограничительная линия спектра определяется следующими параметрами:

- необходимая ширина полосы частот B_H = 43,2 кГц на уровне минус 17 дБ от максимального уровня спектральных составляющих, условно принятого за 0 дБ;
- контрольная ширина полосы частот В_К = 60,48 кГц на уровне минус 30 дБ от максимального уровня спектральных составляющих, условно принятого за 0 дБ;
 - наклон ограничительной линии спектра ниже уровня минус 30 дБ, равный минус 12 дБ на октаву.
 В полосе В_н уровень спектральных составляющих не нормируют.

Расстройку по частоте предельной ограничительной линии отсчитывают от средней частоты измеренного спектра сигнала на уровне минус 17 дБ.

Полоса частот, в которой содержится 99 % мощности излучения наземной станции, должна быть ≤ 23 кГц.

П р и м е ч а н и е — Измерение параметров сигналов, излучаемых передающими станциями ИФРНС, осуществляют специальным прибором — измерителем параметров формы сигналов (ИПФС), входящим в состав комплекса аппаратуры управления и синхронизации (КАУС) наземных станций ИФРНС «Чайка».

ГОСТ Р 53168-2008

Библиография

[1] Протокол встречи технических рабочих групп комитета «Интернавигация» и Береговой охраны США от 11—14 июня 1991 г. УДК 621.396.93:006.354 ОКС 33.060.20

Ключевые слова: импульсно-фазовая радионавигационная система, сигналы излучения, импульс, радионавигационная система «Чайка»

Редактор переиздания Н.Е. Рагузина Технический редактор И.Е. Черепкова Корректор М.И. Першина Компьютерная верстка Е.О. Асташина

Сдано в набор 25.05.2020. Подписано в печать 26.08.2020 Формат 60×84¹/₈. Гарнитура Ариал. Усл. печ. л. 2,32. Уч.-изд. л. 1,70. Подготовлено на основе электронной версии, предоставленной разработчиком стандарта