ФЕДЕРАЛЬНОЕ АГЕНТСТВО

ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОСТ Р ИСО 14644-8— 2008

Чистые помещения и связанные с ними контролируемые среды

Часть 8

КЛАССИФИКАЦИЯ МОЛЕКУЛЯРНЫХ ЗАГРЯЗНЕНИЙ В ВОЗДУХЕ

ISO 14644-8:2006
Cleanrooms and associated controlled environments — Part 8: Classification of airborne molecular contamination (IDT)

Издание официальное

Предисловие

Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. № 184-ФЗ «О техническом регулировании», а правила применения национальных стандартов Российской Федерации — ГОСТ Р 1.0—2004 «Стандартизация в Российской Федерации. Основные положения»

Сведения о стандарте

- 1 ПОДГОТОВЛЕН Общероссийской общественной организацией «Ассоциация инженеров по контролю микрозагрязнений» (АСИНКОМ) на основе собственного аутентичного перевода стандарта, указанного в пункте 4
- 2 ВНЕСЕН Техническим комитетом по стандартизации ТК 184 «Обеспечение промышленной чистоты»
- 3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 18 декабря 2088 г. № 625-ст
- 4 Настоящий стандарт идентичен международному стандарту ИСО 14644-8:2006 «Чистые помещения и связанные с ними контролируемые среды. Часть 8. Классификация молекулярных загрязнений в воздухе» (ISO 14644-8:2006 «Cleanrooms and associated controlled environments Part 8: Classification of airborne molecular contamination»).

При применении настоящего стандарта рекомендуется использовать вместо ссылочных международных стандартов соответствующие им национальные стандарты, сведения о которых приведены в дополнительном приложении Е

5 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячно издаваемых информационных указателях «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

© Стандартинформ, 2009

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

ГОСТ Р ИСО 14644-8-2008

Содержание

Введение

Чистые помещения и связанные с ними контролируемые среды предназначены для обеспечения заданного уровня чистоты воздуха по загрязнению частицами. Защита от аэрозольных загрязнений играет важную роль в космической, электронной, фармацевтической, медицинской, пищевой промышленности и в лечебных учреждениях.

В ряде случаев отрицательное влияние на продукцию или процесс могут оказать содержащиеся в воздухе молекулярные загрязнения, источником которых могут быть наружный воздух, сам процесс и пр.

Данный стандарт рассматривает молекулярные загрязнения в воздухе. В формировании молекулярных загрязнений можно выделить три этапа. Первый этап — это выделение загрязнений внешними источниками, самим процессом, строительными материалами или персоналом. Второй этап — перенос загрязнений. Третий этап — оседание загрязнений на чувствительную поверхность.

Молекулярным загрязнениям поверхности может быть дана количественная оценка.

На уровень молекулярных загрязнений также оказывают влияние исходные материалы и поверхности, на которые оседают эти загрязнения.

Данный стандарт устанавливает классификацию ИСО для молекулярных загрязнений в воздухе чистых помещений и связанных с ними контролируемых средах, в которых этот вид загрязнений может представлять опасность для процесса или продукта.

Для целей классификации данный стандарт устанавливает пределы молекулярных загрязнений с учетом их химического состава и методы испытаний с учетом фактора времени.

Стандарт содержит справочные приложения, относящиеся к:

- характеристике загрязнений (приложение A);
- описанию типичных загрязнений (приложение В);
- типовым методам испытаний (приложение C);
- специальным требованиям, относящимся к изолирующим устройствам (приложение D).

Настоящий стандарт входит в комплекс стандартов по чистым помещениям и контролю загрязнений. При проектировании чистых помещений, выборе оборудования, эксплуатации и контроле параметров чистых помещений следует учитывать и другие факторы, помимо молекулярных загрязнений.

Международный стандарт ИСО 14644-8 подготовлен Техническим комитетом ИСО/ТК 209 «Чистые помещения и связанные с ними контролируемые среды».

Международный стандарт ИСО 14644 состоит из следующих частей:

- Часть 1. Классификация чистоты воздуха;
- Часть 2. Требования к контролю и мониторингу для подтверждения постоянного соответствия ИСО 14644-1;
 - Часть 3. Методы испытаний;
 - Часть 4. Проектирование, строительство и ввод в эксплуатацию;
 - Часть 5. Эксплуатация;
 - Часть 6. Термины;
- Часть 7. Изолирующие устройства (укрытия с чистым воздухом, боксы перчаточные, изоляторы и мини-окружения);
 - Часть 8. Классификация молекулярных загрязнений в воздухе.

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Чистые помещения и связанные с ними контролируемые среды

Часть 8

КЛАССИФИКАЦИЯ МОЛЕКУЛЯРНЫХ ЗАГРЯЗНЕНИЙ В ВОЗДУХЕ

Cleanrooms and associated controlled environments.

Part 8. Classification of airborne molecular contamination

Дата введения — 2009-09-01

1 Область применения

Настоящий стандарт устанавливает классификацию молекулярных загрязнений в воздухе чистых помещений и связанных с ними контролируемых сред с учетом их химического состава, методов испытаний и анализа с учетом фактора времени.

Стандарт рассматривает молекулярные загрязнения в воздухе в пределах от 10⁰ до 10⁻¹² г/м³.

Стандарт не предназначен для применения в случаях, когда аэрозольные молекулярные загрязнения не представляют опасности для продукции или процесса.

Стандарт не содержит описания природы молекулярных загрязнений.

Стандарт не устанавливает классификацию молекулярных загрязнений поверхностей.

2 Нормативные ссылки

В настоящем стандарте использована нормативная ссылка на следующий стандарт: ИСО 14644-6—2007 Чистые помещения и связанные с ними контролируемые среды. Часть 6. Термины

3 Термины и определения

В настоящем стандарте применены термины с соответствующими определениями:

- 3.1 Общие термины
- 3.1.1 молекулярные загрязнения (molecular contamination): молекулярные образования химической природы (не частицы), которые могут оказать отрицательное влияние на продукт, процесс или оборудование.
- 3.1.2 молекулярные загрязнения в воздухе (airborne molecular contamination AMC): молекулярные загрязнения в виде газов или паров, находящиеся в воздухе чистого помещения и контролируемой среды, которые могут оказать отрицательное влияние на продукт, процесс или оборудование.

П р и м е ч а н и е — Это определение не распространяется на макромолекулярные образования биологической природы, которые рассматриваются как частицы.

- 3.1.3 молекулярные загрязнения поверхностей (surface molecular contamination SMC): молекулярные загрязнения, осевшие на поверхности, которые могут оказать отрицательное влияние на продукт или поверхность в чистом помещении и контролируемой среде.
- 3.1.4 вид загрязнения (contaminant category): общее наименование веществ, которые оказывают специфическое или отрицательное воздействие при их оседании на поверхность.
 - 3.1.5 выделение (outgassing): выделение материалом газов или паров.

3.2 Виды загрязнений

- 3.2.1 кислота (acid): вещество, которое при химической реакции образует новое соединение, выступая акцептором электронных пар.
- 3.2.2 основание (base): вещество, которое при химической реакции образует новое соединение, выступая донором электронных пар.
- 3.2.3 биотоксин (biotoxic): загрязняющее вещество, которое оказывает неблагоприятное воздействие на развитие и жизнедеятельность организмов, микроорганизмов, тканей или обособленных клеток
- 3.2.4 конденсирующееся загрязнение (condensable): вещество, которое может оседать на поверхности в чистом помещении в эксплуатируемом состоянии путем образования конденсата.
- 3.2.5 коррозионно-опасное загрязнение (corrosive): вещество, оказывающее разрушающее химическое воздействие на поверхность.
- 3.2.6 примесь (dopant): вещество, которое после осаждения и/или диффузии проникает в материал продукта и способно изменить свойства материала, даже если оно присутствует в виде следов (в малых количествах).
- 3.2.7 органическое загрязнение (organic): углеводород с наличием или отсутствием кислорода, азота или других элементов.
- 3.2.8 окислитель (oxìdant): вещество(O₂/O₃), которое после осаждения на поверхность или продукт приводит к образованию оксидов или участвует в реакции окисления.

4 Классификация

4.1 Общие положения

Для целей классификации молекулярных загрязнений используется обозначение по 4.2. Данное обозначение включает в себя буквы «ИСО-АМС» и задает предельно допустимую концентрацию молекулярных загрязнений в воздухе для данного вида загрязнений, отдельного вещества или группы веществ.

4.2 Обозначение при классификации молекулярных загрязнений (ИСО-АМС)

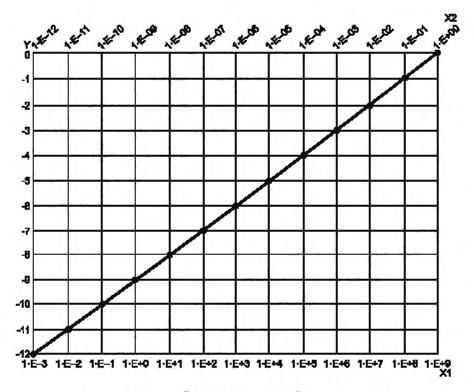
Классификация молекулярных загрязнений в воздухе чистого помещения или связанной с ним контролируемой среде дается для определенного вида загрязнений (отдельного вещества или группы веществ).

Обозначение дается в следующей форме:

Класс ИСО-АМС N (X),

- где N класс ИСО-АМС, представляющий собой десятичный логарифм концентрации вещества c_{χ} в граммах на 1 м³ и находящийся в пределах от 0 до –12. Промежуточные классы могут быть заданы с шагом 0,1 (N = log.,[c_{χ}]);
 - X вид загрязнения, к которому относятся, например:
 - кислоты (ac);
 - основания (ba);
 - биотоксины (bt);
 - конденсирующиеся загрязнения (cd);
 - коррозионно-опасные загрязнения(сг),
 - примеси (dp);
 - органические загрязнения (ог);
 - оксиды (ох);
 - загрязнение несколькими веществами или отдельным веществом.

Данный перечень не является исчерпывающим.


Примеры

- 1 Для загрязнения аммиаком при его концентрации 10^{-6} г/м 3 используется обозначение «Класс иСО-АМС-6 (NH $_3$)».
- Для общего органического загрязнения при его концентрации 10⁻⁴ г/м³ используется обозначение «Класс ИСО-АМС –4 (or)».
- 3 Для общего количества кондесирующихся загрязнений при их концентрации $5\cdot 10^{-8}$ г/м 3 используется обозначение «Класс ИСО-АМС-7,3 (cd)».

Классы ИСО-АМС в зависимости от концентрации загрязнений приведены в таблице 1 и на рисунке 1.

Таблица 1 — Классификация молекулярных загрязнений

Обозначение класса		Концентрация загрязнений	
молекулярного загрязнения	r/m ³	MRE/M ³	не/м ³
0	10°	10° (1000000)	10° (1000000000)
-1	10-1	10° (100000)	108 (100000000)
-2	10-2	104 (10000)	107 (10000000)
-3	10-3	10 ³ (1000)	10 ⁶ (1000000)
-4	10-4	10 ² (100)	105 (100000)
-5	10-5	10' (10)	10 ⁴ (10000)
-6	10 ⁻⁶	10° (1)	10 ³ (1000)
-7	10-7	10-1 (0,1)	10 ² (100)
-8	10 ⁻⁸	10-2 (0,01)	10 ¹ (10)
-9	10 ⁻⁹	10-3 (0,001)	10° (1)
-10	10 ⁻¹⁰	10 ⁻⁴ (0,0001)	10 ⁻¹ (0,1)
-11	10-11	10-5 (0,00001)	10-2 (0,01)
-12	10 ⁻¹²	10-6 (0,000001)	10-3 (0,001)

X1 — концентрация (нг/м³), X2 — концентрация (г/м³), Y — класс ИСО-АМС

Рисунок 1 — Классы ИСО-АМС в зависимости от концентрации загрязнений

5 Подтверждение соответствия

5.1 Общие положения

Соответствие заданному классу ИСО-АМС выполняется по методике испытаний, согласованной заказчиком и исполнителем с оформлением протокола испытаний, в котором указываются условия их проведения.

5.2 Испытания

Примеры методов испытаний приведены в приложении С. Данные примеры не являются исчерпывающими. По соглашению между заказчиком и исполнителем могут быть использованы другие методы испытаний, имеющие сопоставимую точность.

П р и м е ч а н и е 1 — Испытания, выполненные по разным методикам, могут дать различные результаты.

Испытания, проводимые с целью подтверждения соответствия, должны выполняться по предназначенным для этого методикам с помощью калиброванного (поверенного) оборудования. Точки отбора проб определяются по соглашению между заказчиком и исполнителем. Рекомендуется проводить повторные отборы проб.

Примечание 2 — Приизмерениях не всегда удается исключить влияние загрязнений частицами.

Время проведения испытаний должно быть согласовано между заказчиком и исполнителем.

5.3 Протокол испытаний

Результаты испытаний для каждого помещения или контролируемой среды должны оформляться в виде протокола (отчета), в котором дается заключение о соответствии или несоответствии помещения заданному классу ИСО-АМС.

В протокол испытаний следует включать:

- а) фамилию и инициалы лица, проводившего испытания, наименование и адрес организации, проводившей испытания, дату испытаний, время и продолжительность отбора проб;
 - ы) номер настоящего стандарта и год его публикации, например, ГОСТ Р ИСО 14644-8—2008;
- с) место расположения испытуемого чистого помещения или контролируемой среды, включая данные о прилегающих зонах (если необходимо) и данные о местах расположения всех точек отбора проб;
- d) заданные показатели для чистого помещения или контролируемой среды, включая их состояние, класс ИСО-АМС, наименование методики испытаний и, где требуется, данные о веществах, группах веществ, видах загрязнений, времени проведения испытаний и класса чистого помещения (по частицам);
- е) подробную методику испытаний, условия проведения испытаний, данные об используемых приборах и их калибровке (поверке);
- f) результаты испытаний, включая данные о концентрациях молекулярных загрязнений для всех точек отбора проб.

Приложение А (справочное)

Данные о загрязнениях

А.1 Общие положения

В настоящем приложении представлено руководство по формулированию данных о молекулярных загрязнениях в воздухе чистых помещений или контролируемых сред. Эти данные следует определять на ранних стадиях проектирования и задания требований к величине загрязнений с учетом специфики работы помещения.

А.2 Рекомендации по определению данных о загрязнениях

При определении данных, влияющих на молекулярные загрязнения в воздухе, следует:

- а) установить, оказывают ли молекулярные загрязнения влияние на продукцию или процесс (во многих областях молекулярные загрязнения не играют значимой роли);
- b) установить виды загрязнений, влияющих на продукцию или процесс, а также определить вещества или группы веществ, требующие особого внимания;
- с) установить предельно допустимые концентрации загрязнений для продукции или процесса и задать класс ИСО-АМС по 4.2:
 - d) установить источники молекулярных загрязнений и их уровни, включая:
 - наружный воздух, подаваемый в чистое помещение;
- материалы чистого помещения, особенно те, которые соприкасаются с потоками рециркуляционного воздуха или воздуха, подаваемого системой вентиляции и кондиционирования;
 - возможные перекрестные загрязнения внутри помещения;
 - порядок эксплуатации и технического обслуживания помещения;
 - персонал, одежду для чистых помещений и вспомогательные материалы;
 - технологические среды и оборудование:
- е) задать требования к проекту с целью предотвращения или уменьшения молекулярных загрязнений (см. А.2, перечисление d), для обеспечения необходимого класса ИСО-АМС.

А.3 Наружный воздух

- А.3.1 В случаях, когда наружный воздух подается в помещение, в котором продукция или процесс находится в открытом виде, следует учитывать качество наружного воздуха и его сезонные колебания с учетом их воздействия на концентрацию загрязнений, влияющих на продукцию или процесс. Следует также учитывать влияние материалов, из которых изготовлено оборудование систем отопления, вентиляции и кондиционирования.
- А.3.2 Анализ наружного воздуха следует проводить в течение периода времени, достаточного для того, чтобы учесть возможные изменения. Следует также учесть любую планируемую в будущем деятельность, которая может повлиять на качество наружного воздуха.
- А.З.З В отдельных случаях, при наличии преобладающего направления ветра, можно снизить влияние источников загрязнений за счет выбора мест забора воздуха.

А.4 Материалы строительных конструкций

- А.4.1 Материалы строительных конструкций помещения могут выделять молекулярные загрязнения. Примеры строительных материалов, которые рекомендуется использовать для чистых помещений, представлены в [1].
- А.4.2 На выделение загрязнений может оказывать влияние температура, относительная влажность и давление воздуха в помещении. Это влияние следует учесть при проектировании помещения.
- А.4.3 Выделения от строительных конструкций могут во многих случаях снижаться экспоненциально и асимптотически с течением времени.
- А.4.4 В помещениях, защищаемых от молекулярных загрязнений в воздухе, следует оценивать химический состав всех материалов строительных конструкций с учетом назначения помещения. Результаты этого анализа могут быть сведены в таблицу.

А.5 Перекрестные загрязнения

- А.5.1 Молекулярные загрязнения могут распространяться при перемещениях между помещениями и зонами (процессами), а также за счет перепадов давления.
 - А.5.2 Степень влияния загрязнений следует учитывать на этапе разработки концепции проекта.
- А.5.3 В некоторых случаях можно избежать или уменьшить перекрестные загрязнения за счет применения изолирующей (барьерной) технологии, защищающей продукцию или процесс.

Примеры таких решений представлены в [1] и [3].

А.б Эксплуатация и техническое обслуживание

Молекулярные загрязнения, вызываемые процессами эксплуатации и технического обслуживания, могут быть предотвращены или уменьшены за счет организационных мер (см. [2]). К таким мерам относятся:

- применение при работе масок для лица или вентилируемых (снабженных фильтрами) шлемов,
- химический анализ одежды и упаковочных материалов;

ГОСТ Р ИСО 14644-8-2008

- химический анализ моющих жидкостей и других материалов для уборки;
- химический анализ упаковочных материалов;
- порядок работы, сводящий к минимуму выделение молекулярных загрязнений от переносного оборудования или материалов для временного пользования;
- использование временных изолирующих барьеров на период технического обслуживания или ремонта оборудования;
 - методы работы, сводящие к минимуму молекулярные загрязнения.

А.7 Персонал

Молекулярные загрязнения от персонала могут быть предупреждены или уменьшены за счет ограничения (запрещения):

- использования косметики, духов и средств ухода за волосами;
- курения;
- использования лекарственных средств;
- употребления отдельных продуктов питания;
- и контроля за:
- порядком входа и выхода;
- использованием моющих и дезинфицирующих материалов.

Данный перечень не является исчерпывающим.

Примечание — Степень контроля зависит от защищаемого процесса. Меры защиты указаны в [2].

А.8 Другие источники

К другим источникам загрязнений относятся:

- расходные материалы;
- оборудование;
- химические вещества.

А.9 Подготовка воздуха с целью уменьшения молекулярных загрязнений

Для контроля или уменьшения отдельных видов молекулярных загрязнений можно использовать процессы: - сорбции определенными материалами (активированный уголь, обработанный активированный уголь, ионообменная смола, цеолиты и пр.);

- фотоэлектронной ионизации и электростатического удаления ионов;
- каталитического фотоокисления.

Приложение В (справочное)

Типовые загрязнения

В.1 Общие положения

Молекулярные загрязнения в воздухе имеют сложную природу. Многие соединения имеют разнообразные химические свойства, и для их описания следует учитывать влияние вызываемой ими химической реакции на продукцию, производимую в чистом помещении. В таблице В.1 приведены типовые примеры химических загрязнений, которые могут влиять на продукцию или процесс. Пользователям следует определить загрязняющие вещества, специфичные для конкретного случая.

Таблица В.1 дает только общее представление и не является исчерпывающей.

ŏ

g

ö

٠ ÷ + Вид загрязнения g 2 4 4 + + I ă ö + + + ba + + + 90 + C₆H₄(C=OOCH₂CHC₂H₅C₄H₉)₂ C4H₈(C=OOCH₂CHC₂H₅C₄H₉)₂ H,C,OCOC,H,COOCH,C,Hs Химическая формула CH₃(CH₂)₃C₂H₃CHCH₂OH H₂CC₆H₃(I-C₄H₃)₂OH C6H4(C=00C+0H2+)2 (CH₃)₃SINHS₃(CH₃)₃ C6H4(C=00C6H+4)2 C₆H₄(C=00C₉H₁₉)₂ C₆H₄(C=00C₈H₁₉)₂ CoH4(C=00C2H5)2 C₆H₄(C=00C₄H₉)₂ (C2H3)2NC2H4OH CH3NH2C2H40H H₂NCH₂CH₂OH CH₃NH₂CHOH -Si(CH₃)₂O-)₅ (-SI(CH₃)₂O-)₃ (-Si(CH₃)₂O-)_n (-Si(CH₃)20-)₈ Типовые примеры химических загрязнений C₆H···NH₂ CIC₆H₄CI HC₆H₅₂O HCHO C2H16 BF. NHS F HB, **Додекаметилциклогексасилоксан** 1,1,1,3,3,3-Гексаметилдисилазан БГТ: 2,6-Дитретбутил-п-крезол Декаметилциклопентасилоксан Циклополидиметилсилоксаны Гексаметилциклотрисилоксан Бромоводородная кислота Фтороводородная кислота Ди-(2-этилгексил)-фталат Ди-(2-этилгексил)-эдипат Динонилфталат 2-Диэтиламиноэтанол Дициклогексилфталат Beugectso Бутилбензилфталат 2-Аминопропанол Циклогексиламин Бром трифторид Соляная кислота Дидецилфталат п-Дихлорбензол Дибутилфталат 2-Этилгексанол 2-Аминоэтанол Диоктилфталат Диэтилфталат Формальделид Сероводород Этанолямин Бром оксид Гексанал AMMINER Гептан Таблица В 1 35320-23-1 10035-10-6 7637-07-2 7647-01-0 7783-06-4 1303-86-2 7664-41-7 989-97-3 14143-5 766-39-3 541-05-9 CAS No 128-37-0 108-91-8 100-37-8 117-84-0 117-81-7 541-02-6 540-97-6 141-43-5 104-76-7 142-82-5 10646-7 103-23-1 85-68-7 84-66-2 84-61-7 66-25-1 84-74-2 50-00-0 84-76-4 84-77-5 1

+ + +

Окончание таблицы В.1

GAS NB Вещество Химическая формула ас bit H L 67-63-0 Изопролитовый слирт (CH ₁),CHOH + <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th>ш</th><th>Вид загрязнения⁽³⁾</th><th>знения</th><th></th><th></th><th></th><th></th></t<>							ш	Вид загрязнения ⁽³⁾	знения				
Монкратем слирт (CH ₁) ₂ CHOH + + + + + + + + + + + + + + + + + +	CAS N	Бещество	Химическая формула						8			+	
3-9 досфинитовый слирт (СН-3,2СНОН + + + + + + + + + + + + + + + + + + +				on BC	e e	of.	io i	I	M	L	ь	db	Xo
5 Монозатаноламин H ₂ NC ₂ H ₄ OH + + + + + + + + + + + + + + + + + + +	67-63-0	Изопропиловый спирт	(сн³уснон			+	+			+			
3-9 Азот оксид NO + + + + + + + + + + + + + + + + + + +	141-43-5	Моноэтаноламин	H ₂ NC ₂ H ₄ OH		+	+				+			
5 Озон О, Скламетилциклотетрасилоксан (SN(СН ₃)2О-) ₄ + <	10102-43-9 10102-44-0 872-50-4	Азот оксид Азот диоксид N-Метиппирролидон	NO NO ₂ -CHNCH ₂ CO-	+ +	+	+	+ +		+	+ +	+ +		
-2 φοσφин -5 Cepa диоксид -6 Tpw3rwndwocdpar -7 Tpw3rwndwocdpar	644-31-5 556-67-2	Озон Октаметилциклотетрасилоксан	O3 (-Sv(CH ₃ h,O-) _k			+	+		+		+		+
5 Cepa μισκουμη SO2 +	7803-51-2	фосфин	PH ₃				*			+		+	
3 Тризтиламин (C₂H₅hN + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +<	7446-09-5	Сера диоксид	SO ₂				+			+			
той элемент, $n < 2m + n = 1$ ненасыщенных $C_{m}H_{n}O_{p}X_{y}$ (где $X - n$ любой дру- $C_{m}H_{n}O_{p}X_{y}$, кроме $C_{H_{n}}(R_{n} \times X_{m} + R_{n} \times X_{m})$ ненасыщенных $C_{m}H_{n}O_{p}X_{y}$, (где $X - n$ любой дру- $C_{m}H_{n}O_{p}X_{y}$, (где $X - n$ любой дру- $C_{m}H_{n}O_{p}X_{y}$)	121-44-8 45-40-0 145-73-9 1367-73-9 78-30-8 126-73-8 306-52-5 75-59-2 95-47-6	Триэтиламин Триотилфосфат Трис-(2-хлоро-1-пролил)-фосфат Трис-(1-хлоро-2-пролил)-фосфат Три-(п-бутил)-фосфат Три-(п-бутил)-фосфат Трихлорэтилфосфат Тетраметиламмоний гидроксид о-Коллол	(C24shN (C24shN (C24s))P=0 (CH3CICHCH20hP=0 (CH3CH40hP=0 (CH3ch40hP=0 (CH3hN'0H ⁻ (CH3hN'0H ⁻ (CH3hN'0H ⁻ (CH3hN'0H ⁻ (CH3hC6H4COOR2		+ +	++++++++	+	+ ++++ +++	++ +	+	+ +	+ +++ +	
углев бдородов ненасыщенных		Производные углеводородов	Сели орху (где X — любой дру-			+ +		+	+	+		7	
в пенасыщенных			C _m H _n O _p X _y , xpome CH ₄ (rae X — randow pryrod anewer)			+ +		+	+ -	+ •			
			roß snement, n < 2m и C=O)			+			+				

а ас: кислота; ba: основание; ог: органическое загрязнение; bt: биотоксин; cd: конденсирующееся загрязнение; dр: примесь; ох: окислитель.

Н: Высокая степень конденсации, температура кипения $T_b > 200$ °C; М: Средняя степень конденсации, температура кипения 100 °C < $T_b < 200$ °C; L: Слабая степень конденсации, температура кипения $T_b < 100$ °C.

Приложение С (справочное)

Типовые методы испытаний

С.1 Общие положения

- С.1.1 Настоящее приложение содержит руководство по методам испытаний и анализа молекулярных загрязнений с учетом их ожидаемых концентраций.
- С.1.2 Перечень приборов для проведения испытаний, приведенный в таблице С.1, не является исчерпывающим и содержит примеры, отражающие современное состояние техники.

С.2 Принципы построения методов испытаний

- С.2.1 Методы могут быть разделены на две группы:
- методы прямого анализа;
- методы, в которых точки отбора проб отделены от анализа и даже находятся на расстоянии от места проведения анализа.
- С.2.2 Прямой анализ позволяет быстро получить результаты испытаний. Устройства для отбора проб могут показывать значения, относящиеся ко всему периоду испытаний.
 - С.2.3 Устройства для отбора проб могут быть пассивными и активными (имеющими насос).
- С.2.4 Лассивные диффузионные устройства для отбора проб (DIFF) содержат специально подготовленную поверхность, которая избирательно удерживает молекулы одного или более видов газов. Данный метод требует длительного времени отбора проб в случае низких концентраций молекулярных загрязнений в воздухе.
- С.2.5 В активных устройствах для отбора проб предусматривают принудительную подачу определенного объема пробы через адсорбирующую среду. Данный метод позволяет оценивать уровень молекулярных загрязнений при их низкой концентрации в течение сокращенного периода времени. Устройства для активного отбора проб могут быть сложными, требующими соблюдения правил работы с ними.
 - С.2.6 Типовыми методами отбора проб могут быть:
- сорбционные трубки (SOR), в состав которых входит стальная или стеклянная трубка с требуемым адсорбентом, например, тенакс¹⁾, активированный древесный уголь, силикагель и пр.;
- удерживающие фильтры с покрытием (FC), химический состав которого имеет специальные адсорбирующие свойства для данного вида загрязнений;
- импинджер (IMP), содержащий один или несколько последовательно расположенных и обтекаемых газом сосудов, которые наполнены деионизованной водой или соответствующим реагентом.
- пакет для отбора проб (SB), применяемый при высоких уровнях молекулярных загрязнений, в который непосредственно проводится отбор проб от проверяемого оборудования (данный метод не требует, как правило, адсорбирующей среды).

С.3 Выбор устройств для отбора проб и методов анализа

С.3.1 Типовые средства отбора проб

К типовым средствам отбора проб относятся:

- пассивные диффузионные устройства для отбора проб (DIFF);
- удерживающие фильтры с покрытием (FC);
- импинджеры (IMP);
- пакеты для отбора проб (SB);
- сорбционные трубки (SOR);
- контрольные пластины (чашки), используемые для отбора проб (W W);
- устройства экстракции со сканированием капель (DSE);
- диффузионные трубки (DT).

Данный перечень не является исчерпывающим.

С.3.2 Типовые методы анализа

С.3.2.1 Методы анализа, проводимого вне оборудования (off-line)

К типовым методам анализа относятся:

- атомная абсорбционная спектроскопия (AA-S);
- атомная абсорбционная спектроскопия с графитовой печью (AA-GF),
- атомная эмиссионная спектроскопия (AES);
- хемолюминесценция (CL);
- капиллярный зональный электрофорез (CZE);
- газовая хроматография с детектором ионизации в пламени (GC-FID);

¹⁾ Тенакс является примером адсорбента, имеющегося на рынке. Данная информация носит лишь справочный характер и не служит целям рекламы данного вещества.

- газовая хроматомасс-спектроскопия (GC-MS);
- ионная хроматография (IC);
- индуктивная связанная плазма с масс-спектроскопией (ICP-MS);
- инфракрасная спектроскопия (IR);
- масс-спектроскопия (MS);
- ультрафиолетовая спектроскопия (UVS);
- инфракрасная спектроскопия с преобразованием Фурье (FTIR);
- общая спектроскопия флюоресценции отраженных рентгеновских лучей (ТХRF);
- декомпозиция паров с общей спектроскопией флюоресценции отраженных рентгеновских лучей (VPD-TXRF),
 - масс-спектроскопия времени пролета вторичных ионов (TOF-SIMS);
 - масс-спектроскопия с ионизацией при атмосферном давлении (API-MS).

Данный перечень не является исчерпывающим.

С.3.2.2 Методы анализа, проводимого непосредственно в оборудовании (on-line)

К типовым методам внализа относятся:

- колориметрическое детектирование анализатором рулонного типа с помощью бумаги, пропитанной химическим составом (CPR);
 - спектроскопия подвижности ионов (IMS);
- детектирование с усилением массы (конденсируемых органических веществ) с использованием различных типов пьезоэлектрических резонаторов (MGD),
 - портативные газовые хроматографы (PGC);
 - электрохимические сенсоры (ECS);
 - системы мониторинга на основе ионной хроматографии (ICS);
 - системы мониторинга на основе хемолюминесценции (CLS);
 - мониторинг ионов фтора (FIM);
 - звуковые волны на поверхности (SAW).

Данный перечень не является исчерпывающим.

Пользователь должен установить пределы обнаружения загрязнений. Повторяемость результатов должна быть в интервале от 75 % до 125 %.

В таблице С.1 приведены рекомендации по выбору указанных выше методов контроля.

Т а б л и ц а С.1 — Примеры методов анализа в зависимости от предполагаемых концентраций АМС

Класс	Виды загрязнений								
UCO-AMC 10 ⁿ r/m ³	Киспота	Основание	Органическое загрязнение	Биотоксин	Конденси- рующееся загрязнение	Коррозионно- опасное загрязнение	Примесь		
0	IMP,IC,	IMP,IC.	DIFF, SOR,	IMP, IC, UVS,	SOR,	IMP, IC,	SOR.		
-1	UVS, DIFF, ECS	UVS. DIFF, ECS	SB, GC-FID, GC-MS, IR	SOR, GC-FID,		UVS, DIFF, SOR, GC-FID, GC-MS, IR, ECS	GC-FID, GC-MS, IR,		
-2				GC-MS, IR, CPR, ECS			IMP, IC, ICP-MS,		
-3							GF-AAS, UVS		
-4	IMP, IC,	IMP, IC,		IMP, IC, UVS,		IMP, IC,			
-5	UVS, CLS, IR, CPR, DIFF	UVS, CLS, IR, CPR, DIFF		CLS, IR, CPR, DIFF	1	UVS, CLS, IR, CPR, DIFF			
-6	IMP, IC,	IMP, IC,	SOR, GC-FID.	IMP, IC, UVS,	SOR, GC-FID.	IMP, IC.	IMP, IC, SOR,		
-7	UVS, IR, CLS, CPR, DIFF	UVS, IR, CLS, CPR, DIFF	GC-MS, IMS	IR, CLS, CPR, DIFF, SOR, GC-MS, ICP-MS	GC-MS, MGD	UVS, IR, CLS, CPR, DIFF, SOR, GC-FID, GC-MS	GC-MS, ICP-MS		
-8	IMP, IC	IMP, IC, IMS		IMP, IC, SOR, GC-MS, ICP-MS		IMP, IC, SOR, GC-MS			

ГОСТ Р ИСО 14644-8-2008

Окончание таблицы С.1

Класс			E	виды загрязнени	ř		
исо-AMC 10° г/м ³	Кислота	Основание	Органическое загрязнение	Биртоксин	Конденси- рующееся загрязнение	Коррозионно- опасное загрязнение	Примесь
-9	IMP, IC, CZE, IMS	IMP, IC, IMS	SOR, GC-MS	IMP, IC, CZE, IMS, SOR, GC-MS, ICP-MS	SOR, GC-MS	IMP, IC, CZE, IMS, SOR, GC-MS	IMP, IC, SOR, GC-MS, ICP-MS
-10	IMP, CZE	IMP, IC.		IMP, CZE,		IMP, CZE,	
-11		CZE		SOR, GC-MS,		SOR, GC-MS	
~12				ICP-MS			

П р и м е ч а н и е — Методы анализа, соответствующие сохращенным обозначениям, приведены в С.3 и С.4.

П р и м е ч а н и е — Выбор метода контроля для данной концентрации загрязнений зависит от скорости отбора проб и его продолжительности.

Приложение D (справочное)

Требования к изолирующим устройствам

D.1 Общие положения

- D.1.1 Настоящее приложение содержит требования к изолирующим устройствам с учетом защиты от молекулярных загрязнений в воздухе. Подробная информация о таких устройствах и областях их применения дана в ГОСТ Р ИСО 14644-7.
- D.1.2 Следует учесть возможность выделения молекулярных загрязнений самим изолирующим устройством.

В отдельных случаях, когда невозможно организовать прямой контроль молекулярных загрязнений (например, когда объем устройства слишком мал), единственным методом оценки молекулярных загрязнений в воздухе АМС является оценка молекулярных загрязнений на поверхностях SMC.

П р и м е ч а н и е — Как правило, соотношение между концентрацией SMC (отнесенной к единице площади поверхности) и концентрацией AMC неизвестно. В случаях, когда это соотношение установлено экспериментально (или другим способом), данные о SMC могут использоваться для оценки AMC.

D.2 Специальные требования

- D.2.1 Особенности конструкции изолирующего устройства могут внести ограничения на методы отбора проб для оценки молекулярных загрязнений. В связи с этим метод отбора проб должен быть согласован заказчиком и исполнителем с учетом конструкции устройства и возможности доступа внутрь устройства.
- D.2.2 Материалы изолирующего устройства должны соответствовать требованиям приложения А настоящего стандарта. Во многих случаях в изолирующих устройствах используются гибкие экраны или барьеры в сочетании с эластичными перчатками, боксами и манипуляторами. Следует учитывать возможность выделения молекулярных загрязнений этими материалами.
- D.2.3. Следует учитывать возможность выделения молекулярных загрязнений при внесении изменений в материалы или конструкцию изолирующего устройства.
- D.2.4 При высокой чувствительности продукции к загрязнениям рекомендуется провести испытания изолирующего устройства в реальном процессе и оценить концентрацию молекулярных загрязнений на поверхностях продукции (см. D.1.2).

В случаях, когда оценка АМС проводится путем анализа SMC, следует учесть продолжительность времени, в течение которого продукция находится в изолирующем устройстве, что может оказать решающее влияние на величину загоязнений.

Приложение Е (справочное)

Сведения о соответствии национальных стандартов Российской Федерации ссылочным международным стандартам

Таблица Е.1

Обозначение ссылочного международного стандарта	Обозначение и наименование соответствующего национального стандарта
ИСО 14644-4:2001	ГОСТ Р ИСО 14644-4—2002 Чистые помещения и связанные с ними контролируемые среды, Часть 4. Проектирование, строительство и ввод в эксплуатацию
ИСО 14644-5:2004	ГОСТ Р ИСО 14644-5—2005 Чистые помещения и связанные с ними контролируемые среды. Часть 5. Эксплуатация
ИСО 14644-6:2007	•
ИСО 14644-7:2004	ГОСТ Р ИСО 14644-7—2006 Чистые помещения и связанные с ними контроли- руемые среды. Часть 7. Изолирующие устройства (укрытия с чистым воздухом, боксы перчаточные, изоляторы и мини-окружения)

Соответствующий национальный стандарт отсутствует. До его утверждения рекомендуется использовать перевод на русский язык данного международного стандарта. Перевод данного международного стандарта находится в Федеральном информационном фонде технических регламентов и стандартов.

Библиография

[1] ISO 14644-4:2001	Cleanrooms and associated controlled environments — Part 4: Design, construction and start-up
[2] ISO 14644-5	Cleanrooms and associated controlled environments — Part 5: Operations
[3] ISO 14644-7	Cleanrooms and associated controlled environments — Part 7: Separative devices (clean air hoods, gloveboxes, isolators and mini-environments)
[4] ISO 14698 (all parts)	Cleanrooms and associated controlled environments — Biocontamination control

Методы оценки молекулярных загрязнений в воздухе — ссылочные документы

Пример методов оценки для определения молекулярных загрязнений в воздухе в следующих ссылочных документах:

[5] JACA No. 34:2000	Standard for Evaluation of Airborne Molecular Contaminants Emitted from Construction/Composition Materials for Clean Room
[6] JACA No. 35A:2003	Standard for Classification of Air Cleanliness for Airborne Molecular Contaminant (AMC) Level in Cleanrooms and Associated Controlled Environments and its Evaluation Methods
[7] JACA No. 43:2006	Standard for Evaluation Methods on Substrate Surface Contamination in Clean- rooms and Associated Controlled Environments
[8] SEMI E108-0301	Test Method for the Assessment of Outgassing Organic Contamination from Minienvironments using Gas Chromatography/Mass Spectrometry
[9] IEST-RP-CC031.1	Method for Characterizing Outgassed Compounds from Cleanroom Materials and Components
[10] IDEMA Standard M11-99	General Outgas Test Procedure by Dynamic Headspace Analysis
[11] ASTM D5127-99	Standard Guide for Ultra Pure Water Used in the Electronics and Semiconductor Industry

УДК 543.275.083:628.511:006.354

OKC 13.040.35 19.020 T58

Ключевые слова: чистые помещения, контролируемые среды, молекулярные загрязнения, воздух

Редактор Н.О. Грач
Технический редактор В.Н. Прусакова
Корректор В.Е. Нестерова
Компьютерная верстка И.А. Налейкиной

Сдано в набор 03.03.2009. Подписано в печать 03.04.2009. Формат 60 × 84 🔏 Бумага офсетная. Гарнитура Ариал. Печать офсетная, Усл. печ. л. 2,32, Уч.-изд. л. 1,70. Тираж 263 экз. Зак. 177.

ФГУП «СТАНДАРТИНФОРМ», 123995 Москва, Гранатный пер., 4.
www.gostinfo.ru info@gostinfo.ru info@gostinfo.ru
Набрано во ФГУП «СТАНДАРТИНФОРМ» на ПЭВМ.
Отпечатано в филиале ФГУП «СТАНДАРТИНФОРМ» — тип. «Московский печатник», 105062 Москва, Лялин пер., 6.

Поправка к ГОСТ Р ИСО 14644-8—2008 Чистые помещения и связанные с ними контролируемые среды. Часть 8. Классификация молекулярных загрязнений в воздухе

В каком месте	Напечатано	Должно быть
Предисловие. Сведения о стан- дарте. Пункт 3	2088 г.	2008 r.

(ИУС № 7 2009 г.)