ФЕДЕРАЛЬНОЕ АГЕНТСТВО

ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОСТ Р 52994— 2008 (ИСО 3976:2006)

жир молочный

Определение пероксидного числа

ISO 3976:2006

Milk fat — Determination of peroxide value (MOD)

Издание официальное

Предисловие

Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. № 184-ФЗ «О техническом регулировании», а правила применения национальных стандартов Российской Федерации — ГОСТ Р 1.0—2004 «Стандартизация в Российской Федерации. Основные положения»

Сведения о стандарте

- ПОДГОТОВЛЕН ОАО «Всероссийский научно-исследовательский институт сертификации» (ОАО «ВНИИС») на основе аутентичного перевода международного стандарта, указанного в пункте 4
- 2 ВНЕСЕН Техническим комитетом по стандартизации ТК 335 «Методы испытаний агропромышленной продукции на безопасность»
- 3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 6 ноября 2008 г. № 287-ст
- 4 Настоящий стандарт является модифицированным по отношению к международному стандарту ИСО 3976:2006 «Жир молочный. Определение пероксидного числа» (ISO 3976:2006 «Milk fat — Determination of peroxide value»).

При этом дополнительные слова, фразы, абзацы, включенные в текст стандарта для учета потребностей национальной экономики Российской Федерации и особенностей российской национальной стандартизации, выделены курсивом

5 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячно издаваемых информационных указателях «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

© Стандартинформ, 2009

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

Содержание

1	Область применения	1
2	Нормативные ссылки	1
3	Термины и определения	1
4	Сущность метода	2
5	Реактивы	2
6	Лабораторное оборудование	2
7	Отбор проб	3
8	Подготовка пробы для испытания	3
9	Методика (схема дана в приложении А)	3
10	Расчет и выражение результатов	5
11	Прецизионность	8
12	Протокол испытания	8
Пр	иложение А (справочное) Схема методики и примеры расчетов	7
Пр	иложение В (справочное) Межлабораторное испытание	8
Пр	иложение С (справочное) Сравнительное испытание	9
Би	блиография	1

жир молочный

Определение пероксидного числа

Milk fat. Determination of peroxide value

Дата введения — 2010-01-01

1 Область применения

Настоящий стандарт устанавливает метод определения пероксидного числа в обезвоженном молочном жире. Метод применим к молочному жиру с пероксидным числом до 1,3 ммоль кислорода на килограмм.

П р и м е ч а н и е — Для проб молочного жира с пероксидным числом от 0,5 до 1,3 ммоль кислорода на килограмм используется обобщенная методика (см. приложение А). Для проб молочного жира с пероксидным числом более 1,3 ммоль кислорода на килограмм может быть использован метод с применением йода/тиосульфата[1].

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ Р ИСО 5725-1—2002 Точность (правильность и прецизионность) методов и результатов измерений. Часть 1. Основные положения и определения

ГОСТ Р ИСО 5725-2—2002 Точность (правильность и прецизионность) методов и результатов измерений. Часть 2. Основной метод определения повторяемости и воспроизводимости стандартного метода измерений

ГОСТ 26809—86 Молоко и молочные продукты. Правила приемки, методы отбора и подготовка проб к анализу

Применений в ние — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодно издаваемому информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по соответствующим ежемесячно издаваемым информационным указателям, опубликованным в текущем году. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затративающей эту ссылку.

3 Термины и определения

В настоящем стандарте применен следующий термин с соответствующим определением:

 3.1 пероксидное число: Количество вещества, определенное по методике, установленной в настоящем стандарте.

Примечание — Пероксидное число выражают в миллимолях кислорода на килограмм.

4 Сущность метода

Метод заключается в том, что пробу для анализа растворяют в смеси метанол/1-деканол/н-гексан, затем добавляют хлорид железа (II) тиоционат аммония. Пероксиды окисляют железо (II), которое образует комплексное соединение железа (III) красного цвета тиционатом аммония. Количество вещества рассчитывают по результатам фотометрического определения комплексного соединения железа (III) красного цвета после заданного периода реакции.

5 Реактивы

Используют реактивы только аналитического качества, если не установлено иначе, и только дистиллированную или деминирализованную воду или воду эквивалентной чистоты.

5.1 Смесь метанол/1-деканол/н-гексан в соотношении 3:2:1

Смешивают две объемные части 1-деканола с одной объемной частью н-гексана. Добавляют три объемные части безводного метанола и снова перемешивают.

Смесь огнеопасна и имеет неприятный запах, поэтому рекомендуется работать в вытяжном шкафу и перчатках.

Вместо н-гексана допускается использовать петролейный эфир с температурными пределами кипения от 60 °C до 80 °C.

5.2 Раствор хлорида железа (II) (FeCl₂), c(FeCl₂+) ~ 1 мг/см³

Готовят раствор хлорида железа (II) при непрямом рассеянном свете.

Растворяют приблизительно 0,4 г дегидрата хлорида бария (BaCl₂·2H₂O) примерно в 50 см³ воды. Затем растворяют приблизительно 0,5 г гептагидрата сульфата железа (II) (FeSO₄·7H₂O) примерно в 50 см³ воды. В раствор сульфата железа (II) медленно вливают раствор хлорида бария при постоянном перемешивании. Добавляют приблизительно 2 см³ раствора соляной кислоты (см. 4.5) и снова перемешивают.

Дают возможность осадку сульфата бария отстаиваться или центрифугируют смесь до образования прозрачного верхнего слоя жидкости. Декантируют полученный таким образом прозрачный раствор в склянку из темного стекла. Хранят раствор не более одной недели.

Альтернативно можно приготовить раствор хлорида железа (II) путем растворения приблизительно $0.35 \, \mathrm{r}$ тетрагидрата хлорида железа (II) (FeCl $_2 \cdot 4 \mathrm{H}_2 \mathrm{O}$) примерно в $100 \, \mathrm{cm}^3$ воды. Добавляют $2 \, \mathrm{cm}^3$ раствора соляной кислоты и перемешивают.

5.3 Раствор тиоцианата аммония

Растворяют приблизительно 30 г тицианата аммония (NH₄SCN) в воде. Разбавляют водой до $100 \, \text{cm}^3$. Если раствор не бесцветный, промывают его несколько раз небольшими порциями (например, по $5 \, \text{cm}^3$) изоамилового спирта (3-метилбутан-1-ол).

5.4 Стандартный раствор хлорида железа (III) (FeCl₃), c(Fe) = 10 мкг/см³

В мерной колбе с одной меткой вместимостью 500 см³ растворяют 0,500 г порошка железа примерно в 50 см³ раствора соляной кислоты, добавляют 1—2 см³ раствора пероксида водорода (см. 4.7). Удаляют избыток пероксида водорода при кипении в течение 5 мин. Охлаждают до комнатной температуры. Разбавляют водой до метки 500 см³ и перемешивают.

Раствор хлорида железа (III), содержащий 1 г/дм³ Fe, также может быть приготовлен из стандартизированных химикатов, имеющихся в продаже.

С помощью пипетки переносят 1 см³ полученного раствора в мерную колбу с одной меткой вместимостью 100 см³. Разбавляют до метки 100 см³ смесью метанол/1-деканол/н-гексан (см. 4.1) и перемешивают.

- 5.5 Раствор соляной кислоты І, приблизительно с(HCl) = 10 моль/дм³.
- Баствор соляной кислоты II, приблизительно с(HCI) = 0,2 моль/дм³.

Разбавляют 2 см³ раствора соляной кислоты I водой до 100 см³.

- Раствор пероксида водорода (H₂O₂), массовая доля приблизительно 30 %.
- 5.8 Разбавленная азотная кислота (HNO₃), массовая доля приблизительно 10 %.

6 Лабораторное оборудование

6.1 Стеклянная посуда

Всю стеклянную посуду очищают путем замачивания в разбавленной азотной кислоте (см. 4.8) в течение 24 ч. затем ее промывают четыре раза водопроводной водой и четыре раза дистиллированной водой или водой эквивалентной чистоты *и* сушат *в течение 1 ч* в сушильном шкафу (см. 5.10), установленном на температуру 100 °C.

Чистота стеклянной посуды имеет большое значение. Также могут быть использованы другие процедуры очистки, если они дают такой же результат.

- 6.2 Аналитические весы с точностью взвешивания до 1 мг при возможности считывания показаний до 0,1 мг.
- 6.3 Бюретка, объем которой обеспечивает разлив смеси метанол/1-деканол/н-гексан по 0,5; 1.0; 1.5 и 2.0 см³ (см. 4.1).
- 6.4 Бюретка, объем которой обеспечивает разлив стандартного раствора хлорида железа (III) (см. 4.4) 0.5; 1,0; 1,5 и 2,0 см³.
- 6.5 Микропипетки по 0,05 см³ раствора тиоцианата аммония (см. 4.3), раствора хлорида железа (II) (см. 4.2) и раствора соляной кислоты II (см. 4.6) соответственно.
 - 6.6 Фотометр, способный измерять на длине волны около 500 нм.
- 6.7 Кюветы с крышками, пригодные для фотометра (см. 5.6) и устойчивые ко всем реактивам, используемым в данной методике.
 - 6.8 Стеклянные пробирки, снабженные стеклянными притертыми пробками.
- 6.9 Сушильный шкаф с электрическим нагревом, способный работать при температуре от 40 °C до 45 °C.
 - 6.10 Сушильный шкаф, сэлектрическим нагревом, способный работать при температуре (100 ± 2)°С.
- 6.11 Центрифуга, способная создавать радикальное ускорение, по меньшей мере, 350 g, с качающимся ротором (например, центрифуга Гербера).
 - 6.12 Пробирки для центрифугирования, пригодные для центрифуги (см. 5.11).
 - 6.13 Стеклянные воронки со складчатым бумажным фильтром (средний сорт).
 - 6.14 Склянки, пригодные для использования с реактивами.

7 Отбор проб

В лабораторию следует доставлять представительную пробу. Она не должна подвергаться порче или изменению во время транспортирования или хранения.

Отбор проб проводят в соответствии с ГОСТ 26809 и [2].

8 Подготовка пробы для испытания

8.1 Общие положения

Выполняют все приготовления при непрямом рассеянном свете.

Обезвоженный молочный жир, обезвоженное топленое масло, топленое масло

При необходимости полностью растапливают пробу для испытания [3] путем нагревания закрытого контейнера при наименьшей температуре, необходимой для достижения расплавления. Перемешивают расплавленную пробу, не допуская, насколько это возможно, попадания в нее воздуха.

Сразу же проводят определение, пока проба для испытания находится в жидком состоянии.

8.3 Сливочное масло

Добавляют соответствующее количество пробы для испытания в пробирку для центрифугирования (см. 5.12). Расплавляют пробу в сушильном шкафу (см. 5.9), отрегулированном на температуру от 40 °C до 45 °C. Отделяют жир путем центрифугирования при радикальном ускорении, по меньшей мере, 350 g в течение 5 мин.

Фильтруют теплую отделившуюся жировую фракцию масла через стеклянную воронку (см. 5.13) со складчатым сухим бумажным фильтром в сушильном шкафу (см. 5.9), отрегулированном на температуру от 40 °C до 45 °C. Отфильтрованная жировая фракция должна быть прозрачной и свободной от воды и обезжиренных веществ.

Сразу же проводят определение, пока проба для испытания находится в жидком состоянии.

9 Методика (схема дана в приложении А)

- 9.1 Меры предосторожности против окисления и помех при регистрации экстинкции:
- избегать какого-либо воздействия света на пробу для испытания. Выполнять испытание при непрямом приглушенном, насколько это осуществимо, свете;

- выполнять все измерения экстинкции при длине волны максимальной экстинкции комплексного соединения железа (III) красного цвета, т.е. около 500 нм;
- выполнять все измерения экстинкции в кюветах (см. 5.7), которые после заполнения сразу же закрываются. После закрытия кювет дают им возможность постоять в течение 10 мин для достижения равновесия в смеси перед регистрацией экстинкции.

П р и м е ч а н и е — Испарение растворителя может вызвать конденсацию наверху стенок кюветы. При восстановлении объема жидкости эта конденсация создает дифракцию света на различных слоях растворителя, что приводит к флуктуации экстинкции. Время ожидания в течение 10 мин необходимо для достижения равновесия между растворителем и паровой фазой.

9.2 Контрольный опыт на реактивы

- 9.2.1 С помощью раздаточного устройства (см. 5.3) добавляют 9,90 см³ смеси метанол/1-деканол/н-гексан (см. 4.1) в пробирку (см. 5.8).
- 9.2.2 С помощью микропипетки (см. 5.5) добавляют 0,05 см³ раствора тиоцианата аммония (см. 4.3) к смеси в пробирке и перемешивают.
- 9.2.3 С помощью микропипетки (см. 5.5) добавляют 0,05 см³ раствора хлорида железа (II) (см. 4.2) к смеси в пробирке и снова перемешивают.
- 9.2.4 Переносят полученную смесь для контрольного опыта на реактивы в кювету фотометра (см. 5.7). Закрывают кювету крышкой и дают ей возможность постоять в течение 10 мин для достижения равновесия смеси.

Измеряют экстинкцию E₁ смеси для контрольного опыта на реактивы относительно смеси метанол/1-деканол/н-гексан. Выполняют определение смеси для контрольного опыта на реактивы, по меньшей мере, четыре раза.

9.2.5 Полученные результаты (E_1) должны находиться в пределах диапазона 0.010 единиц. Среднее значение экстинкции смеси для контрольного опыта на реактивы (E_m) не должно превышать 0.030 единиц. Если указанное выше требование не выполняется, проверяют фотометрическую методику, стеклянную посуду и все реактивы. Корректируют методику или заменяют то, что необходимо.

9.3 Контрольный опыт на пробу для испытания

- 9.3.1 Взвешивают с точностью до 1 мг в пробирке (см. 5.8) приблизительно 0,33 г приготовленной пробы для испытания (см. 7.2 или 7.3).
- 9.3.2 С помощью раздаточного устройства (см. 5.3) добавляют без задержки 9,60 см³ смеси метанол/1-деканол/н-гексан (см. 4.1) к пробе для испытания в пробирке. Осторожно перемешивают для растворения пробы жира.
- 9.3.3 С помощью микропипетки (см. 5.5) добавляют 0,05 см³ раствора тиоцината аммония (см. 4.3) и перемешивают.
- 9.3.4 Переносят полученную смесь для контрольного опыта на пробу для испытания в кювету фотометра (см. 5.7). Закрывают кювету крышкой и дают ей возможность постоять в течение 10 мин для достижения равновесия в смеси. Измеряют экстинкцию (E'_0) смеси для контрольного опыта на пробу для испытания относительно смеси метанол/1-деканол/н-гексан (см. 4.1).
- 9.3.5 В значение экстинкции смеси для контрольного опыта на пробу для испытания (E'_0), полученное в 8.3.4, вносят поправку на разность масс проб для анализа при контрольном опыте на пробу для испытания и при самом испытании, используя следующую формулу

$$E_0 = E'_0 \frac{m}{m_0}$$
, (1)

где E'₀ — значение экстинкции смеси для контрольного опыта на пробу для испытания (см. 8.3.4);

т — масса пробы для испытания (см. 8.4.1), г;

то — масса пробы для испытания при контрольном опыте (см. 8.3.1), г.

9.4 Проба для анализа

- 9.4.1 Взвешивают с точностью до 1 мг в пробирке (см. 5.8) приблизительно 0,33 г приготовленной пробы для испытания (см. 7.2 или 7.3).
- 9.4.2 С помощью раздаточного устройства (см. 5.3) добавляют без задержки 9.60 см³ смеси метанол/1-деканол/н-гексан (см. 4.1) к пробе для анализа в пробирке. Осторожно перемешивают для растворения пробы жира.
- 9.4.3 С помощью микропипетки (см. 5.5) добавляют 0,05 см³ раствора тиоцианата аммония (см. 4.3) к смеси в пробирке и перемешивают.
- 9.4.4 С помощью микропипетки (см. 5.5) добавляют 0,05 см³ раствора хлорида железа (II) (см. 4.2) к смеси в пробирке и снова перемешивают.

- 9.4.5 Переносят полученную смесь пробы для анализа в кювету фотометра (см. 5.7). Закрывают кювету крышкой и дают ей возможность постоять в течение 10 мин для достижения равновесия в смеси. Измеряют экстинкцию (€₂) пробы для анализа относительно смеси метанол/1-деканол/н-гексан (см. 4.1).
- 9.4.6 Процедуры, описанные в 8.3 и 8.4, могут быть выполнены непосредственно в одной серии испытаний при использовании одной фотометрической кюветы соответствующего размера. Измеряют экстинкцию смеси для контрольного опыта на пробу для испытания E₀ относительно смеси метанол/1-деканол/н-гексан. Затем добавляют и перемешивают 0,05 см³ раствора хлорида железа (II) непосредственно в фотометрическую кювету и измеряют экстинкцию пробы (E₂).

9.5 Коэффициент экстинкции комплексного соединения железа (III) красного цвета

С помощью раздаточного устройства (см. 5.4) добавляют 0,5; 1,0; 1,5 и 2,0 см³ раствора хлорида железа (III), соответственно, в четыре пробирки для получения серии растворов, содержащих 5, 10, 15 и 20 мкг Fe³⁺ соответственно.

С помощью раздаточного устройства (см. 5.3) добавляют 9,4; 8,9; 8,4 и 7,9 см³ смеси метанол/1-деканол/н-гексан, соответственно, в четыре пробирки для получения 9,9 см³ смеси в каждой пробирке.

С помощью микропипеток (см. 5.5) добавляют по 0.05 см³ раствора тиоцианата аммония и 0,05 см³ раствора соляной кислоты II в каждую из четырех пробирок и перемешивают.

Переносят полученные реакционные смеси в фотометрические кюветы. Закрывают коветы крышками и дают им возможность постоять в течение 10 мин для достижения равновесия в смеси. Измеряют экстинкцию ($E_{\rm Fe}$) каждой кюветы относительно смеси метанол/1-деканол/н-гексан.

Используя полученные данные по экстинкции вместе с соответствующими значениями массы Fe³⁺, рассчитывают линейное уравнение регрессии У по формуле

$$Y = a + bX, (2)$$

где a — отрезок, отсекаемый линией регрессии на координатной оси;

 b — значение коэффициента экстинкции (регрессии) комплексного соединения железа (III) красного цвета, которое следует использовать при расчете массы Fe³⁺ (см. 9.1.2);

X — масса Fe³⁺ в кювете (пробирке), мкг.

Среднеквадратическое отклонение s_{у,х} уравнения регрессии должно быть менее 0,010 единиц. Если указанное выше требование не выполняется, проверяют фотометрическую методику, стеклянную посуду и все реактивы. Корректируют методику или заменяют то, что необходимо.

П р и м е ч а н и е — Уравнение регрессии может быть расширено до 50 мкг Fe без потери его линейности (см. приложение A).

10 Расчет и выражение результатов

10.1 Расчет

10.1.1 Расчет экстинкции

Экстинкцию E, соответствующую комплексному соединению железа (III) красного цвета, рассчитывают по формуле

$$E = E_2 - (E_0 + E_1),$$
 (3)

где E2 — значение экстинкции пробы, измеренное в соответствии с 8.4.5;

— значение экстинкции для контрольного опыта на пробу для испытания с поправкой, рассчитанное в 8.3.5;

Е₁ — значение экстинкции смеси для контрольного опыта на реактивы, измеренное в соответствии с 8.2.4.

10.1.2 Расчет массы Fe3+

Массу Fe3+, mc, мкг, рассчитывают по формуле

$$m_c = \frac{E}{h}$$
, (4)

- где E значение экстинкции пробы, соответствующее комплексному соединению железа (III) красного цвета, рассчитанное в 9.1.1;
 - b значение коэффициента экстинкции комплексного соединения железа (III) красного цвета, рассчитанное в 8.5.

10.1.3 Расчет пероксидного числа

Пероксидное число жира PV, ммоль кислорода на килограмм, рассчитывают по формуле

$$PV = \frac{05m_c}{5584m}$$
, (5)

где m_c — масса Fe^{3*}, мкг (см. 9.1.2);

т — масса пробы для анализа, г (см. 8.4.1);

55,84 — атомная масса Fe³⁺, необходимая для выражения результатов в миллимолях.

10.2 Выражение результатов испытания

Промежуточные значения не округляют. Конечные результаты выражают с точностью до двух десятичных знаков.

11 Прецизионность

11.1 Прецизионность межлабораторного испытания по ГОСТ Р ИСО 5725-1 и ГОСТ Р ИСО 5725-2

Подробности межлабораторного испытания по определению прецизионности метода суммируются в приложении С. Значения, полученные на основании этого межлабораторного испытания, не могут применяться к диапазонам концентраций и матрицам, отличным от приведенных здесь.

11.2 Повторяемость

Абсолютное расхождение между результатами двух независимых единичных испытаний, полученными при использовании одного и того же метода на идентичном испытуемом материале в одной лаборатории одним оператором на одном и том же оборудовании в пределах короткого промежутка времени не должно более чем в 5 % случаев превышать 0,03 ммоль кислорода на килограмм.

11.3 Воспроизводимость

Абсолютное расхождение между результатами двух единичных испытаний, полученными при использовании одного и того же метода на идентичном испытуемом материале в разных лабораториях разными операторами на различном оборудовании, будет не более чем в 5 % случаев превышать 0,07 ммоль кислорода на килограмм.

12 Протокол испытания

Протокол испытания должен включать:

- всю информацию, необходимую для полной идентификации пробы;
- используемый метод отбора проб, если известен;
- используемый метод испытания вместе со ссылкой на национальный стандарт;
- все подробности, не указанные в настоящем стандарте или рассматриваемые как необязательные, вместе с подробностями всех побочных обстоятельств, которые могут повлиять на результат(ы) испытания;
 - полученный(е) результат(ы) и, в случае проверки повторяемости, конечный полученный результат.

Приложение А (справочное)

Схема методики и примеры расчетов

А.1 В таблице А.1 представлена схема методики. В таблицах А.2 и А.3 приведены примеры расчетов.

Таблица А.1

	Определение коэффициента экстинкции										
Наименование по- казателя	Проба для ис-	Контрольный опыт на про- бу для испы-	Контроль- ный опыт на реакти- вы	Станд	артная м	етодика (MKr Fe)	Обобщенная методика (мкг Fe)			
	призния	тания		5	10	15	20	30	40	50	
Проба для анализа (см. 8.2, 8.3), г	± 0,33	± 0,33	-1	_	_	_	_	_	_	_	
			Растворы р	еактиво	В						
Fe (III) (см. 5.4), см ³	_	+	1	0,50	1,00	1,50	2,00	3,00	4,00	5,00	
Смесь (см. 5.1), см ³	9,60	9,60	9,90	9,40	8,90	8,40	7,90	6,90	5,90	4,90	
NH ₄ SCN (cm. 5.3), cm ³	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05	
Fe (II) (см. 5.2), см ³	0,05	_	0,05	_	_	_	_	_	_	_	
HCI (см. 5.6), см ³	_	_	1	0,05	0,05	0,05	0,05	0,05	0,05	0,05	
			Измере	эние							
Е _С (около 500 нм)	E ₂	E _o	E,	E ₅	E ₁₀	E 15	E ₂₀	E ₃₀	E ₄₀	E ₅₀	

Т а б л и ц а А.2 — Расчет коэффициента экстинкции комплексного соединения железа (III) красного цвета

X MKT Fe (HI)	Y E _{Fe(III)}
5	0,141
10	0,283
15	0,423
20	0,562

Пример — $E_{Fe(lll)}$ = 0,0015 + 0,0281 мкг Fe(lll), что приводит к коэффициенту экстинкции 0,0281 единиц на микрограмм Fe.

FOCT P 52994-2008

Таблица А.3 — Расчет пероксидного числа

		Измерение						Pacчet				
Номер пробы	Проба для испытания т, г	Проба для испыта- ния при контроль- ном опыте m_0 , г	E ₀	E,	E2	E	E _o	т _с , мкг	РУ, ммоль/кг			
1	0,2909	0,2908	0,019	0,020	0,2040	0,1650	0,0190	5,880	0,18			
2	0,2915	0,2910	0,037	0,020	0,0940	0,0369	0,0371	1,316	0,04			

Приложение В (справочное)

Межлабораторное испытание

В.1 Межлабораторное совместное испытание в одиннадцати лабораториях из семи стран было проведено на двух различных пробах от каждой из восьми проб обезвоженного молочного жира. Испытание было организовано Центром сельскохозяйственных исследований (CRA) Бельгии.

Полученные результаты были подвергнуты статистическому анализу в соответствии с [4] и [5] и в итоге были получены данные по прецизионности, представленные в таблице В.1.

Таблица В.1

	Обезвоженный молочный жир									
Наименование показателя	1	2	3	4	5	6	7	8	Сред- нее значе- ние	
Количество лабораторий ^а , остав- шихся после исключения выбросов	9	9	9	9	9	9	8b	8 ^b		
Среднее значение ^е	1,049	0,699	0,607	0,445	0,308	0,271	0,913	0,890	0,818	
Среднеквадратическое отклонение повторности s ⁶	0,040	0,021	0,024	0,015	0,014	0,011	0,015	0.017	0,022	
Коэффициент вариации повторяе- мости ^d	3,77	2,94	3,62	3,47	4,47	4,00	1,62	2,40	3,58	
Предел повторности г, равный 2,8 s _г	0,111	0,050	0,087	0,043	0,038	0,031	0,041	0,048	0,08	
Среднеквадратическое отклонение воспроизводимости $s_N^{\scriptscriptstyle G}$	0,061	0.052	0,041	0,035	0,042	0,030	0,058	0,050	0,047	
Коэффициент вариации воспроиз- водимости ^d	5,82	7,38	6,83	7,83	13,62	11,01	6,34	7,20	7,81	
Предел воспроизводимости R , равный $2.8 s_N^c$	0,171	0,144	0,116	0,098	0,117	0,004	0,182	0,139	0,13	

^а Результаты, полученные в двух лабораториях, были отброшены из-за трудностей, связанных с методом или очень высоких значений, полученных в контрольном опыте на реактивы. Поэтому при статистической оценке результаты только оставшихся девяти лабораторий были приняты во внимание.

выброс исключен.

Значения выражены в миллиэквивалентах кислорода на килограмм. Для выражения этих значений в миллимолях (единица S1) их делят на 2.

^d Значения выражены в процентах, %.

Приложение C (справочное)

Сравнительное испытание

С.1 Обоснование для использования смеси метанол/1-деканол/н-гексан

По экологическим соображениям смесь хлороформ/метанол (с соотношением долей 7:3) была заменена на смесь метанол/1-деканол/н-гексан (с соотношением объемных долей 3:2:1).

П р и м е ч а н и е — Однако из-за неприятного запаха последнего до тех пор, пока это допускается, в некоторых странах все еще предпочитают использовать смесь хлороформ/метанол.

С.2 Сравнение результатов, полученных при использовании старого и нового реактивов

Для сравнения некоторые характеристики обеих смесей растворителя приведены на рисунке C.1 и в таблице C.1.

На рисунке С.1 представлены калибровочные кривые при использовании в качестве реактива либо смеси хлороформ/метанол (СМ), либо смеси метанол/1-деканол/н-гексан (МDH).

В таблице С.1 приведены пероксидные числа, выраженные в миллизквивалентах кислорода на килограмм, 26 проб молочного жира, определенные при использовании в качестве реактива, либо смеси хлороформ/метанол (СМ), либо смеси метанол/1-деканол/н-гексан (МDH).

Т а б л и ц а С.1 — Пероксидные числа 26 проб молочного жира, полученные при использовании в качестве растворителя смеси хлороформ/метанол (7:3) (СМ) или смеси метанол/1-деканол/н-гексан (3:2:1) (МDH)

		Растворитель СМ			Растворитель МОН			
Проба	Перох	сидные числа (мэк	m/sr) *	Пероксидные числа (мэкв/кг)				
	Результат 1	Результат 2	Среднее значение	Результат 1	Результат 2	Среднее значения		
1	0,036	0,030	0,033	0,036	0,028	0,032		
2	0,384	0,395	0,390	0,361	0,376	0,369		
3	0,100	0,101	0,101	0,102	0,102	0,102		
4	0,027	0.027	0,027	0,038	0,037	0,038		
5	0,061	0,092	0,077	0,058	0,052	0,055		
6	0,072	0,072	0,072	0,069	0,075	0,072		
7	0,078	0,080	0,079	0,068	0,071	0,070		
8	0,096	0,086	0,091	0,091	0,091	0,091		
9	0,080	0,083	0,082	0,137	0,100	0,119		
10	0,104	0,082	0,093	0,101	0,104	0,103		
11	0,037	0,034	0,036	0,048	0,055	0,052		
12	0,070	0,070	0,070	0,088	0,077	0,083		
13	0,375	0,379	0,377	0,339	0,342	0,341		
14	0,052	0,058	0,055	0,045	0,030	0,038		
15	0,041	0,039	0,040	0,035	0,034	0,035		
16	0,040	0,030	0,035	0,020	0,034	0,027		
17	0,060	0,045	0,053	0,054	0,050	0,052		
18	0,062	0,043	0,053	0,040	0,041	0,041		
19	0,031	0,038	0,035	0,057	0,050	0,054		
20	0.054	0,052	0,053	0,062	0,064	0,063		

FOCT P 52994-2008

Окончание таблицы С.1

	77 - 4-0	Растворитель СМ			Растворитель МОН			
Проба	Перак	сидные числа (мэк	B/Kr) *	Пероксидные числа (мэкв/кг)				
	Результат 1	Результат 2	Среднее значение	Результат 1	Результат 2	Среднее значение		
21	0,037	0,046	0,042	0,034	0,039	0,037		
22	0,062	0,065	0,064	0,056	0,059	0,058		
23	0,147	0,142	0.145	0,105	0,119	0,112		
24	0,098	0,076	0,087	0,059	0,054	0,057		
25	0,034	0,018	0,026	0,033	0,035	0.034		
26	0,059	0,050	0,055	0,071	0,065	0,068		
Среднее значение	-	_	0,087	-	_	0,084		
Повторяе- мость		_	0,023	_	_	0,020		

^а Значения выражены в миллиэквивалентах кислорода на килограмм. Для выражения этих значений в миллимолях (единица S1) их следует разделить на 2.

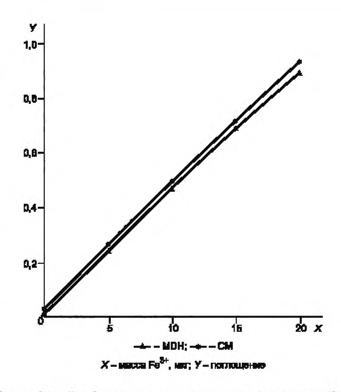


Рисунок С.1 — Калибровочная кривая для смеси хлороформ/метанол (СМ) и смеси метанол/1-деканол/н-гексан (МDH)

С.3 Выводы

Средние значения пероксидных чисел 26 проб молочного жира, полученные при использовании любой из этих смесей растворителя, не имеют существенных различий.

Повторяемость, чувствительность метода, линейность калибровочных кривых и поглощение при контрольном опыте, лолученные при использовании любой из этих смесей растворителя, также сравнимы.

Библиография

[1] AOAC 920.160	Определение пероксидного числа
[2] UCO 707:1997	Молоко и молочные продукты. Руководящие указания по отбору проб
[3] IDF 68A:1977	Обезвоженный молочный жир, обезвоженное топленое масло или обезвоженная жировая
	фракция масла, топленое масло или жировая фракция масла. Стандарты идентичности
[4] UCO 5725-1:1994	Точность (правильность и прецизионность) методов и результатов измерений. Часть 1.
	Общие принципы и определения
[5] UCO 5725-2:1994	Точность (правильность и прецизионность) методов и результатов измерений. Часть 1.
	Основной метод определения повторяемости и воспроизводимости стандартного метода
	измерения

УДК 637.544:006.354 OKC 67.100 H09

Ключевые слова: жир молочный, пероксидное число, определение, методики

Редактор П.В. Коретникова Технический редактор В.Н. Прусакова Корректор М.В. Бучная Компьютерная верстка А.Н. Золотаревой

Сдано в набор 26,01.2009. Подписано в печать 16.02.2009. Формат 60 × 84 $\frac{1}{8}$ Бумага офсетная. Гарнитура Ариал. Печать офсетная. Усл. печ. л. 1,86. Уч.-иэд. л. 1,20. Тираж 348 экз. Зак. 80.