

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

масло рапсовое

ТЕХНИЧЕСКИЕ УСЛОВИЯ

FOCT 8988—77

Издание официальное

к государственным стандартам разделов «Н. Пищевые и вкусовые продукты» групп Н11, Н12, Н13, Н16, Н17, Н21, Н22, Н23, Н24, Н25, Н26, Н27, Н28, Н31, Н32, Н33, Н34, Н35, Н41, Н42, Н43, Н51, Н52, Н53, Н54, Н55, Н56, Н61, Н62, Н65, Н71, Н72, Н73, Н74, Н91, Н95, Н97, Н98 и «С. Сельское и лесное хозяйство» групп С12, С13, С23, С24, С25, С32, С33, С34, С35, С42, С43, С44, С52, С78

В каком месте	Напечатано	Должно быть
По всему тексту стандартов	Медико-биологические требования и санитарные нормы качества продовольственного сырья и пищевых продуктов (МБТ № 5061—89)	СанПиН 2.3.2.560—96

(ИУС № 1 1999 г.)

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

МАСЛО РАПСОВОЕ

Технические условия

Oil Specification

ΓΟCT 8988—77

Взамен ГОСТ 8988—59

ОКП 91 4123

Срок действия с 01.07.78

до 01.01.92

Несоблюдение стандарта преследуется по закону

Настоящий стандарт распространяется на рапсовое масло, вырабатываемое путем прессования и экстракции семян рапса.

Рапсовое масло применяется для переработки на пищевые продукты и для технических целей.

1. ВИДЫ

1.1. В зависимости от способа обработки и показателей качества рапсовое масло выпускают следующих видов и сортов, указанных в табл. 1a.

Таблица 1а

Вид рапсового масла	Сорт	Код ОКП
Масло рапсовое нерафинирован- ное	Первый Второй	91 4123 1200 91 4123 1300
Масло рапсовое рафинированное недезодорированное	_	91 4123 3900

1.2. Для переработки на пищевые продукты предназначается рафинированное недезодорированное рапсовое масло и нерафинированное рапсовое масло первого сорта.

Разд. 1. (Измененная редакция, Изм. № 1).

2. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

- 2.1. Рапсовое масло должно вырабатываться в соответствии с требованиями настоящего стандарта, по технологическим инструкциям, утвержденным в установленном порядке.
- 2.2. Рапсовое масло, предназначенное для переработки на пищевые продукты, должно вырабатываться из семян рапса по ГОСТ 10583—76 1-го класса с массовой долей эруковой кислоты в масле из семян не более 5 % (к сумме жирных кислот), тиоглюкозидов не более 3 %, отвечающих требованиям Министерства здравоохранения СССР по остаточному количеству хлорорганических пестицидов (см. справочное приложение 1).

(Измененная редакция, Изм. № 2).

2.3. По органолептическим показателям рапсовое масло должно соответствовать требованиям, указанным в табл. 1.

Таблица 1

· · · · · · · · · · · · · · · · · · ·	Характерист	ика рапсового масла	
Наименование		нерафинированного	
показателя	рафинированного недезодорированного	первого сорта	второго сорта
Прозрачность	Прозрачное	• •	легкое помутне- пие
Запах и вкус	Свойственные рафини- рованному рапсовому маслу, без посторонних запахов и привкусов	Запах, свойств	венный рапсово- з посторонних не определяется

2.4. По физико-химическим показателям рапсовое масло должно соответствовать требованиям, указанным в табл. 2.

Таблица 2

	Норма для масла		
***		нерафини	рованного
Наименование показателя	рафинирован- ного недезодо- рированного	первого сорта	второго сорта
Цветное число, мг йода, не более Кислотное число, мг КОН/г, не бо- лее	30 0,4	85 4,0	95 6,0

- 2.8. Определение показателя «массовая доля серы» обязательно для накопления данных до 01.01.89. Рекомендуемые значения указанного показателя приведены в приложении 3.
 - 2.7, 2.8. (Измененная редакция, Изм. № 2).

3. ПРАВИЛА ПРИЕМКИ

- 3.1. Правила приемки по ГОСТ 5471—83.
- 3.2. Массовую долю эруковой кислоты и остаточное количество хлорорганических пестицидов изготовитель определяет периодически не реже одного раза в месяц.
- В каждой партии эти показатели указывают на основании сертификатов на семена рапса (по анализу масла в семенах).
- 3.3. Показатели «йодное число», «число омыления» и «массовую долю неомыляемых веществ» предприятие-изготовитель определяет периодически по требованию потребителя.

Разд. 3. (Измененная редакция, Изм. № 2).

4. МЕТОДЫ ИСПЫТАНИЙ

- 4.1. Метод отбора проб по ГОСТ 5471—83.
- 4.2. Определение прозрачности и запаха по ГОСТ 5472—50.
- 4.3. Определение вкуса производят органолептически.
- 4.4. Определение цветного числа по ГОСТ 5477—69.
- 4.5. Определение кислотного числа по ГОСТ 5476—80.
- 4.6. Определение массовой доли влаги и летучих веществ по ГОСТ 11812—66.
- 4.7. Определение массовой доли нежировых примесей (отстоя по массе) по ГОСТ 5481—66.
- 4.8. Определение мыла по качественной пробе по ГОСТ 5480—59.
- 4.9. Определение йодного числа (по методу Кауфмана) по ГОСТ 5475—69.
- 4.10. Определение массовой доли неомыляемых веществ по ГОСТ 5479—64.
- 4.11. Определение температуры вспышки экстракционного масла по ГОСТ 9287—59.
 - 4.12. Определение числа омыления по ГОСТ 5478—64.
- 4.13. Определение остаточного количества пестицидов в рапсовом масле по нормативно-технической документации, утвержденной Министерством здравоохранения СССР.
- 4.14. Определение массовой доли фосфоросодержащих веществ по ГОСТ 7824—80.
- 4.15. Определение массовой доли эруковой кислоты по справочному приложению 4.

Продолжение табл. 2

	Норма для масла		
••		нерафиниц	оованного
Наименование показателя	рафинирован- ного недезодо- рированного	первого сорта	второго сорт а
Массовая доля влаги и летучих веществ, %, не более Массовая доля нежировых примесей, %, не более	0,15 Отсут ствует	0,25 0,15	0,25 0,20
Мыло (качественная проба)	Отсут ствует	Не опр	еделяется
Число омыления, мг КОН/г: масла, направляемого для переработки на пищевые продукты масла, направляемого на техни-	179200	179—200	
ческие цели	165180	165—180	165—180
Глодное число, гл ₂ /100 г: масла, направляемого для переработки на пищевые продукты	108—118	108118	
масла, направляемого на техни- ческие цели	94—106	94—106	94—106
Массовая доля неомыляемых веществ, %, не более	1,2	1,5	1,5
Массовая доля фосфоросодержа- ших веществ, в пересчете на стеаро- олеолецитин, %, не более Массовая доля эруковой кислоты в масле, направляемом для перера-	0,05	2,0	2,0
ботки на пищевые продукты, % к сумме жирных кислот, не более Температура вспышки экстракци-	5	5	_
онного масла, °С, не ниже Массовая доля серы, млн-1	230	230 Не нормирует	230 ⁾ ся

- 2.5. Допускается нерафинированное масло второго сорта с кислотным числом до 6 мг КОН/г (при условии соответствия остальных показателей требованиям первого сорта) перерабатывать на пищевые продукты, с кислотным числом свыше 6 мг КОН/г и цветным числом свыше 95 мг йода на технические цели.
 - 2.4, 2.5. (Измененная редакция, Изм. № 2).
- 2.6. Массовая доля нежировых примесей (отстой по массе), не превышающее допустимых расхождений между параллельными определениями по ГОСТ 5481—66, допускается.
- 2.7. Остаточное количество пестицидов в рапсовом масле, предназначенном для переработки на пищевые продукты, не должно превышать максимально допустимых уровней пестицидов, утвержденных Министерством здравоохранения СССР (приложение 2).

- 4.16. Определение массовой доли серы по справочному приложению 5.
 - 4.13—4.16. (Введены дополнительно, Изм. № 2).

5. УПАКОВКА, МАРКИРОВКА, ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

5.1. Рапсовое масло транспортируют в железнодорожных цистернах с нижним сливом по ГОСТ 10674—82, специализированных для перевозки растительных масел, имеющих специальные трафареты «Растительное масло», принадлежащих грузоотправителям или грузополучателям или находящихся у них в арендном пользовании, а также в автоцистернах по ГОСТ 9218—86 с закрывающимися люками.

(Измененная редакция, Изм. № 2).

- 5.2. Тара, применяемая для розлива рапсового масла, должна быть чистой, сухой и не иметь постороннего запаха.
- 5.3. Транспортная тара и упаковка для рапсового масла, отправляемого в районы Крайнего Севера и труднодоступные районы, должны соответствовать требованиям ГОСТ 15846—79.

(Измененная редакция, Изм. № 1).

5.4. Транспортная маркировка по ГОСТ 14192—77 с нанесением следующих дополнительных обозначений, характеризующих продукцию:

наименования предприятия-изготовителя, его адреса, подчиненности и товарного знака;

наименования вида и сорта масла;

даты налива;

обозначения настоящего стандарта;

классификационного шифра группы груза 921 по ГОСТ 19433—81 и знака опасности по ГОСТ 19433—81, класс 9.

(Измененная редакция, Изм. № 1, 2).

5.5. Рапсовое масло транспортируют железнодорожным или автомобильным транспортом в соответствии с правилами перевозок грузов, действующими на данном виде транспорта.

(Измененная редакция, Изм. № 2).

5.6. Рапсовое масло до налива в железнодорожные цистерны, автоцистерны, бочки должно храниться в закрытых баках.

6. ГАРАНТИИ ИЗГОТОВИТЕЛЯ

- 6.1. Изготовитель должен гарантировать соответствие рапсовото масла требованиям настоящего стандарта при соблюдении условий транспортирования и хранения, установленных стандартом.
- 6.2. Гарантийный срок хранения рапсового нерафинированного масла 1 год со дня выработки.

(Измененная редакция, Изм. № 1).

ПРИЛОЖЕНИЕ **1** Справочное

Максимально допустимые уровни содержания пестицидов в семенах со средней масличностью (32—45 %)— семена льна, горчицы, рапса, утвержденные Министерством здравоохранения СССР

Наименование пестицида	Максимально допустимый уровень, млн (мг/кг)
Гексахлорциклогексан ГХЦГ (сумма изомеров) Гептахлор ГПХ (эпоксид гепта-	0,40
хлора) ДДТ (сумма изомеров и метабо-	0,10
литов)	0,10

ПРИЛОЖЕНИЕ 2 Справочное

Максимально допустимые уровни содержания пестицидов в растительных маслах различного назначения, утвержденные Министерством здравоохранения СССР

Продукт	Наименование пестицида	Максимально допустимые уровни, млн 1 (мг/кг)
Растительные масла для промышленной переработки на пищевые продукты	ГХЦГ (сумма изомеров) ГПХ (эпоксид гептахлора) ДДТ (сумма изомеров и метабо- литов)	1,0 0,25 0,25

ПРИЛОЖЕНИЕ 3 Справочное

Рекомендуемые значения показателя «массовая доля серы» для рапсового масла и готовых жировых продуктов, не более

 $MЛH^{-1}$ (M $\Gamma/K\Gamma$)

Вид масла и его назначение	Норма
1. Для переработки на пищевые продукты:	
нерафинированное первого сорта	30
рафинированное недезодорированное:	00
направляемое на гидрирование	6
направляемое на дезодорирование	15
2. Для технических целей:)
нерафинированное второго сорта	50
рафинированное недезодорированное,	İ
направляемое на гидрирование	6
.3. В готовых жировых продуктах:	
смеси растительных масел	1,0
маргарин и кулинарные жиры	1,5

ПРИЛОЖЕНИЕ **4** Справочное

ОПРЕДЕЛЕНИЕ МАССОВОЙ ДОЛИ ЭРУКОВОЙ КИСЛОТЫ В РАПСОВОМ МАСЛЕ МЕТОДОМ ГАЗОЖИДКОСТНОЙ ХРОМАТОГРАФИИ

Метод определения массовой доли эруковой кислоты в рапсовом масле применим в диапазоне от 0.1 до 70~%.

1. Нормы точности

Метрологические характеристики метода при доверительной вероятности 0,95 приведены в табл. 1.

Таблица 1

Значение измеряемой величины, °	Предел возможных значений относительной погрешности измерения, %	Допускаемое относительное расхождение между результата-ми параллельных определений, %
Менее 1	Без нормируе	мой погрешности
От 1 до 5 включ.	11	15
> 5 > 20 >	8	11
* 20 * 70 *	5	7

2. Метод измерения

Метод основан на превращении триглицеридов кислот в метиловые эфиры жирных кислот и газохроматографическом анализе последних.

3. Аппаратура, материалы, реактивы

Хроматограф газовый лабораторный с пламенно-ионизационным детектором, термостатом на температуры не ниже 200°C, с испарителем на температуры не ниже 300 °C.

Колонка газохроматографическая из нержавеющей стали или стеклянная, длиной 1,5-2 м, внутренним диаметром 2-4 мм.

Наполнитель для колонок: хроматон N-AN, обработанный 10% реоплекса 400 или карбовакса 20 М или наполнитель аналогичного качества.

Микроскоп отсчетный типа МПБ-2 или лупа измерительная по ГОСТ 25706-83.

Линейка с ценой деления 1 мм.

Устройство интегрирующее.

Микрошприц МШ-10 вместимостью 10 мм³ или «Газохром 101» вместимостью

Весы лабораторные по ГОСТ 24104-80 3-го класса точности с наибольшим пределом взвешивания 1000 г или другие весы с тем же классом точности.

Пипетка 4-1-1, 4-1-2 или 5-1-1, 5-1-2 по ГОСТ 20292-74.

Пробирка П-4-10-14/23 ХС по ГОСТ 25336-82.

Цилиндр 1—250 или 3—250 по ГОСТ 1770—74. Воронка лабораторная В-25—38 ХС или В-36—50 ХС по ГОСТ 25336—82. Колба мерная 2—25—2 по ГОСТ 1770—74.

Колба круглодонная К-1—1000—29/32 ТС по ГОСТ 25336—82.

Холодильник XIII-1—400—29/32 XC по ГОСТ 25336—82.

Стаканчик для взвешивания СВ-19/9 по ГОСТ 25336—82.

Перегонный аппарат:

Колба К-1-500-29/32 ТС по ГОСТ 25336-82.

Насадка Н-1-29/32-14/23 ТС по ГОСТ 25336-82.

Холодильник ХПТ-1—100—14/23 ТС по ГОСТ 25336—82. Алонж АИО-29/32—14/23—60 или АКП-29/32—14/23 ТС по ГОСТ 25336—82.

Термометр КШ 14/23+40+110/0,2-60 по ГОСТ 16590-71.

Баня водяная.

Бумага фильтровальная лабораторная по ГОСТ 12026—76.

Водород технический марки А по ГОСТ 3022-80 или электролизный от генератора водорода типа СГС-2.

Воздух по ГОСТ 17433—80, класс 0.

Газы-носители: азот газообразный по ГОСТ 9293—74, гелий сжатый.

Натрий металлический по ГОСТ 3273—75 или метилат натрия.

Окись кальция по ГОСТ 8677—76, ч.д.а.

Гексан, ч.д.а., для хроматографии.

Метанол — яд по ГОСТ 6995—77, х.ч.

4. Подготовка к испытанию

4.1. Приготовление абсолютного метанола

В колбу вместимостью 500 см³ взвешивают (30±1) г окиси кальция, добавляют 250 см³ метанола и кипятят с холодильником типа XIII (обратным) в течение 6-8 ч. Затем метанол перегоняют в перегонном аппарате при температуре 64.7 °C.

4.2. Приготовление раствора метилата натрия Meтаноле концентрации 2 моль/дм3

Взвешивают 2,7 г метилата натрия или 1,15 г металлического натрия с записью результата до второго десятичного знака в стаканчик для взвешивания.

В мерную колбу заливают (10—12) см³ абсолютного метанола, в него высыпают навеску метилата натрия или бросают маленькими кусочками натрий. После перемешивания раствор охлаждают до комнатной температуры и доливают абсолютным метанолом до метки. Хранят раствор в холодильнике.

4.3. Приготовление метиловых эфиров кислот

Пробу испытуемого масла хорошо перемешивают. В стеклянную пробирку берут пипеткой 2—3 капли масла, растворяют их в 1,9 см³ гексана. В раствор вводят 0,1 см³ раствора метилата натрия в метаноле концентрации 2 моль/дм³. После интенсивного перемешивания в течение 2 мин реакционную смесь отстаивают 5 мин и фильтруют через бумажный фильтр. Раствор готов для анализа. Готовый раствор хранят не более 2 сут в холодильнике.

4.4. Подготовка хроматографа к испытанию

Подключение хроматографа к сети, подготовка и установка колонок и вывод прибора на режим выполняются согласно инструкции по монтажу и наладке хроматографа.

5. Проведение испытания

Устанавливают на хроматографе следующие условия анализа:

температура термостата колонок 180-190°C

температура испарителя 250—280°C

температура печи детекторов 200 °C

скорость потока газа-носителя (азот, гелий) — 30—40 см³/мин

величина пробы — около 1 мм³ гексанового раствора метиловых эфиров кислот в гексане.

Время выхода метиллинолената около 15 мин, метилэруката — около 30 мин. При анализе низкоэрукового рапсового масла после выхода пика метиллинолената увеличивают чувствительность в 10 раз.

Порядок выхода метиловых эфиров кислот и их относительные объемы удерживания ($V_r^{\text{отн}}$) приведены в табл. 2.

Таблица 2

	1 4 0 11 11 44 2
Метиловые эфиры кислот	VOTH.
1. Тетрадекановая (миристиновая) 2. Гексадекановая (пальмитиновая) 3. Гексадеценовая (пальмитолеиновая) 4. Октадекановая (стеариновая) 5. Октадеценовая (олеиновая) 6. Октадекадиеновая (линолевая) 7. Октадекатриеновая (линоленовая) 8. Эйкозановая (арахиновая) 9. Эйкозеновая (гондоиновая) 10. Эйкозадиеновая 11. Докозановая (бегеновая) 12. Докозеновая (эруковая)	0,3 0,5 0,8 1,0 1,1 1,3—1,4 1,7—1,8 1,9 2,1 2,5—2,6 3,6 3,9
13. Докозадиеновая 14. Тетракозеновая (нервоновая)	4,6 7,2
11. 1cipanosenosan (nepsonosan)	1 .,-

6. Обработка результатов

Расчет состава метиловых эфиров жирных кислот масла проводят методом внутренней нормализации. Площади пиков компонентов (S_{i}) в мм² вычисляют по формуле

$$S_i = h_i \cdot a_i$$

где h_l — высота пика, мм;

 a_{i} — ширина пика, измеренная на половине высоты, мм.

Высоту пика измеряют с записью результата до целых чисел; ширину пика — с записью результатов до первого десятичного знака.

Сумму площадей всех пиков на хроматограмме (ΣS_i) принимают за 100 %.

Массовую долю эруковой кислоты (X_{\bullet}) в процентах вычисляют по формуле

$$X_9 = \frac{S_9 \cdot 100}{\sum\limits_{i}^{\Sigma} S_i} ,$$

где S_{s} — площадь пика метилового эфира эруковой кислоты, мм²; ΣS_{t} — сумма площадей всех пиков на хроматограмме, мм².

Вычисления проводят до второго десятичного знака с последующим округлением результата до первого десятичного знака.

За результат анализа принимают среднее арифметическое результатов двух последовательных определений.

ПРИЛОЖЕНИЕ 5 Справочное

ОПРЕДЕЛЕНИЕ МАССОВОЙ ДОЛИ СЕРЫ В РАПСОВОМ МАСЛЕ

Метод предназначен для определения массовой доли серы в рапсовом масле в условиях заводских лабораторий и при проведении научных исследований. Диапазон измеряемых значений массовой доли серы от 1 до 90 млн⁻¹.

1. Нормы точности измерений

Метрологические характеристики метода при доверительной вероятности 0,95 приведены в таблице.

Значение измеряемой величи- ны, млн — (мг/кг)	Предел возможных значений относительной погрешности измерений, %	Допускаемое относительное рас- хождение между результатами двух параллельных определе- ний, %
Менее 10	11	16
От 10 до 20 включ.	9,5	13
» 20 до 40 »	5,5	7

2. Метод измерения

Метод основан на десульфировании соединений двухвалентной серы активированным никелем, разложении образовавшегося сульфида никеля кислотой до сероводорода, перегонке сероводорода в поглотительный раствор (CdSO₄/NaOH) и последующем фотометрическом определении серы по образованию метиленового голубого при взаимодействии сероводорода в кислой среде с N, N-диметил—П—фенилендиамином и хлоридом железа.

3. Отбор проб — по ГОСТ 5471—83

4. Средства измерений, вспомогательные устройства, реактивы и материалы

Весы лабораторные равноплечие по ГОСТ 24104—80, 2-го класса точности с наибольшим пределом взвешивания 200 г или другие весы с тем же классом точности.

Весы лабораторные квадрантные по ГОСТ 24104—80, 4-го класса точности с наибольшим пределом взвешивания 500 или 1000 г или другие весы с тем же классом точности.

Разновесы 2-го класса по ГОСТ 7328-82.

Спектрофотометр СФ-14 или подобный с такой же разрешающей способностью или спектроколориметр Спекол 11, или фотоколориметр ФЭК-56, или подобный, имеющий светофильтр с эффективной длиной волны 670 нм.

Ареометры по ГОСТ 18481—81, типы АОН-1, АОН-2 и АОН-4, с ценой деления шкалы не менее 5 кг/м³.

Баня водяная.

Электроплитка бытовая по ГОСТ 14919-83.

Пробирки мерные П-2—25—02 XC по ГОСТ 1770—74.

Стаканы Н-1-50 и Н-2-50 ТХС по ГОСТ 25336-82.

Колба П-1—1000—42 или П-2—1000—42 по ГОСТ 25336—82.

Колбы мерные 2—100—2—10/19, 2—200—2—14/23, 2—500—2—14/23 и 2—1000—2—19/26 по ГОСТ 1770—74.

Бюретка 1—2—25—0,1 или 2—2—25—0,1 по ГОСТ 20292—74.

Пипетки 5—1—1, 5—1—2, 7—1—5 и 7—1—10 по ГОСТ 20292—74.

Воронки В-36-80 или В-56-80 ХС по ГОСТ 25336-82.

Цилиндры мерные 2—25 или 4—25; 1—50 или 3—50; 1—100 или 4—100 по ГОСТ 1770—74.

Установка для определения массовой доли серы (черт. 1-6).

Фильтры бумажные с красной полосой,

Бумага фильтровальная по ГОСТ 20296-81.

Азот газообразный, особой частоты по ГОСТ 9293—74.

N, N-диметил-n-фенилендиамин сернокислый, ч.

Железо трехлористое по ГОСТ 4147-74, ч.д.а.

Кадмий сернокислый по ГОСТ 4456—75, ч.д.а., ч.

Натрия гидроокись по ГОСТ 4328—77, ч., ч.д.а.

Натрий сернистый по ГОСТ 2053-77, ч., ч.д.а.

Кислота соляная по ГОСТ 3118-77, х.ч.

Кислота серная по ГОСТ 4207—75, х.ч.

Натрий серноватистокислый (тиосульфат натрия), ч.д.а.

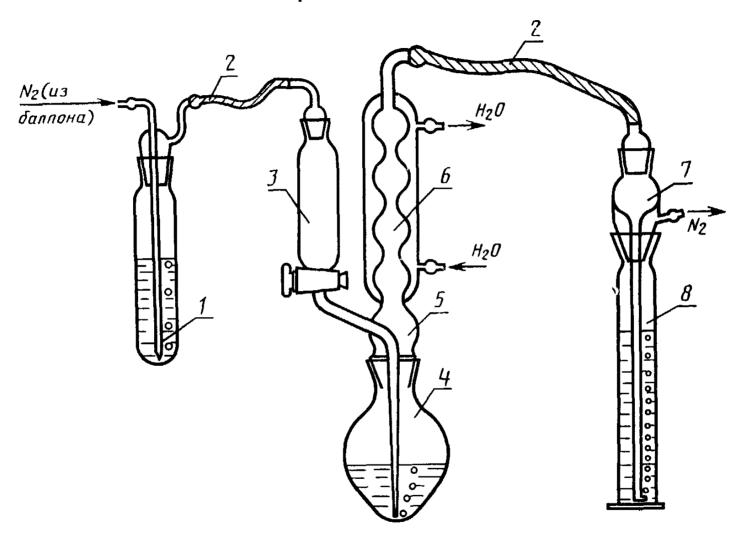
Крахмал растворимый по ГОСТ 10163-76, ч.

Под металлический по ГОСТ 4159—79, ч., ч.д.а.

Иодид калия по ГОСТ 4232-74, ч., ч.д.а.

Изопропиловый спирт (изопропанол — 2), х.ч.

Сплав никель-алюминий (30—50 % -ный).

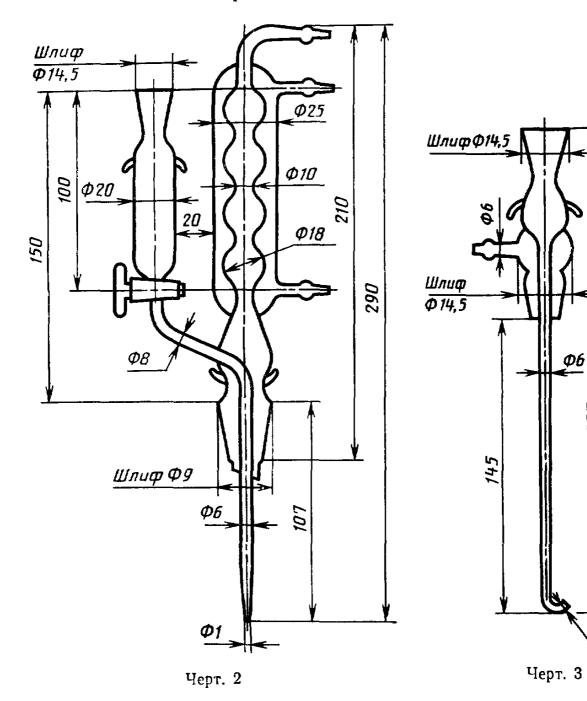

Спирт этиловый ректификованный технический по ГОСТ 18300—72.

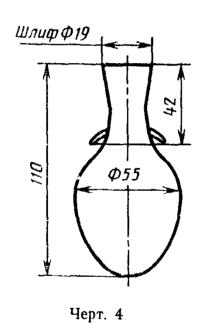
Натрий углекислый по ГОСТ 84—76, ч., ч.д.а., х.ч.

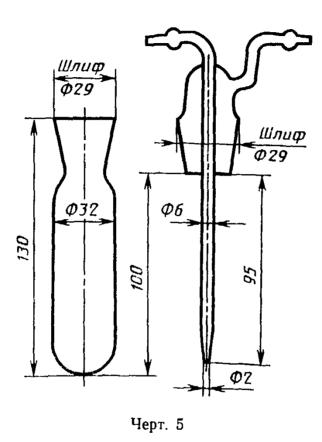
Глицерин дистиллированный по ГОСТ 6824-76.

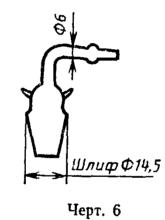
Вода дистиллированная по ГОСТ 6709—72.

Установка для определения серосодержащих соединений в растительных маслах




Черт. 1


Φ0,5


Насадка с обратным холодильником и капельной воронкой

Алонж с газовводной трубкой

4. Требования безопасности

Необходимо соблюдать правила техники безопасности, предусмотренные при работе в химической лаборатории.

Инструкция лаборантов проводится на основании действующих правил с учетом того, что использование данного метода связано с использованием солей кадмия, растворов кислот и щелочей.

5. Требования к квалификации оператора

Выполнение измерений по данной методике может проводить лаборант со средним образованием, подробно ознакомленный с методикой и имеющий навыки работы в химической лаборатории.

6. Условия выполнения измерений

Выполнение измерений по данной методике проводится при комнатной температуре и атмосферном давлении в токе азота или инертного газа.

7. Подготовка к выполнению измерений

В методике предусмотрено использование установки (черт. 1), которая состоит из круглодонной колбы 1, вместимостью 100 см³, соединенной с помощью шлифов с насадкой 5, снабженной обратным шариковым холодильником 6 и впаянной в насадку капельной воронкой 3 вместимостью 20—25 см³.

Воронка служит для ввода в реакционную колбу как кислоты, так и инертного газа. Для этого отвод воронки опущен до дна реакционной колбы. Выход холодильника соединен гибким шлангом 2 с алонжем 7, вставленным в поглотительный сосуд 8, представляющий собой мерный цилиндр вместимостью 25 см³.

Трубка алонжа, служащая для выведения газа из реакционной колбы в поглотительный сосуд, опущена до самого дна поглотительного сосуда. Диаметр выходного отверстия газоотводной трубки 0,1—0,2 мм.

7.1. Приготовление растворов и реактивов

7.1.1. Приготовление обескислороженной дистиллированной воды

Колбу вместимостью 1000 см³ заполняют дистиллированной водой и пропускают через воду азот со скоростью 60—70 пузырьков в минуту в течение 15— 20 мин.

7.1.2. Приготовление стандартного раствора сульфида натрия (для построе-

ния градиировочного графика)

На весах 2-го класса взвешивают около 10 г сульфида натрия с записью результата до четвертого десятичного знака, переносят в мерную колбу вместимостью 1000 см³ и приливают 500 см³ обескислороженной дистиллированной воды. Перемешивают содержимое колбы до полного растворения сульфида натрия, доводят объем в колбе до 1000 см³ обескислороженной дистиллированной водой и тщательно перемешивают раствор (раствор A). Концентрация серы в полученном растворе около 1300 мкг в 1 см³.

Отбирают пипеткой 2,5 см3 раствора А, переносят в мерную колбу вмести-

мостью 250 см³ и тщательно перемешивают (раствор Б).

Концентрация серы в полученном растворе около 13 мкг в 1 см³.

Растворы А и Б стабильны в течение 2 ч.

Определение массовой доли серы в стандартных растворах сульфида натрия

Отбирают 25 см³ стандартного раствора A в колбу вместимостью 250 см³, добавляют 25 см³ раствора йода концентрации 0,1 моль/дм³ (0,1 н), 5 см³ раствора соляной кислоты массовой концентрации 10 %.

50 см³ дистиллированной воды и титруют раствором тиосульфата натрия

концентрации 0,1 моль/дм³ (0,1 н.).

Массовую долю серы (X_1) в растворе в мкг/см³ вычисляют по формуле

$$X_{1} = \frac{(V_{1} \cdot F_{1} - V_{2} \cdot F_{2}) \cdot 1,603 \cdot 1000}{V_{0}} ,$$

где V_0 — объем стандартного раствора A, взятый для титрования, см³; V_1 — объем раствора йода концентрации 0,1 моль/дм³ (0,1 н), израсходованный для проведения анализа, см³; F_1 — поправка к титру раствора йода концентрации 0,1 моль/дм³ (0,1 н); V_2 — объем раствора тиосульфата натрия концентрации 0,1 моль/дм³ (0,1 н), израсходованный на титрование, см³; F_2 — поправка к титру раствора тиосульфата натрия концентрации 0,1 моль/дм³ (0,1 н); 1,603 — количество серы, эквивалентное 1 см³ раствора йода концентрации

0,1 моль/дм³ (0,1 н), мг.

Массовую долю серы в растворе Б (X_2) в мкг/см³ вычисляют по формуле

$$X_2 = \frac{X_1}{10}$$
 ,

где X_1 — массовая доля серы в растворе A, мкг/см³;

10 — коэффициент, учитывающий разведение раствора А.

7.1.3. Приготовление раствора иодистого калия

На весах 4-го класса взвешивают (35±0,5) г йодистого калия, всыпают в мерную колбу вместимостью 1000 см³ и вливают 25 см³ дистиллированной воды. Колбу встряхивают до полного растворения йодистого калия в воде. Раствор выдерживают в темноте при комнатной температуре 30 мин и используют для приготовления раствора йода концентрации 0,1 моль/дм³ (0,1 н).

7.1.4. Приготовление водного раствора крахмала с массовой долей 1 %

На весах 4-го класса взвешивают 1 г крахмала с записью результата до второго десятичного знака, растворяют в 20 см3 холодной воды и добавляют 80 см3 кипящей дистиллированной воды, кипятят 2-3 мин, охлаждают и используют в качестве индикатора.

7.1.5. Приготовление раствора йода концентрации 0,1 моль $|\partial M^3|(0,1)$ н)

На весах 4-го класса взвешивают около 12,7 г йода с записью результата до второго десятичного знака и всыпают в мерную колбу вместимостью 1000 см3. В колбу предварительно вливают раствор йодистого калия. Взбалтывают до полного растворения йода в растворе йодистого калия, после чего доливают воду до метки и содержимое хорошо перемешивают.

Установка титра раствора йода концентрации 0.1 моль/дм^3 (0.1 H)

В коническую колбу с притертой пробкой наливают 25 см³ раствора йода, добавляют 25 см³ воды и титруют раствором тиосульфата до перехода бурого окрашивания в соломенно-желтое. Затем приливают 2 см3 раствора крахмала и продолжают титрование до полного обесцвечивания раствора.

Поправку к титру (F) раствора йода вычисляют по формуле

$$F = \frac{V_1 \cdot F_1}{V} ,$$

где V_1 — объем раствора тиосульфата натрия концентрации 0,1 моль/дм³ (0,1 н), израсходованный на тигрование, см³;

 $F_{\rm t}$ — поправка к титру раствора тиосульфата натрия концентрации 0,1 моль/дм³ (0,1 н);

V — объем раствора йода концентрации 0,1 моль/дм³ (0,1 н), израсходованный на титрование, см3.

7.1.6. Приготовление раствора тиосульфата натрия концентрации

 $0.1 \text{ моль}/\partial M^3 (0.1 \text{ H})$

На весах 4-го класса взвешивают около 25 г тиосульфата натрия с записью результата до второго десятичного знака и растворяют в 500 см³ свежепрокипяченной и охлажденной до комнатной температуры дистиллированной воды. К полученному раствору тиосульфата натрия добавляют 0,2 г углекислого натрия и объем в колбе доводят дистиллированной водой (свежепрокипяченной и охлажденной до комнатной температуры) до 1000 см³. Раствор тиосульфата натрия оставляют в темноте на 10—15 дней, после чего определяют его титр.

Установка титра раствора тиосульфата натрия концентрации 0,1 моль/дм³ (0,1 н)

В стеклянный бюкс с пришлифованной пробкой взвешивают 2,5 г йодистого калия и приливают 0,5 см³ дистиллированной воды. Бюкс выдерживают 15 мин при комнатной температуре. Если он снаружи покрывается влагой, ее снимают фильтровальной бумагой. Затем бюкс взвешивают на весах 2-го класса с записью

результата до четвертого десятичного знака.

На весах 4-го класса взвешивают около 0,5 г возогнанного йода с записью результата до второго десятичного знака и осторожно переносят его в бюкс, содержащий раствор йодистого калия, следя за тем, чтобы йод не попал на наружные стенки бюкса. Бюкс закрывают крышкой, взвешивают на весах 2-го класса с записью результата до четвертого десятичного знака и переносят его в коническую колбу вместимостью 500 см³ с пришлифованной пробкой. Для этого закрытый бюкс с растворенным йодом вводят в горло наклоненной колбы, содержащей 200 см³ воды и около 1 г йодистого калия, и в момент опускания бюкса на дно колбы с него снимают крышку, которую также опускают в колбу. Полученный раствор йода титруют раствором тиосульфата натрия концентрации 0,1 моль/дм³ (0,1 н) до соломенно-желтого цвета. Затем прибавляют 1 см³ водного раствора крахмала и продолжают титровать до обесцвечивания раствора.

Поправку к титру раствора тиосульфата натрия концентрации 0,1 моль/дм3

 $(0,1 \, H) \, (F)$ вычисляют по формуле

$$F = \frac{m}{V \cdot 0.01269} ,$$

тде m — масса навески йода, Γ ;

V — объем раствора тиосульфата натрия концентрации 0,1 моль/дм³ (0,1,1), израсходованный на титрование, см³;

0,01269 — масса йода, соответствующая 1 см3 раствора тиосульфата натрия кон-

центрации точно 0.1 моль/дм³ (0.1 н).

7.1.7. Приготовление раствора N, N-диметил-п-фенилендиамина сернокислого 50 см³ концентрированной серной кислоты разбавляют 30 см³ дистиллированной воды. После охлаждения раствора добавляют 20,6 г сернокислого N, N-диметил-п-фенилендиамина. Полученный раствор тщательно перемешивают, отбирают 2,5 см³ и добавляют к 100 см³ водного раствора серной кислоты (50 см³ серной кислоты и 50 см³ дистиллированной воды). Полученный раствор используют для анализа.

7.1.8. Приготовление раствора гидроокиси натрия концентрации 2,5 моль/дм3

(2,5 H)

На весах 4-го класса взвешивают 100 г гидроокиси натрия с записью результата до второго десятичного знака, вносят в мерную колбу вместимостью 1000 см³, растворяют в небольшом количестве дистиллированной воды, доводят объем до 1000 см³ дистиллированной водой и перемешивают.

7.1.9. Приготовление раствора гидроокиси натрия, массовой концентрации

2,7 c/d.m3

На весах 4-го класса взвешнвают 2,7 г гидроокиси натрия с записью результата до второго десятичного знака, вносят в мерную колбу вместимостью

1000 см³, растворяют в небольшом количестве дистиллированной воды, доводят объем дистиллированной водой до 1000 см³ и перемещивают.

7.1.10. Приготовление водных растворов соляной кислоты с массовой долей

10 % u 25 %

Раствор готовят разбавлением концентрированной соляной кислоты дистиллированной водой до плотности соответственно 1050 и 1125 кг/м³, определяемой ареометром.

7.1.11. Приготовление водного раствора сернокислого кадмия массовой кон-

центрации 8,6 г/дм3

На весах 4-го класса взвешивают 8,6 г сернокислого кадмия с записью результата до второго десятичного знака, вносят в мерную колбу вместимостью 1000 см³, растворяют в небольшом количестве дистиллированной воды и доводят объем в колбе до 1000 см³ дистиллированной водой.

7.1.12. Приготовление раствора треххлористого железа с массовой долей

10 %

10 г треххлористого железа взвешивают на весах 4-го класса с записью результата до второго десятичного знака и растворяют в 20 см³ дистиллированной воды в мерной колбе вместимостью 100 см³. К раствору добавляют 1 см³ концентрированной серной кислоты и доводят объем в колбе дистиллированной водой до 100 см³.

7.1.13. Подготовка катализатора — сплава никель-алюминий

Для анализа используют порошкообразный сплав никель-алюминий (30— 50 % никеля), предварительно просеянный через сито с диаметром отверстий 0,1 мм и тщательно перемешивают для повышения однородности состава.

В реакционную колбу взвешивают на весах 2-го класса около 0,3 г катали-

затора с записью результата до четвертого десятичного знака.

Катализатор активируют, разлагая его 10 см³ раствора гидроокиси натрия концентрации 2,5 моль/дм³ (2,5 н). При выделении водорода колбу нагревают на водяной бане с температурой 75—80 °C в течение 10 мин. Раствор гидроокиси натрия сливают с катализатора, промывают катализатор дистиллированной водой до отсутствия реакции на щелочь по фенолфталеину, промывают 10 см³ этилового спирта, 10 см³ изопропилового спирта и заливают 10 см³ изопропилового спирта. Все операции по промывке катализатора проводят, не допуская соприкосновения катализатора с воздухом более чем на 10 с.

После этого катализатор в растворе изопропилового спирта используют для

анализа.

Если активированный никель используют для анализа не сразу после приготовления, его хранят в закрытом сосуде под слоем изопропилового спирта из-за его пирофорности.

7.2. Построение градуировочного графика

Для построения градуировочного графика готовят две серин мерных пробирок или цилиндров с пришлифованной пробкой, вместимостью 25 см³.

В первую серию пробирок приливают 0,5; 1,0; 1,5; 2,0; 2,5; 3,0 см³ раствора Б.

Во вторую серию пробирок приливают 0,1; 0,2; 0,3; 0,4 и 0,5 см³ раствора Б. Затем в пробирки приливают по 10 см³ раствора сернокислого кадмия массовой концентрации 8,6 г/дм³ и раствора гидроокиси натрия массовой концентрации 2,7 г/дм³. Затем в каждую пробирку приливают по 0,3 см³ раствора сернокислого N, N-диметил-п-фенилендиамина, приготовленного по п. 7.1. Пробирки закрывают и сильно встряхивают. Сразу же приливают по 0,5 см³ раствора хлористого железа с массовой долей 10 %. Вначале появляется малиново-красное окрашивание, которое затем переходит в сине-голубое (в зависимости от содержания серы) окрашивание различной степени интенсивности. Измеряют оптическую плотность полученных растворов на спектрофотометре, спектроколориметре или фотоколориметре при длине волны 670 нм (для ФЭКа используют красный светофильтр № 8) в кювете с толщиной слоя 1 см для первой серии пробирок и 5 см для второй серии пробирок.

В кювету сравнения помещают те же реактивы, что и в пробирки, за исклю-

чением сульфида натрия.

Градуировочный график строят в координатах оптическая плотность (\mathcal{U}) — содержание серы в микрограммах. Для каждой толщины кюветы строят отдельный график.

8. Проведение испытания

8.1. Определение массовой доли серы в катализаторе Обычно катализатор содержит некоторое количество серы. Поэтому при определении массовой доли серы в маслах при расчетах учитывают содержание массовой доли серы в катализаторе.

Для определения массовой доли серы в катализаторе с использованием установки (черт. 1) реакционную колбу с подготовленным катализатором присоединяют к насадке 5 и пропускают в колбу через воронку 3 азот со скоростью 10—20 пузырьков в минуту. Азот предварительно очищают, пропуская его через склянку, в которую прилиты равные объемы 15—20 см³ растворов сернокислого кадмия массовой концентрации 8,6 г/дм³ и гидроокиси натрия массовой концентрации 2,7 г/дм³.

В поглотительный сосуд 8 наливают по 10 см³ растворов сернокислого кадмия и гидроокиси натрия указанных выше концентраций и сосуд также присоединяют к прибору.

Все шлифы в приборе предварительно смазывают глицерином.

Реакционную колбу нагревают на водяной бане с температурой 75—80°C в течение 35—40 мин для десульфирования пробы.

Через 35—40 мин подачу азота прекращают, перекрывая кран в воронке и вынимают из воронки трубку, подводящую азот.

В воронку приливают 10 см³ раствора соляной кислоты с массовой долей 25 %, присоединяют трубку, подающую азот, открывают кран воронки и под давлением азота вводят кислоту в реакционную колбу. Первые 1—2 см³ кислоты вводят очень осторожно, медленно, по каплям, так как происходит бурное выделение водорода. После введения всего количества кислоты продолжают пропускать газ и нагревать колбу 30—35 мин. Выделяющийся сероводород перегоняется током азота через холодильник в поглотительный сосуд, где он связывается сернокислым кадмием.

Через 30—35 мин поглотительный сосуд отсоединяют от насадки и через алонж вводят в него 0,3 см³ раствора сернокислого N, N-диметил-n-фенилендиамина. Раствор встряхивают, предварительно закрыв сосуд пробкой, и добавляют 0,5 см³ хлористого железа, после чего встряхивают, закрыв алонж пробкой. При этом развивается сине-голубое окрашивание раствора (образуется митиленовый голубой). Алонж и трубку промывают дистиллированной водой 1—2 см³, присоединяя промывные воды к реакционному раствору и доводят его объем в поглотительном сосуде до 25 см³ дистиллированной водой.

Через 5 мин измеряют оптическую плотность раствора на спектрофотометре, спектроколориметре или ФЭКе (при красном светофильтре № 8) при длине волны 670 нм в кювете с толщиной слоя 5 или 1 см в зависимости от интенсивности окраски анализируемого раствора.

В кювету сравнения помещают по 10 см³ растворов сернокислого кадмия массовой концентрации 8,6 г/дм³ и гидроокиси натрия массовой концентрации 2,7 г/дм³, 0,3 см³ раствора N, N-диметил-*n*-фенилендиамина и 0,5 см³ раствора хлористого железа.

Массу серы в навеске в микрограммах находят по градуировочному графику и рассчитывают ее массовую долю в катализаторе.

8.2. Определение массовой доли серы в маслах

В реакционную колбу 1 (черт. 1) с подготовленным катализатором взвешивают на весах 2-го класса с записью результата до четвертого десятичного знака около 0,2—3,0 г анализируемого масла (чтобы предполагаемое содержание серы в пробе не превышало 15 мкг). Колбу присоединяют к насадке 5, пред-

варительно смазав шлифы глицерином, и через воронку 3 пропускают в колбу азот со скоростью 20—30 пузырьков в минуту.

В поглотительный сосуд 8 приливают по 10 см³ растворов сернокислого кадмия массовой концентрации 8,6 г/дм³ и гидроокиси натрия массовой концентрации 2,7 г/дм³, вставляют алонж и присоединяют его к насадке 5.

Содержимое реакционной колбы нагревают, периодически помешивая в токе азота на водяной бане с температурой 75—80°С в течение 35—40 мин для

десульфирования масла.

Через 35—40 мин перекрывают кран воронки и отсоединяют трубку, подающую азот. В воронку помещают 10 см³ водного раствора соляной кислоты с массовой долей 25 %, присоединяют трубку, подающую азот, открывают кран воронки и под давлением азота вливают раствор кислоты в реакционную колбу.

Введение кислоты и последующие операции проводят так же, как описано

в п. 8.1 при определении массы серы в катализаторе.

По градуировочному графику находят соответствующую измеренной оптической плотности массу серы в пробе в микрограммах и далее вычисляют ее массовую долю в масле.

9. Обработка результатов

Массовую долю серы в катализаторе (X_1) в млн $^{-1}$ вычисляют по формуле

$$X_1 = \frac{A_1}{m_1} ,$$

где A_1 — масса серы в анализируемом катализаторе, найденная по градуировочному графику, мкг;

m₁ — масса анализируемого катализатора, г.

Массу серы в навеске катализатора, использованном для анализа масла, (X_2) в мкг, вычисляют по формуле

$$X_2 = X_1 \cdot m_2$$

где X_1 — массовая доля серы в катализаторе, млн $^{-1}$;

 m_2 — масса катализатора, использованного для анализа масла, г.

Массовую долю серы в анализируемом образце масла (X_3) в млн $^{-1}$ вычисляют по формуле

$$X_3 = \frac{A_2 - X_2}{m_2} ,$$

где A_2 — масса серы в анализируемой пробе масла вместе с массой серы, содержащейся в катализаторе, найденная по градуировочному графику, мкг:

 X_2 — масса серы, содержащаяся в катализаторе, использованном для анализа масла, мкг;

 m_3 — масса анализируемого масла, г.

Результаты определения вычисляют до первого десятичного знака с последующим округлением до целых чисел.

За результат измерения принимают среднее арифметическое двух параллельных определений.

Прил. 1—5 (Введены дополнительно, Изм. № 2).

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. РАЗРАБОТАН И ВНЕСЕН Министерством пищевой промышленности СССР

ИСПОЛНИТЕЛИ

- А. Б. Белова, М. Г. Григорьева
- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета стандартов Совета Министров СССР от 04.08.77 № 1916
- 3. Взамен ГОСТ 8988-59
- 4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер пункта, приложения
OCT 84—76	Приложение 5
OCT 1770—74	Приложение 4, 5
OCT 2053—77	Приложение 5
OCT 3022 —80	Приложение 4
OCT 3118—77	Приложение 5
OCT 3273—75	Приложение 4
OCT 4147—74	Приложение 5
OCT 4159—79	<u>Приложение 5</u>
OCT 4207—75	Π риложен не 5
OCT 4232—74	Приложение 5
OCT 4328—77	Приложение 5
OCT 4456—75	Приложение 5
OCT 5471—83	3.1, 4.1, приложение 5
OCT 547250	4.2.
OCT 5475—69	4.9
OCT 5476—80	4.5
OCT 547769	4.4
OCT 5478—64	4.12
OCT 5479—64	4.10 4.8
OCT 5480—59 OCT 5481—66	4.0 4.7
OCT 6247—79	5.1
OCT 6709—72	Приложение 5
OCT 6824—76	Приложение 4
OCT 6995—77	Приложение 4
OCT 732882	Приложение 5
OCT 7824—80	4.14
OCT 8677—76	Приложение 4
OCT 9218—86	5.1
OCT 9287—59	4.11
OCT 9293—74	Приложение 4, 5
OCT 10163—76	Приложение 5
OCT 10583—76	2.2.

Обозначение НТД, на который дана ссылка	Номер пункта, подпункта, приложения			
ΓΟCT 10674—82 ΓΟCT 11812—66 ΓΟCT 12026—76 ΓΟCT 13950—84 ΓΟCT 14919—83 ΓΟCT 15846—79 ΓΟCT 16590—81 ΓΟCT 17433—80 ΓΟCT 18481—81 ΓΟCT 19433—81 ΓΟCT 20292—74 ΓΟCT 24104—80 ΓΟCT 25706—83	5.1 4.6 Приложение 4 5.1 Приложение 5 5.3 Приложение 4 Приложение 5 Приложение 5 1.4 Приложение 5 5.4 Приложение 4, 5 Приложение 4, 5 Приложение 4, 5 Приложение 4, 5			

- 5. Срок действия продлен до 01.01.92 Постановлением Госстандарта СССР от 18.08.87 № 3321
- 6. Переиздание (ноябрь 1987 г.) с изменениями № 1, 2, утвержденными в декабре 1982 г., июле 1987 г. (ИУС 4—83, 12—87)

Редактор Т. В. Смыка Технический редактор Л. Я. Митрофанова Корректор А. В. Прокофьева

Сдано в наб. 16.10.87 Подп. в печ. 20.01.88 1,5 усл. п. л. 1,5 усл. кр.-отт. 1,62 уч.-изд л. **Тир. 3000 Цена** 10 коп.

н. пищевые и вкусовые пролукты

Tpynna H62

Изменение № 3 ГОСТ 8988—77 Масло рапсовое. Технические условия

Утверждено и введено в действие Постановлением Госстандарта России от 27.03.92 № 277

Дата введения 01.07.92

Вводную часть дополнить абзацем: «Требования настоящего стандарта являются обязательными».

Пункт 2.2. Исключить слова: «отвечающих требованиям Министерства здравоохранения СССР по остаточному количеству хлорорганических пестицидов

(см. справочное приложение 1)»;

дополнить абзацами: «Содержание токсичных элементов, пестицидов и микотоксинов в масле семян рапса, предназначенных для-переработки на пищевые продукты, не должно превышать допустимые уровни, установленные в Медико-биологических требованиях и санитарных нормах качества продовольственного сырья и пищевых продуктов, утвержденных 01.08.89 № 5061—89.

По согласованию с потребителем допускается использовать для промышленной переработки на пищевые продукты семена рапса с массовой долей эру-

ковой кислоты не более 50 % (к сумме жирных кислот)». Пункт 2.4. Таблица 2. Исключить показатели «Число омыления», «Йодное число», «Массовая доля неомыляемых веществ», «Массовая доля серы» и относящиеся к ним нормы и нормы показателя «Массовая доля фосфоросодержащих веществ» для нерафинированного масла.

Раздел 2 дополнить пунктами — 2.4a, 2.5a: «2.4a. Нормы показателей «Число омыления», «Йодное число», «Массовая доля неомыляемых веществ» и «Массовая доля фосфоросодержащих веществ» приведены в приложении 26, нормы

показателя «Массовая доля серы» приведены в приложении 3.

2.5а. По согласованию с потребителем допускается использовать для нереработки на пищевые продукты масло с массовой долей эруковой кислоты не более 50 %».

Пункты 2.6, 4.7. Заменить ссылку: ГОСТ 5481-66 на ГОСТ 5481-89.

Пункт 2.7 изложить в новой редакции: «2.7. Содержание токсичных элементов, пестицидов и микотоксинов в рапсовом масле, предназначенном для нереработки на пищевые продукты, не должны превышать допустимые уровни, установленные в Медико-биологических требованиях и санитарных нормах качества продовольственного сырья и пищевых продуктов, утвержденных 01.08.89 № 5061-89 (см. приложение 2 и 2а)».

Пункт 2.8 исключить.

Раздел 3 дополнить пунктом — 3.1a: «3.1a. В документе о качестве ражсевого масла, направляемого для переработки на пищевые продукты, необходиме указывать значение массовой доли эруковой кислоты (результат непосредственного определения эруковой кислоты в отгружаемой партии рапсового масла или данные сертификата на поставляемые семена рапса)».

Пункты 3.2, 3.3 изложить в новой редакции: «З 2. Массовую долю эруковой кислоты изготовитель определяет периодически не реже одного раза в месям. В каждой партии этот показатель указывают на основании сергификата на семе-

на рапса (по анализу масла в семенах).

3.3. Контроль за содержанием токсичных элементов, пестицидов, микотоксинов осуществляется в соответствии с порядком, установленным производитеязи продукции по согласованию с органами государственного санитарного надзора и гаречтирующим безопасность продукции».

Пункт 4.1 дополнить абзацем: «Подготовка проб для определения тексич-

ности элементов — по ГОСТ 26929—86».

Пункт 4.13 изложить в новой редакции: «4.13. Содержание пестицидов и микотоксинов определяют по методам, утвержденным Министерством эдоавоохранения СССР».

(Продолжение см. с. 167)

Раздел 4 дополнить пунктом — 4.17: **«**4.17. Определение токсичных элементов — по ГОСТ 26929—86, ГОСТ 26928—86, ГОСТ 26930—86, ГОСТ 26931—**66.** ГОСТ 26932—86, ГОСТ 26933—86, ГОСТ 26934—86».

Пункт 5.4 дополнить абзацем (после третьего): «Массовая доля эруковой кислоты (для масла отгружаемого для переработки на пищевые продукты)»;

последний абзац исключить.

Стандарт дополнить разделом — 5а:

«5а. Указание по применению

Рапсовое масло с массовой долей эруковой кислоты не более 50 % при переработке на пищевые продукты должно использоваться в смесях с другими растительными маслами. При этом предприятие-изготовитель гарантирует массовую долю эруковой кислоты не более 5 % в смеси растительных масел или в жировой основе готового продукта».

Приложение 1. Таблица. Графу «Наименование пестицида» изложить в во-

вой редакции:

Наименование нестицида

ГХЦГ гамма-изомер Гептахлор ДДТ

Приложение 2. Таблица. Графы «Наименование пестицида», «Максимально допустимые уровни, млн⁻¹ (мг/кг)» изложить в новой редакции:

Наименование пестицида	Максимально допустимые удовни, млн (мг/кг)
ГХЦГ гамма-изомер	1,0
Гептахлор	Не допускается
ДДТ	0,25

Стандарт дополнить приложениями — 2a, 26:

ПРИЛОЖЕ**НИЕ 2a** Справочное

Допустимые уровни содержания токсичных влементов и микотоксичев в растительных маслах, утвержденные Министерством здравоохранения СССР

		Допусчимые уровни, мг/п, не более					
Нанменовачее про- дута	Свинев,	Кадмый	Pryvas	Megs	Железо, щини	Алаток - сын В ₁	Seapa- лен оя
Растительные масла	0,1	0,95	0,03	₿.5	5,0	0,005	1,0

(Продолжение см. с. 168)

(Продолжение изменения к ГОСТ 8988—77) ПРИЛОЖЕНИЕ 26 Справочное

	Норма для масла				
		нерафинированного			
Наименование по: азателя	рафинированно- го недезодориро- ван ого	перв о го сорта	ьторого сорта		
Число омыления, мг/КОН/г: масла с массовой долей эруковой кислоты, не более 5 % масла с массовой долей эруковой кислоты более 5 % Йодное число, гЈ ₂ /100 г: масла с массовой долей эруковой кислоты, не более 5 % масла с массовой долей эруковой кислоты более 5 % масла с массовой долей эруковой кислоты более 5 %	179—200 165—180 108—118 94—106				
Массовая доля неомыляемых веществ, % Масовая доля фосфоросодержащих	1,2	1,5	1,5		
воществ в пересчете на стеароолеоле- цитин, %, не более		2,0	2,0		

Приложение 4. Раздел 3. Заменить ссылку: ГОСТ 16590—71 на «ГОСТ 28498—90 и нормативно-технической документации».

(ИУС № 6 1992 г.)