

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

масло кукурузное

ТЕХНИЧЕСКИЕ УСЛОВИЯ

FOCT 8808-91

Издание официальное

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

МАСЛО КУКУРУЗНОЕ

Технические условия

Maize oil. Specifications

FOCT 8808-91

OKI 91 4192

Дата введения 01.07.92

Настоящий стандарт распространяется на кукурузное масло, вырабатываемое прессованием или экстракцией зародышей кукурузы.

Требования настоящего стандарта являются обязательными.

1. ВИДЫ

1.1. Кукурузное масло в зависимости от способа обработки и показателей качества подразделяют на виды и марки, указанные в табл. 1.

Таблица 1

Вид масла	Марка	Код ОКП
Масло кукурузное нерафигированное масло кукурузное рафицированное недезодорированное дезодорированное масло кукурузное рафицированное дезодорированное рафинированное дезодорированное	— — Д п	91 4162 1000 91 4162 3000 91 4163 91 4162 5000

1.2. Для производства продуктов детского и диетического питания предназначается рафинированное дезодорированное кукурузное масло марки Д.

Издание официальное

© Издательство стандартов, 1991

Настоящий стандарт не может быть полностью или частично ьоспроизведен, тиражирован и распространен без разрешения Госстандарта СССР

1.3. Для поставки в торговую сеть и на предприятия общественного питания предназначается рафинированное дезодорированное масло марки П.

2. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

- 2.1. Кукурузное масло должно вырабатываться в соответствии требованиями настоящего стандарта по технологическим инструкциям, утвержденным в установленном порядке.
 - 2.2. Характеристики
- 2.2.1. По органолептическим показателям кукурузное масло должно соответствовать требованиям, указанным в табл. 2.

Таблица 2

	Xaı	рактеристика кукурузного	масла
Наимено-	рафинир	ованного	
вание показателя	дезодорированнего марок Д и П	исдезодорированного	нерафинированного
Прозрач- ность	Прозрачное	е б±з осадка	Над осадком допус- кается легкое помут
Запах и вкус	обезличенного масла	Свойственные рафини- рованному кукурузно- му маслу, без пос- тороннего запаха, привкуса и горечи	

2.2.2. По физико-химическим показателям кукурузное масло должно удовлетворить требованиям, указанным в табл. 3.

Таблица 3

		Норма	кукурузного ма	сла
		рафинирова	нного	
Нинменование показателя		рованного рки	недезодори»	нерафиниро- ванного
	д	п	рованного	
Цветное число, мг йода, не более	18	20	20	100
Кислотное число, мг КОН/г, не более	0,35	0,4	0,4	5,0

		Норма кук	урузного масла	
		рафинирова	нного	
Намменование показателя	дезодорнј мај	ованного оки	недезодори-	нерафиниро- ванного
	Д	п	рованного	
Массовая доля фосфоросо- держащих веществ, %, не бо- лее, в пересчеге:				
на стеароолеолецитин на Р ₂ О ₅	0,0 0,0		0,05 0,005	1,0 0,096
Массовая доля влаги и ле- тучих веществ, %, не болсе Массовая доля нежировых	0,	10	0,10	0,20
примесей, %, че более Мыло (качественная проба)		тсутст: теутсі:		0,10 Не нормирует- ся
Температура вспышки экстракционного масла, °С, не ниже Перекисное число ммоль/кг,	2:	34	225	225
$\frac{1}{2}$ О, не более	1	0		
Массовая доля неомыляемых веществ, %, не более	1	.0,	1,0	2,0

Примечания:

- 1. По согласованию с нотребителем допускается вырабатывать нерафинированное кукурузное масло с кислотным числом не более 8 мг КОН/г для выработки рафинированного дезодорированного кукурузного масла марки П, а также нерафинированное кукурузное масло с превышенным кислотным числом поставлять для технических целей.
- 2. Норма показателя «Перекисное число» кукурузного рафинированного дезодорированного масла марки П устанавливается с 01 01.93. Определение показателя обязательно для някопления статистических данных.
- 2.2.3. Содержание токсичных элементов, пестицидов и мико токсинов в рафинированном дезодорированном кукурузном масле марок Д и П не должно превышать допустимые уровни, установленные медико-биологическими требованиями и санитарными нормами качества продовольственного сырья и пищевых продуктов Министерства здравоохранения СССР.
- 2.2.4. Содержание микробиологических показателей в рафинированном дезодорированном кукурузном масле марки Д не должно превышать допустимые уровни, установленные медико-биологическими нормами качества продовольственного сырья и пищевых продуктов Министерства здравоохранения СССР.

- 2.2.5. Нормы показателя «йодное число» приведены в приложении 1.
 - 2.3. Требования к сырью
- 2.3.1. Нерафинированное кукурузное масло должно вырабатысаться из кукурузных зародышей, полученных в крахмало-паточном или мукомольно-крупяном производстве и соответствующих нормативно-технической документации.

Рафинированное дезодорированное масло должно вырабатываться из нерафинированного масла.

- 2.3.2. Содержание пестицидов в масле кукурузного зародыша, а также в нерафинированном масле, предназначенном для выработки рафинированного дезодорированного масла марки П, не должно превышать допустимые уровни, установленные медикобиологическими требованиями и санитарными нормами качества продовольственного сырья и пищевых продуктов Министерства здравоохранения СССР для масел для промышленной переработки (см. приложение 2).
- 2.3.3. Содержание пестицидов в масле кукурузного зародыша, а также в нерафинированном масле, предназначенном для выработки рафинированного дезодорированного масла марки Д, не должно превышать допустимые уровни, установленные медикобиологическими требованиями и санитарными нормами качества продовольственного сырья и пищевых продуктов Министерства здравоохранения СССР для масел, предназначенных для непосредственного употребления в пищу (см. приложение 2).
- 2.3.4. Содержание токсичных элементов (приложение 3) и зеараленон в масле кукурузного зародыша, а также в нерафинированном масле, предназначенном для выработки рафинированного дезодорированного масла марок Д и П, не должны превышать допустимые уровни, установленные медико-биологическими требованиями и санитарными нормами качества продовольственного сырья и пищевых продуктов Министерства здравоохранения СССР.
- 2.3.5. Для выработки рафинированного дезодорированного масла марки Д должно использоваться нерафинированное масло с кислотным числом не более 5 мг КОН/г.
- 2.3.6. Афлатоксин В₁ в кукурузном зародыше и в перафинированном масле не допускается.
 - 2.4. Упаковка и розлив
- 2.4.1. Кукурузное масло выпускают фасованным и нефасованным.

Рафинированное дезодорированное кукурузное масло для розничной торговли выпускают в фасованном виде.

2.4.2. Рафинированное дезодорированное кукурузное масло фасуют:

массой нетто 500 н 700 г в стеклянные бутылки по ГОСТ 10117, типов IX и XVI;

массой нетто 470, 575 и 1000 г в бутылки из окрашенных полимерных материалов, разрешенных к применению Минздравом СССР.

Допускаемые отклонения от массы нетто в граммах.

 ± 10 при фасовании 1000 г;

 ± 5 » от 470 до 750 г включ.

2.4.3. Бутылка с кукурузным маслом должна быть герметически укупорена капсулой из картона по ГОСТ 9347 или алюминиевым колпачком для укупоривания бутылок с пищевыми жидкостями из алюминиевой фольги по ГОСТ 745 с картонной уплотнительной прокладкой с целлофанированным покрытием.

Картонные колпачки должны быть вместе с горлышком бутылки обтянуты плотно прилегающим целлулоидным или вискозным колпачком.

2.4.4. Бутылки с кукурузным маслом упаковывают в деревянные многооборотные ящики по ГОСТ 18575 и полимерные многооборотные ящики.

Допускается упаковывание бутылок из полимерного материала в ящики из гофрированного картона по ГОСТ 13516

Для местных перевозок допускается упаковывание бутылок в ящики проволочные и металлические многооборотные, а также в тару — оборудование по ГОСТ 24831.

2.4.5. Рафинированное дезодорированное кукурузное масло также разливают в алюминиевые фляги по ГОСТ 5037 с уплотняющими кольцами из жиростойкой резины по ГОСТ 17133 и других материалов, разрешенных Минздравом СССР, и в автоцистерны по ГОСТ 9218 с плотно закрывающимися люками.

По согласованию с потребителем допускается разливать рафинированное дезодорированное кукурузное масло в стальные бочки по ГОСТ 13950 вместимостью 100 и 200 дм³ неоцинкованные или с покрытием внутренних поверхностей, разрешенным Минздравом СССР.

- 2.4.6. Рафинированное недезодорированное и нерафинированное кукурузное масло разливают в железнодорожные цистерны по ГОСТ 10674 с нижним сливом, специализированные для перевозок растительных масел и снабженные трафаретами и надписями в соответствии с правилами перевозок грузов, а также в автоцистерны по ГОСТ 9218.
- 2.4.7. Кукурузное масло, предназначенное для районов Крайнего Севера и приравненных к ним районов, должны упаковываться по ГОСТ 15846.
- 2.4.8. Тара, применяемая для розлива кукурузного масла, и транспортные средства (железнодорожные и автомобильные цистерны) должны быть чистыми, сухими и не иметь посторонних запахов.

Тара и транспортные средства, применяемые для временного хранения и для транспортирования рафинированного дезодорированного кукурузного масла, должны быть тщательно зачищены от остатков хранившегося в ней масла, пропарены, вымыты и высушены.

- 2.5. Маркировка
- 2.5.1. На каждую бутылку с кукурузным маслом должна быть наклеена красочно оформленная этикетка, на которую наносят маркировку, содержащую:

товарный знак, наименование предприятия-изготовителя и его подчиненность;

наименование продукции;

массу нетто;

дату розлива и срок хранения;

калорийность 100 г продукта — 899 ккал;

обозначение настоящего стандарта.

Дату розлива кукурузного масла проставляют компостером или штампом на этикетке, тиснением на колпачке или любым другим способом, обеспечивающим четкое ее обозначение.

2.5.2. На каждую упаковочную единицу с маслом дополнительно наносят маркировку, характеризующую продукцию:

товарный знак, наименование предприятия-изготовителя, его адрес и подчиненность;

наименование продукции, ее вид и марку;

массу нетто единицы фасования и количество единиц фасования в упаковочной единице для фасованного масла или массу нетто для нефасованного масла:

дату налива для бочек и фляг или дату розлива для бутылок; обозначение настоящего стандарта.

При упаковывании бутылок с маслом в открытые ящики маркирование ящиков не проводится.

Кукурузное масло не подлежит классификации по ГОСТ 19433. 2.5.3. Маркировку транспортной тары наносят по ГОСТ 14192.

3. ПРИЕМКА

3.1. Правила приемки — по ГОСТ 5471.

3.2. Контроль содержания пестицидов проводят в установленном порядке, согласованным с Министерством здравоохранения СССР или утвержденным им.

Допустимые уровни микотоксинов определяют не реже одного раза в месяц, массовую долю неомыляемых веществ— не реже одного раза в 10 дней.

3.3. Допустимые уровни токсичных элементов, афлатоксина B_1 и микробиологические показатели определяют в соответствии с

порядком, утвержденным или согласованным с Министерством здравоохранения СССР.

4. МЕТОДЫ ИСПЫТАНИЙ

- 4.1. Метод отбора проб по ГОСТ 5471.
- 4.2. Подготовка проб для определения токсичных элементов по ГОСТ 26929.
 - 4.3. Определение прозрачности и запаха по ГОСТ 5472.
 - 4.4. Определение вкуса органолептически.
 - 4.5. Определение цветного числа по ГОСТ 5477.
 - 4.6. Определение кислотного числа по ГОСТ 5476.
- 4.7. Определение массовой доли фосфоросодержащих веществ по ГОСТ 7824.
- 4.8. Определение массовой доли влаги и летучих веществ по I OCT 11812.
- 4.9. Определение массовой доли нежировых примесей по ГОСТ 5481.
- 4.10. Определение мыла по качественной пробе по ГОСТ 5480.
- 4.11. Определение температуры вспышки экстракционного масла по ГОСТ 9287.
- 4.12. Содержание пестицидов и афлатоксина В₁ определяют по методам, утвержденным Министерством здравоохранения СССР.
 - 4.13. Определение перекисного числа по ГОСТ 26593.
- 4.14. Определение массовой доли неомыляемых веществ по ГОСТ 5479.
 - 4.15. Определение ртути по ГОСТ 26927.
 - 4.16. Определение железа по ГОСТ 26928.
 - 4.17. Определение мышьяка по ГОСТ 26930.
 - 4.18. Определение меди -- по ГОСТ 26931.
 - 4.19. Определение свинца по ГОСТ 26932.
 - 4.20. Определение кадмия по ГОСТ 26933.
 - 4.21. Определение цинка по ГОСТ 26934.
- 4.22. Определение микроорганизмов по ГОСТ 9225, ГОСТ 26668, ГОСТ 26669 и ГОСТ 10444.12.
 - 4.23. Определение микотоксинов по приложению 4.

5. ТРАНСПОРТИРОВАНИЕ И ХРАРЕНИЕ

5.1. Кукурузное масло транспортируют всеми видами транспорта в крытых транспортных средствах в соответствии с правилами перевозок грузов, действующими на соответствующем виде транспорта.

Допускается транспортировать открытым автотранспортом ящики с фасованным кукурузным маслом с общим укрытнем от атмосферных осадков и от солнечных лучей.

- 5.2. Транспортирование ящиков с фасованным кукурузным маслом пакетами должно проводиться в соответствии с требованиями ГОСТ 21650, ГОСТ 22477, ГОСТ 23285, ГОСТ 24597 и ГОСТ 26663.
- 5.3. Кукурузное масло до налива в железнодорожные и автоцистерны, а также во фляги и бочки или до розлива в бутылки должно храниться в закрытых баках.
- 5.4. Кукурузное масло в бутылках должно храниться в закрытых затемненных помещениях, во флягах и бочках—в закрытых помещениях.

6. ГАРАНТИИ ИЗГОТОВИТЕЛЯ

6.1. Изготовитель гарантирует соответствие кукурузного масла требованиям настоящего стандарта при соблюдении условий транспортирования и хранения.

Гарантийный срок хранения фасованного в бутылки рафинированного дезодорированного кукурузного масла со дня розлива — 4 мес.

Допускается реализация по истечении гарантийного срока хранения. Перед реализацией масло должно быть проверено на соответствие требованиям настоящего стандарта.

ПРИЛОЖЕНИЕ 1 Справочное

НОРМА ПОКАЗАТЕЛЯ «ЙОДНОЕ ЧИСЛО» В КУКУРУЗНОМ МАСЛЕ

Таблица 4

		Норма для	масла
Наименование	раф инированного		
показателя	дезодориро- ванного	недезодори- рованного	нерафинчрованного
Иодное число мг I ₂ /100 г	11!-	-133	

Определение йодного числа по методу Кауфмана - по ГОСТ 5475.

ПРИЛОЖЕНИЕ 2 Справочное

ДОПУСТИМЫЕ УРОВНИ

содержания хлорорганических пестицидов в растительных маслах различного назначения, утвержденные Минздравом СССР 01.08.89, № 5061—89

Таблица 5

	Максим	ально допустчмы й млн ^{—1} мг/кг для	
Наименование пестицида	детского и дистического питания (ра- финированное дезодорирован- ное марки Д)	непосредствен- ного употреб- лския в пищу (рафинирован- ное дезолори- ровангое марки П)	промышленной переработки
ГХЦГ (сумма изомеров) ГПХ (эпоксид гептахлора)	0,0	05 Не допускается	1,00
ДДТ (сумма изомеров и метаболитов)	0,1	10	0,25

ПРИЛОЖЕНИЕ **3** Справочное

допустимые уровни

содержания тяжелых металлов и мышьяка в растительных маслах, утвержденные Министерством здравоохранения СССР 01.08.89, № 5061—89

Таблица 6

		3	лементы мі	/кг	
Наименование продукта	Свипец, мышьяк	Кадмий	Ртуть	Медь	Железо, цин к
Растительные масла	0,1	0,05	0.03	0,5	5,0

ПРИЛОЖЕНИЕ **4** Обязательное

ОПРЕДЕЛЕНИЕ МИКОТОКСИНОВ (по биотесту с инфузориями)

Метод предназначен для определения микотоксинов в растительных маслах в условиях заводских лабораторий и при проведении научных исследований.

Метод основан на реакции инфузорий тетрахимена пирифермис на наличие в экстракте из масла токсинов, синтезируемых мисцеллиальными грибами при их развитии на используемом сырье.

1. Отбор проб — по ГОСТ 5471.

2. АППАРАТУРА, РЕАКТИВЫ, МАТЕРИАЛЫ

Весы лабораторные равноплечие по ГОСТ 24104, 3-го класса точности и наибольшим пределом взвешивания 1 кг или другие весы с анадогичными метрологическими характеристиками.

Микроскоп с 7-8-кратным увеличением МБР-1, МБИ-1, МБИ-11, МБИ-15

и другие с аналогичными характеристиками.

рН-метры лабораторные (иономеры) с пределом измерений 0—14 единицерН и ценой деления шкалы 0,05 единицерН, снабженные стеклянными или клорсеребряными электродами.

Воронки делительные ВД-1-500 ХС по ГОСТ 25336

Колбы плоскодонные П-1—250, П-2—250, П-1—500, П-2—500, П-1—1000, П-2—1000 или колбы конические $K_{\rm H}$ -1—250—34, $K_{\rm H}$ -2—250—34, $K_{\rm H}$ -2—500—34, $K_{\rm H}$ -1—500—40, $K_{\rm H}$ -1—500—50, $K_{\rm H}$ -2—500—34, $K_{\rm H}$ -2—500—40, $K_{\rm H}$ -2—500—12 по ГОСТ 25336.

Цилиндры мерные 1-2-50, 1-3-50, 1-4-50 и 1-2-250, 1-3-250, 1—4—250 по ГОСТ 1770.

Чашки Петри (биологические) ЧБН по ГОСТ 25336.

Пипетки градуированные 4—1—1. 5—1—1, 4—1—2, 5—1—2 по ГОСТ 20292. Пробирки $\Pi 1 - 14 - 120$, $\Pi 1 - 16 - 150$, $\Pi 2 - 14 - 100$, $\Pi 2 - 16 - 150$, $\Pi 2 - 16 - 180$ тю ГОСТ 25336.

Стекло часовое.

Палочки стеклянные с оплавленными концами, длиной 10-15 см, диаметром 0,3-0,5 см.

Автоклав

Спиртовка.

Спирт этиловый технический по ГОСТ 17299 или спирт этиловый ректификованный технический по ГОСТ 18300, раствор с массовой долей 30%.

Эфир петролейный.

Эфир медицинский по Госфармакорее, ст. 34 или эфир этиловый очищенный.

Вода дистиллированная — по ГОСТ 6709.

Пептон по ГОСТ 13805.

Дрожжевой экстракт.

Глюкоза по ГОСТ 6038.

Натрий хлористый по ГОСТ 4233.

Культура инфузорий тетрахимена пириформис.

3. ПОДГОТОВКА К ИСПЫТАНИЮ

- 3.1. Получение водно-спиртовых экстрактов из масла На весах взвешивают в колбе вместимостью 250 см³ около 50 г масла, записывают результат до второго десятичного знака, добавляют 125 см³ нетролейного эфира, переменивают и раствор сливают в делительную воронку. тем в колбу приливают 50 см³ раствора этилового спирта и проводят экстракцию встряхиванием. После разделения слоев водно-спиртовой экстракт сливают в колбу вместимостью 250 см3, к раствору масла в делительной воронке вновь добавляют 50 см³ раствора этилового спирта и экстракцию повторяют. Операцию экстракции проводят пять раз. Экстракты объединяют и определяют объем. Соотношение (навеска: раствор этилового спирта) должко составлять 1:5.
 - 3.2. Приготовление пептонной среды

Пептонную среду для выращивания инфузорий (рН 7,1) готовят по следующей рецептуре:

-2.0 г: пептон дрожжевой экстракт -0.1 r; -0.5 r;глюкоза хлористый натрий -0.1 r; -100 cm^3 . дистиллированная вода

Стерилизацию воды и среды проводят в течение 20 мин при давлении 0.06 мПа (0.6 атм.) в автоклаве.

3.3. Поддержание жизнедеятельности культуры

зорий тетрахимена пириформис

Для поддержания жизнедеятельности культуру инфузорий ежемесячно пересенвают на свежую пептонную среду. Пересев осуществляют в стерильных условиях.

В стеклянную пробирку, края которой стерилизуют непосредственно перед пересевом в пламени спиртовки, приливают 4 см3 пептонной среды, приготовленной, как указано в п. 3.2, и вносят 0,2 см³ культуры инфузорий стерильной пипеткой. Пипетку предварительно обжигают в пламени спиртовки, не допуская ее нагрева, так как инфузории очень чувствительны к температуре и гибнут при температуре выше 28 С.

Пробирку закрывают стерильной пробьой над пламенем спиртовки и хра-

нят при температуре (20±2) °C в темноте.

4. ПРОВЕДЕНИЕ ИСПЫТАНИЯ

На часовое стекло пипеткой наносят 0,04 см³ приготовленного водно спиртового экстракта из масла и после полного испарения водно-спиртового раствора на то же место наносят 0,04 см³ стерильной воды. Оставшиеся на часовом стекле после испарения водного раствора спирта вещества тщательно растирают с водой оплавленным концом стеклянной палочки; в иолученную среду вносят 0,02 см³ культуры инфузорий. Количество особей должно составлять около 8×10^5 в 1 см³.

Часовое стекло с инфузориями помещают на предметный столик микооскопа и наблюдения ведут при 7—8-кратном увеличении микроскопа в течение суток, отмечая поведение инфузорий через 3 мин, 20 мин, 2 ч и 24 ч.

В промежутках между наблюдениями часовое стекло с инфузориями помещают в чашку Петри с фильтровальной бумагой, смоченной водой, и хра-

нят при температуре $(20\pm2)^{\circ}$ С.

При наблюдении отмечают появление различных дегелеративных форм (особей с несколькими выпячиваниями протоплазмы, возникновение кеглеобразных и шарообразных клегок и вытекание протоплазмы) и изменение характера движения.

5. ОБРАБОТКА РЕЗУЛЬТАТОВ

При наличии микотоксинов инфузории вначале начинают двигаться зигзагообразно, затем по кругу, постоянно их движение замедляется, затем они останавливаются, изменяется форма клетки и наступает ее распад.

Отсутствие микотоксинов в пробе устанавливают по сохранению жизне-

деятельности всех инфузорий через 24 ч.

Для сравнения ставят контрольную пробу: на часовое стекло наносят 0,04 см³ водного раствора этилового спирта. После его испарения наносят капельку воды с культурой инфузорий.

ИНФОРМАЦИОННЫЕ ДАННЫЕ

- 1. РАЗРАБОТАН И ВНЕСЕН НПО «МАСЛОЖИРПРОМ» РАЗРАБОТЧИКИ
 - А. Б. Белова, канд. техн. наук; М. А. Великоростова
- 2. УТВЕРЖДЕН И ВНЕСЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по управлению качеством продукции и стандартам от 12.07.91 № 1251
- 3. Срок проверки II кв. 1997 г., периодичность проверки 5 лет
- 4. B3AMEH ΓΟCT 8808-73
- 5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер пункта, приложения
OCT 745—79	2.4.3
OCT 1770—74	Приложение 4
OCT 4233—77	Приложение 4
CT 5037—78	2.4.5
CT 5471—83	4.1, Приложение 4
CT 5472—50	4.2
CT 5475—69	Приложение 1
CT 5476—80	4.6
CT 5477—69	4.5
CT 5479—64	4.14
CT 5480—59	4.10
CT 5481—89	4.9
CT 6038—79	Приложение 4
CT 6709—72	Приложение 4
T 7824—80	4.7
CT 9218—86	2.4 5, 2.4.6
CT 9225-84	4.22
CT 9287—59	4.11
T 934774	2.4.3
T 10117—80	2.4.2
CT 10444.12—88	4.22
CT 10674—82	2.4.6
CT 11812—66	4.8
CT 13516—86	<u>2.4.4</u>
T 13805—76	Приложение 4
T 13950 84	2.4.5
CT 14192-77	2.5.3
T 15846—79	2.4.7
CT 17133—83	2.4.5

Обозначение НТД, на который дана ссылка	Номер пункта, приложения
ΓΟCT 17299—78	Приложение 4
TOCT 18300—87	Приложение 4
ΓΟCT 18575—81	2.4.4
ΓΟCT 19433—88	2,5.2
ΓΟCT 20292—74	Приложение 4
ΓΟCT 21650—76	$5.\mathbf{\hat{2}}$
ΓΟCT 22477—77	5.2
FOCT 23285—78	5.2
ΓOCT 24104—88	Приложение 4
ΓOCT 24597—81	$5.\hat{2}$
ΓOCT 24831—81	2.4.4
TOCT 25336—82	Приложение 4
TOCT 26593—85	4.13
ΓOCT 26663—85	5.2
TOCT 26668—85	4.22
FOCT 26669—85	4.22
FOCT 26927—86	4.15
ΓOCT 26928—86	4.16
TOCT 26929—86	4.2
FOCT 26930—86	4.17
ГОСТ 26931—86	4.18
FOCT 26932—86	4.19
TOCT 26933—86	4.20
ГОСТ 26934—86	4 21

Редактор Т. И. Василенко Технический редактор О. Н. Никитина Корректор В. С. Черная

Сдано в наб. 13.08.91 Подп. в печ. 28.11.91 1,0 усл. п. л. 1,0 усл. кр.-отт. 0,90 уч.-изд. л. Тир. 1200 экз. Цена 27 р. 20 к.

Ордена «Знак Почета» Издателоство стандартов, 123557, Москва ГСП, Новопресненский пер., 3 Тип. «Московский печатник». Москва, Лялин пер., 6. Зак. 556