

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ГОСУДАРСТВЕННАЯ СИСТЕМА ОБЕСПЕЧЕНИЯ ЕДИНСТВА ИЗМЕРЕНИЙ

ТЕРМОПРЕОБРАЗОВАТЕЛИ ТЕХНИЧЕСКИХ ТЕРМОЭЛЕКТРИЧЕСКИХ ТЕРМОМЕТРОВ

МЕТОДЫ И СРЕДСТВА ПОВЕРКИ

ГОСТ 8.338—78 (СТ СЭВ 1060—78)

Издание официальное

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР ПО СТАНДАРТАМ
Москва

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА CCP

Государственная система обеспечения единства измерений ТЕРМОПРЕОБРАЗОВАТЕЛИ ТЕХНИЧЕСКИХ

ТЕРМОЭЛЕКТРИЧЕСКИХ ТЕРМОМЕТРОВ Методы и средства поверки

State system for ensuring the uniformity of measurements. Thermal converters of industrial thermocouple thermometers. Methods and means of verification

ГОСТ 8.338-78* [CT C3B 1060-78]

Взамен Инструкции 163—62

OKCTY 0008

Постановлением Государственного комитета СССР по стандартам от 29 декабря 1978 г. № 3583 срок введения установлен

c 01.01.80

Настоящий стандарт распространяется на термопреобразователи технических термоэлектрических термометров (далее термопреобразователи) по ГОСТ 6616—74 с номинальной статической характеристикой по ГОСТ 3044—77, с погружаемой частью не менее 250 мм, предназначенные для измерения температуры в диапазоне от 0 до 1800°C, и устанавливает методы и средства их первичной и периодической поверок.

Стандарт соответствует СТ СЭВ 1060—78 в части поверки термопреобразователей технических термоэлектрических термометров в диапазоне температур 0—1800°С (см. справочное приложение 6). (Измененная редакция, Изм. № 1).

1. ОПЕРАЦИИ ПОВЕРКИ

1.1. При проведении поверки должны быть выполнены операции, указанные в табл. 1а.

Издание официальное

Перепечатка воспрещена

^{*} Переиздание (август 1984 г.) с Изменением № 1, утвержденным в апреле 1984 г. (ИУС 7-84).

Таблица 1а

		Обязателы	ность проведени	я операции лри	
Наименование операции	Номер пункта стандарта	вынуске из производства*	выпуске лосле ремонта	эксплуатации и хранении	
Внешний осмотр Проверка электрической прочности и сопро-	5.1	Да	Да	Да	
тивления изоляции Проверка стабильно-	5.1a	Да	Да	Нет	
сти Определение т. э. д. с. термопреобразователей и чувствительных эле- ментов при заданных	5.1 6	Да	Да	Нет	
значениях температуры	5.2	Да	Да	Да	

^{*} Объем выборки преобразователей при проведении операций по пп. 5.1a; 5.1б; 5.2 регламентируется в технической документации на преобразователь данного типа.

Разд. 1. (Измененная редакция, Изм. № 1).

2. СРЕДСТВА ПОВЕРКИ

2.1. При проведении поверки должны быть применены следующие средства:

образцовые ртутные термометры 2-го и 3-го разрядов с диапазоном температур 0—300°С и погрешностью по ГОСТ 8.080—80;

образцовые платинородий-платиновые термоэлектрические термометры 2 и 3-го разрядов с диапазоном температур 300—1200°С и погрешностью по ГОСТ 8.083—80;

образцовые платинородиевые термоэлектрические термометры 2-го разряда типа ПР30/6 с диапазоном температур 600—1800°С и погрешностью по ГОСТ 8.083—80;

измерительная установка, включающая двухрядный или однорядный потенциометр постоянного тока класса точности не ниже 0,01 по ГОСТ 9245—79 с верхним пределом измерений не ниже 100 мВ и ценой ступени младшей измерительной декады не более 10^{-6} В с бестермоточным переключателем типа ПБ-28В.

2.2. При поверке используются следующие вспомогательные средства (могут входить в комплект поверочной установки):

водяной термостат с днапазоном температур 0—95°С, градиентом температуры в рабочем пространстве не более 0,05°С/см и ванной с глубиной не менее 300 мм;

масляный термостат с диапазоном температур 95—300°C, градиентом температуры в рабочем пространстве не более 0,05°C/см и ванной глубиной не менее 300 мм;

лупа по ГОСТ 25706—83 кратностью от 3 до 5;

две горизонтальные трубчатые печи сопротивления, каждая с рабочим пространством длиной 500—600 мм, диаметром 40—50 мм и максимальной рабочей температурой не менее 1200°С. Градиент температуры по оси печи (в ее средней части) при 1000°С не должен превышать 0,8°С/см на участке длиной не менее 50 мм;

никелевый толстостенный стакан длиной 80—100 мм, наружный диаметр которого выбирают в зависимости от размера рабочего пространства печи. Толщина стенки и дна стакана — не менее 5 мм. Допускается применять никелевый блок соответствующих размеров с гнездами требуемого диаметра и глубиной 70—90 мм;

вертикальная трубчатая печь сопротивления с рабочим пространством длиной от 400 до 500 мм, диаметром 20—30 мм и максимальной рабочей температурой не менее 1800°С. Градиент температуры по оси печи (в ее средней части) при 1400°С не должен превышать 1°С/см на участке длиной не менее 50 мм. Техническое описание и эскизный чертеж приведены в справочном приложении 5;

амперметр класса точности 1,0 по ГОСТ 8711—78 с верхним пределом измерений до 15 А;

регулятор напряжения мощностью до 10 кВт с пределами регулирования напряжения от 0 до 250 В;

ртутные стеклянные термометры с ценой деления 0,1°C и пределами измерений от 10 до 35°C по ГОСТ 2045—71;

трубы по ГОСТ 8680-73 длиной 500 мм, внутренним диаметром (6 ± 0.5) мм и стенками толщиной не более 1 мм;

удлинительные провода по ГОСТ 1790—77 и ГОСТ 10821—75. Т. э. д. с. пары скомплектованных удлинительных проводов при температуре рабочего и свободных концов пары, соответственно равной 100 и 0°С, не должна отклоняться от значений, указанных в ГОСТ 3044—77, более чем на ± 0.05 мВ для пары градуировки типа XA, ± 0.10 мВ для пары градуировки типа XK и 0.01 мВ для пары градуировки типа ПП;

многопозиционный бестермоточный переключатель. Схема подключения термопреобразователей к электроизмерительной установке при помощи переключателя при поэлектродном сличении приведена в обязательном приложении 1, а схема подключения термопреобразователей образцового и поверяемого термоэлектрических термометров к электроизмерительной установке при их сличении — в справочном приложении 4;

теплоизоляционные сосуды или другие теплоизоляционные средства, обеспечивающие заданную температуру в течение 1 ч с предельным отклонением ± 0.1 °C;

платиновая и платинородиевая проволока диаметром 0,5 мм по ГОСТ 10821—75;

стеклянные пробирки длиной (150 ± 10) мм, внутренним диаметром $(6,5\pm0,5)$ мм со стенками толщиной не более 1 мм;

защитные стеклянные пробирки длиной не менее 300 мм и внутренним диаметром, при котором поверяемые чувствительные элементы плотно входят в пробирку;

прибор для измерения сопротивления изоляции. Тип прибора устанавливают в стандартах или технических условиях на термопреобразователь конкретного типа;

установка для испытания электрической прочности изоляции. Тип установки указывают в стандартах или технических условиях на термопреобразователь конкретного типа.

Примечание. Допускается применять другие средства поверки, прошедшие метрологическую аттестацию в органах государственной метрологической службы и удовлетворяющие по точности требованиям настоящего стандарта.

2.1, 2.2. (Измененная редакция, Изм. № 1).

3. УСЛОВИЯ ПОВЕРКИ

3.1. При проведении поверки должны быть соблюдены следующие условия:

термопреобразователи разборных конструкций необходимо вынуть из защитной арматуры. К поверке могут быть допущены термопреобразователи разборных конструкций в защитной арматуре (чехле) и термопреобразователи неразборных конструкций, если в условиях поверки погрешность от теплоотвода не превышает $0.3~\Delta_{\text{доп}}$ (соответствующие требования должны быть указаны в нормативно-технической документации на конкретный тип термопреобразователя — далее HTД);

температура воздуха в помещении, относительная влажность и барометрическое давление должны соответствовать нормам, установленным для них в НТД по эксплуатации поверочной установки;

изменения температуры воздуха в помещении во время работы поверочной установки не должны быть более $\pm 0,5^{\circ}$ С в течение 1 ч;

вибрация в помещении не должна вызывать отклонений указателя наиболее чувствительного средства измерений более чем на $\pm 0,25$ цены наименьшего деления его шкалы;

питание печей должно осуществляться стабилизированным напряжением, изменения которого не должны превышать 1%;

в помещении не должно быть пыли, дыма, газов и паров, вызывающих коррозию деталей поверочной установки или загрязняющих элементы термопреобразователей;

электроизмерительная часть поверочной установки должна быть удалена не менее чем на 1 м от окон, дверей, радиаторов

отопления и других устройств, выделяющих тепло, а также защищена от прямых солнечных лучей;

части поверочной установки, снабженные зажимом «Земля», а также никелевый стакан должны быть подключены к контуру заземления. Сопротивление заземления должно быть не более 4 Ом;

корпуса печей, паружные стенки которых нагреваются при работе до температуры выше 70°С, должны быть ограждены (например жесткой сеткой из проволоки);

вблизи печей не должны находиться горючие материалы;

стеклянные вакуумные сосуды Дьюара должны иметь охранные кожухи из жести или пластмассы;

перед вводом установки в эксплуатацию должна быть проверена сходимость результатов измерений с использованием поверенного чувствительного элемента любого типа, которая не должна превышать $0.3~\Delta_{\rm доп}(\Delta_{\rm доп}$ — допускаемое отклонение т.э.д.с. чувствительного элемента от значений, указанных в ГОСТ 3044—77);

должно быть проверено соответствие градиента температуры в термостатах требованиям п. 2.2;

должна быть проверена т. э. д. с. помех в измерительной линии установки, которая не должна превышать 2 мкВ.

(Измененная редакция, Изм. № 1).

4. ПОДГОТОВКА К ПОВЕРКЕ

- 4.1. Перед проведением поверки необходимо выполнить следующие подготовительные работы.
 - 4.1.1. Подготовка основных и вспомогательных средств поверки
- 4.1.1.1. Средства поверки, входящие в состав измерительной установки (термостаты и нагревательные печи), готовят к работе в соответствии с НТД.
- 4.1.1.2. Термопреобразователь образцового платинородий-платинового термометра 3-го разряда при поверке чувствительных элементов из неблагородных металлов помещают в кварцсвую защитную пробирку. Рабочий конец его должен касаться дна пробирки.
- 4.1.1.3. Теплоизолированные сосуды для термостатирования свободных концов при термостатировании при 0°С заполняют льдо-водяной смесью, а при термостатировании при комнатной температуре водой или маслом комнатной температуры. В сосуд помещают ртутный термометр и стеклянные пробирки.

Глубина погружения пробирок должна быть не менее 120 мм, расстояние между пробирками — не менее 10 мм.

4.1.1.4. В рабочем пространстве печи для поверки чувствительных элементов из неблагородных металлов в зоне равномерного

распределения температуры устанавливают никелевый стакан или никелевый блок.

- 4.1.1.5. В рабочее пространство печи, предназначенной для поверки чувствительных элементов градуировок типа ПП, вводят защитную кварцевую трубу и центрируют ее по оси печи, подложив огнеупорные подкладки (например, отрезки кварцевых или фарфоровых трубок).
- 4.1.2. Подготовка термопреобразователей градуировок типов XA и XK
- 4.1.2.1. При подготовке к поверке в термостатах поверяемые чувствительные элементы помещают в стеклянные пробирки и устанавливают в термостате на глубину не менее 250 мм. Свободные концы поверяемых элементов термостатируют в сосудах по п. 4.1.1.3 и подсоединяют к измерительной установке (см. справочное приложение 4). В термостат устанавливают образцовый ртутностеклянный термометр.
- 4.1.2.2. При подготовке к поверке в печах не более четырех поверяемых чувствительных элементов складывают в общий пучок с кварцевой пробиркой, в которую вложен термопреобразователь образцового платинородий-платинового термометра 3-го разряда, и обвязывают в двух-трех местах отрезками хромелевой или алюмелевой проволоки. Пучок чувствительных элементов вводят в рабочее пространство трубчатой горизонтальной печи до упора рабочих концов в дно никелевого стакана и центрируют по оси печи.

Свободные концы чувствительных элементов (в случае необходимости удлиненных проводами) и образцового термопреобразователя термостатируют в сосудах по п. 4.1.1.3 настоящего стандарта и подсоединяют к измерительной установке (см. справочное приложение 4).

(Измененная редакция, Изм. № 1).

- 4.1.3. Подготовка термопреобразователей градуировок типов ПП и ПР 30/6.
- 4.1.3.1. Чувствительные элементы термопреобразователей градуировок типов ПП и ПР 30/6 перед определением их т. э. д. с. отжигают в течение 30 мин электрическим током на воздухе. Перед отжигом поверхность термоэлектродов обезжиривают при помощи тампона, смоченного чистым этиловым спиртом (1 г спирта на чувствительный элемент). Напряжение подводят к свободным концам термоэлектродов от регулятора напряжения, включенного в сеть переменного тока 220 или 127 В частотой 50 Гц. Ток, необходимый для отжига, контролируют по показаниям амперметра. Чувствительные элементы преобразователей градуировок типа ПП

с термоэлектродами диаметром 0,5 мм отжигают при токе 10-10,5 A [температура $(1150\pm50)^{\circ}$ C], чувствительные элементы градуировок типа ПР 30/6 при токе 11,5-12A [температура $(1450\pm50)^{\circ}$ C]. По окончании отжига ток плавно уменьшают до нулевого значения в течение 1 мин.

Поверхность отожженных термоэлектродов должна быть чистой. Чувствительные элементы с неустранимыми при отжиге поверхностными загрязнениями термоэлектродов считают непригодными к применению и к дальнейшей поверке не допускают.

Часть электродов, погружаемую при поверке в печь, армируют чистыми цельными двухканальными керамическими трубками. Для чувствительных элементов градуировок типа ПР 30/6 применяют изоляционные трубки из окиси алюминия, для чувствительных элементов градуировок типа ПП до 1200°С — трубки из пирометрического фарфора или окиси алюминия. Диаметр трубок 3—5 мм, длина 300—500 мм, диаметр каналов не менее 0,9 мм.

В один и тот же канал изоляционной трубки следует помещать термоэлектроды только одной марки.

При армировании отожженных термоэлектродов должны быть приняты меры, исключающие возможность их деформирования и загрязнения особенно на участке, погружаемом в печь при поверке.

Концы термоэлектродов, свободные от керамической изоляции, помещают в гибкие электроизоляционные трубки диаметром до 2,5 мм. На участке длиной 150 мм свободные концы термоэлектродов оставляют без какой-либо изоляции. Не более четырех поверяемых чувствительных элементов складывают в общий пучок с однотипным образцовым термометром 2-го разряда, выравнивают рабочие концы и обвязывают пучок в двух местах отрезками платинородиевой проволоки диаметром 0,5 мм. Рабочие концы всех термоэлектродов вытягивают на 12—15 мм из керамической изоляции и плотно стягивают их друг с другом вблизи спаев несколькими витками платинородиевой проволоки диаметром 0,3—0,5 мм, причем электрический контакт между отдельными термоэлектродами должен быть образован в месте их связки.

Примечание. Масса платинородиевой (платиновой) проволоки для скрепления пучка и связывания рабочих концов составляет 1—1,5 г.

Пучок чувствительных элементов градуировок типа ПП погружают на глубину (250 ± 10) мм в рабочее пространство горизонтальной трубчатой печи и центрируют по оси защитной кварцевой трубы. Торцевые отверстия печи прикрывают заслонками или щитками из прокаленного листового асбеста.

Свободные концы поверяемых чувствительных элементов (в случае необходимости удлиненных проводами) и образцового тер-

мопреобразователя термостатируют в сосудах по п. 4.1.1.3 настоящего стандарта и подсоединяют к измерительной установке (см. обязательное приложение 1).

Пучок чувствительных элементов градуировок типа ПР 30/6 вводят в рабочее пространство вертикальной трубчатой печи через верхнее торцевое отверстие, центрируют его и закрепляют в штативе таким образом, чтобы рабочие концы термоэлектродов находились в середине зоны с наименьшим градиентом температуры. Торцевые отверстия печи прикрывают заслонками или щитками из огнеупорного материала.

(Измененная редакция, Изм. № 1).

5. ПРОВЕДЕНИЕ ПОВЕРКИ

5.1. Внешний осмотр

При внешнем осмотре должно быть установлено соответствие чувствительных элементов термопреобразователей следующим требованиям.

- 5.1а. Проверку электрической прочности и сопротивления изоляции преобразователей проводят по ГОСТ 6616—74.
- 5.1б. Проверку стабильности преобразователей и чувствительных элементов проводят при максимальной температуре длительного применения, установленной в НТД на поверяемый преобразователь, путем трехкратного измерения т.э.д.с. при этой температуре до и после двухчасового отжига в печи.
 - 5.1а, 5.1б. (Введены дополнительно, Изм. № 1).
- 5.1.1. Чувствительные элементы градуировок типов ХА и ХК должны быть без защитной арматуры, термоэлектроды должны иметь чистую электрическую изоляцию. Длина термопреобразователей и их чувствительных элементов должна быть не менее 250 мм. Термопреобразователи и чувствительные элементы длиной менее 250 мм поверяют по методикам, утвержденным в установленном порядке. Чувствительные элементы с термоэлектродами диаметром 1 мм и более должны иметь клеммные колодки, закрепленные на термоэлектродах. для подключения удлинительных проводов. Термоэлектроды чувствительных элементов должны иметь ровную поверхность без трещин, раковин, расслоений, загрязнений, видимых невооруженным глазом, а также без отслаивающейся окалины. Место сварки рабочих концов термоэлектродов не должно быть пористым или ошлакованным.
- 5.1.2. Чувствительные элементы градуировок типов ПП и ПР 30/6 должны быть без арматуры и электрической изоляции на термоэлектродах или в электрической изоляции, удовлетворяющей требованиям, указанным в п. 4.1.3.1. Длина чувствительных эле-

ментов термопреобразователей градуировок типов ПП и ПР 30/6 должна быть не менее 500 мм. Термоэлектроды должны быть свернуты в кольцеобразный моток диаметром 60—100 мм и представлены в упаковке, исключающей возможность их деформирования и загрязнения. Термоэлектроды чувствительных элементов, поступивших на первичную поверку, не должны иметь сварок, перетяжек, резких изгибов под углом. На поверхности термоэлектродов не должно быть видимых невооруженным глазом плен, трещин, раковин, расслоений и загрязнений.

Чувствительные элементы, поступившие на периодическую поверку, могут иметь не более двух сварок по длине каждого термоэлектрода на расстоянии не менее 250 мм от рабочего конца и незначительные загрязнения поверхности, устранимые при отжиге в соответствий с требованиями п. 4.1.3.1. К поверке не допускают чувствительные элементы с хрупкими термоэлектродами.

На каждом чувствительном элементе, поступающем в поверку, должна быть подвешена бирка с указанием номера и обозначения стандартной градуировки. Допускается эти данные указывать на клеммной колодке чувствительного элемента.

5.1.3. Результаты внешнего осмотра заносят в протокол поверки по формам, приведенным в обязательных приложениях 2 и 3. При необходимости чувствительные элементы из благородных металлов взвешивают с погрешностью не более 0,05 г.

Примечание. Внешний вид термопреобразователей разборных конструкций, поверяемых в защитной арматуре, и термопреобразователей неразборных конструкций должен соответствовать НТД на термопреобразователь конкретного типа.

- 5.2. Определение т. э. д. с. термопреобразователей и чувствительных элементов при заданных значениях температуры
- 5.2.1. Градуировочные характеристики чувствительных элементов должны соответствовать их стандартным градуировочным характеристикам в пределах отклонений, допускаемых ГОСТ 3044—77.

При проверке этого требования определяют т. э. д. с. чувствительного элемента при нескольких заданных значениях температуры его рабочего конца и температуре свободных концов, равной 0°С. Полученные результаты сравнивают с данными стандартных градуировочных таблиц при тех же значениях температуры.

5.2.2. При поверке чувствительных элементов их т. э. д. с. должна быть определена не менее чем при четырех значениях температуры, указанных в табл. 1. В обоснованных заказчиком случаях дополнительно определяют т. э. д. с. при температуре, значения которой в табл. 1 приведены в скобках.

Тип стандартной градуировки	Диаметр термоэлектрод)в, мм	Значения температуры при измерениях т.э.д.с., °С
ХК	От 3,2 до 1,2 включ. » 0,7 » 0,2 »	300, 400, 500, 600, (800) 100, (200), 300, 400, 500, (600)
XA	От 3,2 до 1,2 включ. » 0,7 » 0,5 » » 0,3 » 0,2 »	300, 500, 700, 900, (1100) 100, (200), 300, 500, 700, 800, (900) 100, (200), 300, 400, 500, 600, (700)
ПП ПР 30/6	От 0,5 и более	300, 600, 900, 1200 600, 900, 1200, 1500, (1700)

У чувствительных элементов специального назначения, применяемых в более узком диапазоне температур, указанном заказчиком, допускается определять т. э. д. с. только в границах этого диапазона, но не менее чем при трех значениях температуры, равностоящих друг от друга.

Допускается определять т.э.д.с. термопреобразователей и чувствительных элементов, поступивших на первичную поверку и изготовленных из аттестованных бухт термоэлектродного материала (стандартных образцов свойств термоэлектродных материалов), при одном значении температуры, соответствующем верхнему пределу применения.

(Измененная редакция, Изм. № 1).

5.2.3. Т. э. д. с. чувствительные элементов градуировок типов ХА и ХК определяют в последовательности, приведенной ниже.

Нагревают термостат (водяной или масляный) или горизонтальную трубчатую печь до заданного значения температуры с допускаемым отклонением не более чем $\pm 0.5^{\circ}$ С при нагревании в термостате и $\pm 10^{\circ}$ С при нагревании в печи.

Температуру контролируют образцовым ртутно-стеклянным или платинородий-платиновым термоэлектрическим термометром 3-го разряда. При измерениях т. э. д. с. поверяемых чувствительных элементов температура не должна меняться более чем на 0,1°С/мин в термостате и 0,4°С/мин в печи.

Измерения начинают с образцового термометра и заканчивают последним поверяемым чувствительным элементом, после чего все измерения последовательно повторяют в обратном порядке и т. д. до получения четырех отсчетов в каждом ряду.

Интервалы времени между отсчетами т. э. д. с. во всем измерительном цикле должны быть примерно одинаковыми.

По показаниям ртутных стеклянных термометров определяют и заносят в протокол поверки значения температуры свободных концов $t_{\rm ck}$ образцового термоэлектрического термометра и поверяемых чувствительных элементов. Погрешность измерения температуры свободных концов не должна превышать 0.1° С.

Показания образцового ртутного термометра считывают с точностью цены наименьшего деления. Отсчеты т. э. д. с. образцового термоэлектрического термометра производят до 10^{-3} мВ, отсчеты т. э. д. с. поверяемых чувствительных элементов до 10^{-2} мВ. Значения заносят в протокол поверки (см. обязательное приложение 3). Выполняют операции, перечисленные выше, при всех заданных значениях температуры (см. табл. 1).

5.2.4. Определение т. э. д. с. чувствительных элементов градуировок типов ПП и ПР 30/6 методом поэлектродного сличения с образцовыми платинородий-платиновыми и платинородиевыми ПР 30/6 термоэлектрическими термометрами 2-го разряда проводят в последовательности, приведенной ниже.

Нагревают горизонтальную или вертикальную трубчатую печь до заданного значения температуры с допускаемым отклонением не более чем $\pm 10^{\circ}$ С. Температуру контролируют образцовым термометром. При измерениях т. э. д. с. поверяемых чувствительных элементов температура не должна меняться более чем на 2° С/мин.

Измеряют т. э. д. с. образцового термометра $E_{\rm ofp}$. Измеряют Δe термоэлектродов поверяемых чувствительных элементов в паре с одноименными термоэлектродами образцового термометра. Т.э.д.с. каждой пары термоэлектродов измеряют дважды: вначале измерения ведут в прямом порядке, переходя последовательно от первого чувствительного элемента к последнему, после чего измерения повторяют в обратном порядке, снова измеряют $E_{\rm ofp}$.

Все отсчеты проводят до 10^{-3} мВ. Значения $E_{\rm обр}$ и Δe с указанием знака заносят в протокол поверки (см. обязательное приложение 2).

По показаниям ртутных стеклянных термометров определяют и заносят в протокол поверки с округлением до 1° С значения температуры свободных концов $t_{\rm ck}$ образцового термоэлектрического термометра. Выполняют операции, перечисленные выше, при всех заданных значениях температуры (см. табл. 1). Поверяемые чувствительные элементы освобождают от электрической изоляции, свертывают в кольцеобразный моток диаметром 60—100 мм и помещают в упаковку, предназначенную для них.

(Измененная редакция, Изм. № 1).

6. ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

- 6.1. Обработка результатов т. э. д. с. чувствительных элементов градуировок типов XA и XK
- 6.1.1. Из результатов измерений, выполненных в соответствии с п. 5.2.3, вычисляют средние температуры в термостате по показаниям образцового ртутного термометра и средние значения т. э. д. с. чувствительного элемента.
- 6.1.2. Средние значения т. э. д. с. образцового термоэлектрического термометра и каждого из поверяемых чувствительных элементов приводят в температуре свободных кончов, равной 0°С. Необходимую поправку определяют в каждом случае по соответствующей стандартной градуировочной таблице, указанной в ГОСТ 3044—77 (градуировок типов ПП, ХА и ХК). Поправка имеет знак «плюс» и численно равна табличному значению т. э. д. с. при такой температуре, какую при поверке имели свободные концы. Приведенные значения т. э. д. с. заносят в протокол поверки.

В показания образцового ртутного термометра вводят поправки, значения которых даны в свидетельстве о поверке, и действительное значение температуры вносят в протокол поверки.

6.1.3. По приведенному значению т. э. д. с. образцового термометра определяют температуру t рабочих концов поверяемых чувствительных элементов по формуле

$$t = t_{\text{CBHH}} + \frac{E'_{\text{O}\text{Sp}} - E_{\text{CBHH}}}{(\Delta E/\Delta t)t} , \qquad (1)$$

где $E'_{\text{обр}}$ — приведенное значение т. э. д. с. образцового термометра, мВ;

 $E_{\text{свид}}$ — значение т. э. д. с., взятое из свидетельства на образцовый термометр, ближайшее к $E'_{\text{обр}}$;

 $t_{\text{свид}}$ — температура, соответствующая значению $E_{\text{свид}}$, °C;

 $(\Delta E/\Delta t)_{\rm t}$ — приращение т. э. д. с. образцового платинородий-платинового термометра на единицу температуры (мВ/°С), взятое из табл. 2.

								T	абли	ца 2
Температура <i>t,</i> °C	300	400	500	600	700	800	900	1000	1100	1200
Значение $(\Delta E/\Delta t)_{ m t} \cdot 10^3, \ { m MB/^{\circ}C}$	9,1	9,5	9,8	10,2	10,6	10,9	11,2	11,5	11,8	12,0

6.1.4. По стандартной градуировочной таблице, указанной в ГОСТ 3044—77, для поверяемых чувствительных элементов градуировок типов ХА и ХК находят нормированное значение их т. э.

д. с., соответствующее температуре образцового ртутного термометра (п. 6.1.2) или температуре t, вычисленной по формуле (1).

6.1.5. Для каждого поверяемого чувствительного элемента определяют разность между приведенным (п. 6.1.2) и нормированным (п. 6.1.4) значениями т. э. д. с. при каждой температуре.

Разность указанных значений должна быть в пределах, установленных ГОСТ 3044—77. Чувствительные элементы термопреобразователей технических термоэлектрических термометров, не удовлетворяющих этому требованию хотя бы при одном из заданных значений температуры, должны быть забракованы.

Результаты измерений т. э. д. с. термопреобразователей разборных конструкций, поверяемых в арматуре, и термопреобразователей неразборных конструкций обрабатывают аналогично.

- 6.2. Обработка результатов измерений т. э. д. с. при поверке чувствительных элементов градуировок типов ПП и ПР 30/6 методом поэлектродного сличения.
- 6.2.1. Из результатов измерений, выполненных по п. 5.2.4, вычисляют среднее значение т. э. д. с. образцового термометра и приводят его к температуре свободных концов, равной 0°С, как указано в п. 6.1.2 (в значения т. э. д. с. образцового термометра градуировки типа ПР 30/6 поправку не вносят).

По формуле (1) находят значение температуры t, при которой произведено поэлектродное сличение. Значения $(\Delta E/\Delta t)_t$ берут из табл. 2 при поверке чувствительных элементов градуировки типа ПП и из табл. 3 при поверке чувствительных элементов градуировки типа ПР 30/6.

									l	аблица 3
Температура t, °C	600	700	800	900	1000	1100	1200	1300	1400	1500—1800
Значение (<i>ΔE/Δt</i>) _t · 10 ³ , мВ/°С	6,1	7,0	7,9	8,6	9,3	1'0,0	10,6	11,0	11,4	11,7

6.2.2. Из результатов измерений, выполненных по п. 5.2.4, вычисляют средние арифметические значения т. э. д. с. термоэлектродов каждого поверяемого чувствительного элемента в паре с одноименными термоэлектродами образцового термометра $(\overline{\Delta}e_i=1,\,2,\,3...)$.

Определяют разность ΔE по формуле

$$\bar{\Delta}E = \bar{\Delta}e_1 - \bar{\Delta}e_2, \tag{2}$$

где Δe_1 — т. э. д. с. пары, образованной положительными термоэлектродами образцового термометра и поверяемого чувствительного элемента при температуре t, мВ. Δe_2 — т. э. д. с. пары, образованной отрицательными термоэлектродами образцового термометра и поверяемого чувствительного элемента при температуре t, мВ.

Примечание. Формула (2) справедлива только при подключении термоэлектродов к измерительной установке согласно схемы, приведенной в обяза-

тельном приложении 1.

6.2.3. Вычисляют значение т. э. д. с. $E_{\text{пов}}$ поверяемых чувствительных элементов при температуре t по формуле

$$E_{\text{пов}} = E_{\text{свид}} + \Delta E, \tag{3}$$

где $E_{\text{свид}}$ — т. э. д. с. образцового термометра, значения которой даны в свидетельстве о поверке, при температуре t.

По стандартной градуировочной таблице, приведенной в ГОСТ 3044-77, для поверяемых чувствительных элементов градуировок типов ПП и ПР 30/6 находят нормированное значение их т. э. д. с., соответствующее температуре t, вычисленной по формуле (1).

6.2.4. Для каждого поверяемого чувствительного элемента определяют разность между приведенными (п. 6.1.2) и нормированным (п. 6.2.3) значениями т. э. д. с. при каждой температуре. Разность указанных значений должна быть в пределах, установленных в ГОСТ 3044—77.

Чувствительные элементы технических термоэлектрических термометров, не удовлетворяющие этому требованию хотя бы при одном из заданных значений температуры, должны быть забракованы.

6.3. При необходимости указания значений термоэлектродвижущей силы $E_{\mathbf{t}}$ в рабочем диапазоне кратковременного режима работы эти значения определяют путем графической экстраполяции функции $E_{\mathbf{t}} = f(t)$ или $\Delta E_{\mathbf{t}} = f_1(E_{\mathbf{N}})$, где $\Delta E_{\mathbf{t}} = E_{\mathbf{t}} - E_{\mathbf{N}}$;

 $E_{\rm t}$ — значения термоэлектродвижущей силы поверяемых термо-

преобразователей;

 $E_{\rm N}$ — значения термоэлектродвижущей силы образцового термопреобразователя.

Полученные значения $\Delta E_{\rm t}$ не должны превышать значений, указанных в ГОСТ 3044—77.

(Введен дополнительно, Изм. № 1).

7. ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 7.1. Результаты поверки считают положительными и чувствительный элемент признают годным к применению, если он отвечает требованиям настоящего стандарта.
- 7.1.1. Положительные результаты поверки оформляют нанесением поверительного клейма на клеммную колодку чувствительного элемента или бирку;

выдачей свидетельства о государственной поверке по форме, установленной Госстандартом, или свидетельства о ведомственной

поверке по форме, установленной органами ведомственных метрологических служб;

записью результатов государственной или ведомственной поверки в эксплуатационных документах по ГОСТ 2.601—68 в случаях, указанных в НТД на чувствительный элемент или термопреобразователь.

7.1.2. На лицевой стороне свидетельства о поверке должны

быть указаны:

наименование организации, производившей поверку;

вид поверки (первичная, периодическая);

номер свидетельства;

номер чувствительного элемента;

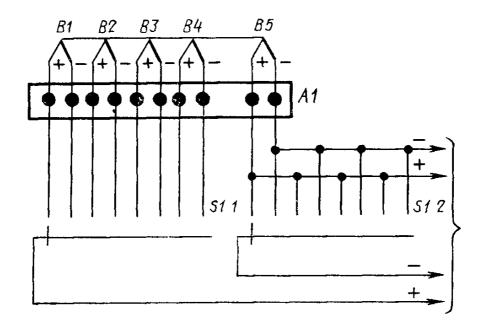
тип стандартной градуировки чувствительного элемента;

пределы измерений (для чувствительных элементов специального назначения, применяемых в узком диапазоне температур);

наименование организации, представившей чувствительный элемент на поверку;

заключение о соответствии чувствительного элемента требованиям настоящего стандарта и годности его к применению;

дата оформления свидетельства.


На оборотной стороне свидетельства указывают:

диаметр, длину или массу термоэлектродов чувствительного элемента (для чувствительных элементов градуировок типов ПП и ПР 30/6);

глубину погружения чувствительного элемента в рабочее пространство печи при поверке.

- 7.1.3. Свидетельство о поверке должно быть подписано поверителем и руководителем лаборатории, в которой поверка была выполнена и заверено печатью.
- 7.2. При отрицательных результатах поверки клеймо предыдущей поверки гасят.

Схема подключения термопреобразователей образцового и поверяемого термоэлектрических термометров к электроизмерительной установке при поэлектродном сличении

B1. .B4—поверяемые чувствительные элементы; B5—термопреобразователь образцового термоэлектрического гермометра, A1—термостат для свободных концов; S1—бестермоточный переключатель.

ПРИЛОЖЕНИЕ 2 Обязательное

ФОРМА И ПРИМЕР ЗАПОЛНЕНИЯ ПРОТОКОЛА ПОВЕРКИ ЧУВСТВИТЕЛЬНЫХ ЭЛЕМЕНТОВ ТЕХНИЧЕСКИХ ТЕРМОЭЛЕКТРИЧЕСКИХ ТЕРМОМЕТРОВ ГРАДУИРОВОК ТИПОВ ПП И ПР 30/6

ПРОТОКОЛ № 48 поверки чувствительных элементов технических, термоэлектрических термометров градуировки ПП

		Т	ермоэлектр	оды			
Номер	/Кем	Длина, мм		на, мм		Вид проверки (первичная, периодическая)	
элемента представлен	Диаметр, мм	+	_	Macca, r			
27	Завод ОЦМ, г. Свердловск	0,5	500	500	4,10	Периодичес- кая	

Поверка производилась методом поэлектродного сличения.

Средства поверки:

установка типа УТТ-6В № 7;

образцовый термоэлектрический термометр 2-го разряда типа ППО № 46; ртутный стеклянный термометр типа ТЛ-18, № 318.

РЕЗУЛЬТАТЫ ПОВЕРКИ

1. Результаты внешнего осмотра

Номер элемента	<u>№ 27</u>
Указывают соответствие требовани-	Электрод ПР10 имеет одну свар-
ям п. 5.1 настоящего стандарта	ку на свободном конце

2. Результаты поэлектродного сличения

Глубина погружения термоэлектродов в печь при сличении 300 мм.

Температура свободных концов (t_{ck}) при сличении 23°C.

Поправка для приведения т. э. д. с. образцового термометра к $t_{\rm c.r} = 0^{\circ}{\rm C}$ 0,13 мВ.

Ofno			Ι	Товеряет	иый термом	етр	Допускае-	
Оора	з цовы й тері	мометр	· · · · · · · · · · · · · · · · · · ·		№ 27		мое откло- нение	<i>E</i> D
Еобр, мВ	Еобр, мВ	Темпера- тура поверки, °C	Δ <i>ε</i> ₁ , мкВ	Δe ₂ , мкВ	Е _{пов} , мВ Δ, мв		по ГОСТ 3044—77, мВ	Е _{свид} , мВ
2,210	0.044	204	-1	+5	2.222	0,05	0,010	2,315
2,240	2,355	304	-1	+5	2,309			при 300°C
Ном элеме	, I			-	ости чувст аче докуме		ного элеме поверке	нта

27 Годен. Свидетельство о поверке № 48

«03» мая 1976 г. Проверил

 Δe_1 — т. э. д. с. пары положительных термоэлектродов;

 Δe_2 — т. э. д. с. пары отрицательных термоэлектродов;

 Δ — разность между приведенным для поверяемого термометра и нормированным значениями т. э. д. с.

3. Заключение по результатам поверки

ПРИЛОЖЕНИЕ **3** Обязательное

ФОРМА И ПРИМЕР ЗАПОЛНЕНИЯ ПРОТОКОЛА ПОВЕРКИ ЧУВСТВИТЕЛЬНЫХ ЭЛЕМЕНТОВ ТЕХНИЧЕСКИХ ТЕРМОЭЛЕКТРИЧЕСКИХ ТЕРМОМЕТРОВ ГРАДУИРОВОК ТИПОВ ХА И ХК

ПРОТОКОЛ № 183 поверки чувствительных элементов технических термоэлектрических термометров градуировки ХК

		Термоэ	лектроды	Dyr. mananyy		
Номер элемента	Кем представлен	Длина, мм Диаметр, мм		Вид поверки (первичная, периодическая)		
142	Завод РТИ, г. Свердловск	1250	1,2	Первичная		

Глубина погружения чувствительных элементов в печь и термостат при поверке — 300 мм.

Средства поверки:

установка типа УТТ—6В № 7; образцовый ртутный термометр 3-го разряда типа ТЛ-4 № 12; образцовый термоэлектрический термометр 3-го разряда типа ППО № 169; ртутные стеклянные термометры типа ТЛ-18 № 342 и № 385.

РЕЗУЛЬТАТЫ ПОВЕРКИ

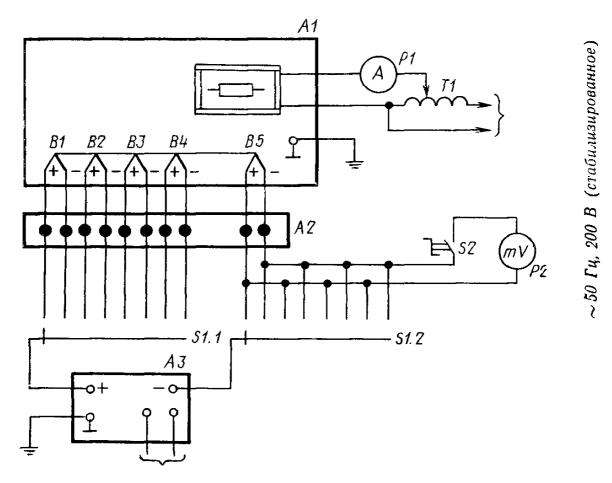
1.	Результаты	внешнего	осмотра

№ 142	№ 142
Указывают соответствие требова-	Удовлетвори-
ниям п. 5.1 настоящего стандарта	тельный

2. Результаты определения т. э. д. с.

Температура свободных концов образцового термометра (t_{ck}) при сличении 23.4° С

Поправка для приведения т. э. д. с. образцового термометра к $t_{\rm c\, R} \! = \! 0^{\circ} {\rm C}$ 0,133 мВ


Образцовый термометр			Поверяемый термометр № 142					Допускае-
Е _{обр} , мВ или 0°С	Е' _{обр, м} в	Темпера- тура поверки, °C	Е _{пов} , мВ	t _{ск} , °С	Поправка на <i>t</i> _{ск} , мВ	$ extbf{T.9.д.c.,} \ ext{при вед. } ext{к} \ t_{ ext{c-K}} = 0 ext{°C,} \ ext{мB}$	Д, мВ	мое откло- нение по ГОСТ 3044—77, мВ
2,242			21,65					
44			66					
48	. <u></u>		68_					
2,248	2,379	305,7	21,70	23,5	1,54	23,21	-0,16	0,200

3. Заключение по результатам поверки

Номер элемента	Заключение о пригодности чувствительного элемента и отметка о выдаче документа о поверке					
142	Годен. Свидетельство о поверке № 183					
«10» апреля 1978	г. [Гроверил					

 $E_{\text{пов}}$ — значения т. э. д. с. поверяемого термометра:

Схема подключения термопреобразователей образцового и поверяемого термоэлектрических термометров к электроизмерительной установке при их сличении

~50 Tu, 200 B

A1—печь сопротивления; A2—теплоизолированный сосуд; A3—микровольтметр; B1...B4—поверяемые чувствительные элементы; B5—термопреобразователь образцового термоэлектрического термометра; P1—амперметр; P2—пирометрический милливольтметр; S1—бестермоточный переключатель; S2—кнопка; T1—регулятор напряжения.

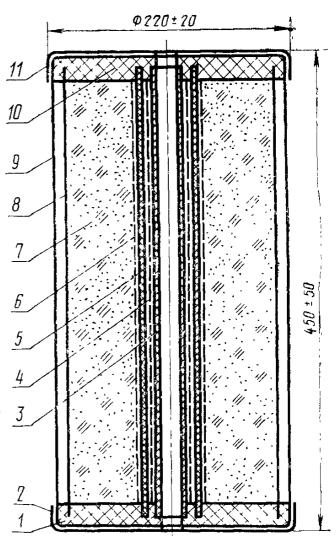
ПРИЛОЖЕНИЕ 5

Справочное

ВЕРТИКАЛЬНАЯ ТРУБЧАТАЯ ПЕЧЬ СОПРОТИВЛЕНИЯ

Вертикальная трубчатая печь сопротивления (см. чертеж) предназначена для поэлектродного сличения чувствительных элементов технических термоэлектрических термометров градуировок типа ПР 30/6 с однотипным образцовым

термоэлектрическим термометром диапазоном измерения температур от 600 до 1800°С.


Рабочее пространство печи зовано корундовой трубой 3 (марка КВП. № 30—1). Материалом для обмотки внутреннего нагревателя 4 слу-0.8 MM 10проволока диаметром жит из сплава платины с 40% родия (мар-ΓΟCT 18389—73), ка ПлРд-40 по Шаг намотки проволоки равен 3 мм. Обмотка нагревателя покрыта слоем огнеупорной массы толщиной 3 мм, состоящей из окиси алюминия в порошке (марка ЧДА) с добавлением 15% (по массе) белой огнеупорной глины.

Труба 3 с нагревательной обмоткой размещена коаксиально внутри корундовой трубы 5 (марка КВП, № 54), несущей наружную нагревательную обмотку 6 из платипородиевой проволоки марки ПлРд-40 по ГОСТ 18389—73, диаметром 0.5 мм. Шаг намотки проволоки равен 4 мм. Нагреватель покрыт слоем огнеунорной массы толщиной 3 мм, имеющей указанный выше состав.

Обе корундовые трубы с нагревательными обмотками установлены между двумя фланцами 1 и 10 из

шамота, в которых сделаны центрирующие пазы для труб, а также для стального экрана 8 (лист Б-0-ПН-1.0 ГОСТ 19904—74 из стали марки 12Х18Н10Т по ГОСТ 5582—75). Из стального листа той же марки изготовляют кожух печи 9, поддон 2 и крышку 11. Между кожухом и экраном оставлен воздушный зазор 10 пространство между экраном и корундовой трубой 5 заполнено порошком из окиси алюминия или техническим глиноземом 7. Нагревательные обмотки печи раздельно питаются током переменного напря-

жения 50 Гц через разделительные трансформаторы мощностью каждый (220/220 В для наружной обмотки и 220/127 В — для внутренней). Напряжение на входе трансформаторов регулируют регулятором напряжения типа .ПАТР-2М. Режим разогрева печи и стабилизация заданных значений температуры рекомендуется определять опытным путем перед вводом печи в эксплуатацию. Ток в обмотках контролируют при помощи амперметров (например типа Э377) класса точности 1,0 по ГОСТ 8711—78 с верхним пределом измерений до 10 A.

ПРИЛОЖЕНИЕ 6 Справочное

Информационные данные о соответствии ГОСТ 8.338-78 СТ СЭВ 1060-78

Разд. 1 ГОСТ 8.338-78 соответствует разд. 1 СТ СЭВ 1060-78.

Разд. 2 ГОСТ 8.338—78 соответствует разд. 2 СТ СЭВ 1060—78.

Разд. 3 и 5 ГОСТ 8.338-78 соответствуют разд. 3 и 4 СТ СЭВ 1060-78.

Разд. 6 ГОСТ 8.338—78 соответствует разд. 5 СТ СЭВ 1060—78.

Разд. 7 ГОСТ 8.338—78 соответствует разд. 6 СТ СЭВ 1060—78.

(Введено дополнительно, Изм. № 1).

Редактор М. В. Глушкова Технический редактор Э. В. Митяй Корректор Г. И. Чуйко

Сдано в наб. 07.01.85 Подп. в печ. 21.05.85 1,5 п. л. 1,5 усл. кр.-отт. 1,32 уч.-изд. л. Тираж 10.000 Цена 5 коп.