

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ГОСУДАРСТВЕННАЯ СИСТЕМА ОБЕСПЕЧЕНИЯ ЕДИНСТВА ИЗМЕРЕНИЙ

ГОСУДАРСТВЕННЫЙ ПЕРВИЧНЫЙ ЭТАЛОН И ОБЩЕСОЮЗНАЯ ПОВЕРОЧНАЯ СХЕМА ДЛЯ СРЕДСТВ ИЗМЕРЕНИЙ ПОТОКА ЭЛЕКТРОНОВ И ПОТОКА ЭНЕРГИИ ЭЛЕКТРОНОВ С ЭНЕРГИЕЙ от 0,8 до 8,0 пДж (от 5 до 50 МэВ)

FOCT 8.202-76

Издание официальное

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СТАНДАРТОВ СОВЕТА МИНИСТРОВ СССР
Москва

РАЗРАБОТАН Всесоюзным научно-исследовательским институтом метрологии им. Д. И. Менделеева [ВНИИМ]

Директор В. О. Арутюнов Руководитель темы М. Ф. Юдин Исполнители: В. И. Фоминых, В. В. Скотников, И. И. Цветков

ВНЕСЕН Управлением метрологии Госстандарта СССР

Начальник Управления В. И. Кипаренко

ПОДГОТОВЛЕН К УТВЕРЖДЕНИЮ Всесоюзным научно-исследовательским институтом метрологической службы Госстандарта СССР [ВНИИМС]

Директор В. В. Сычев

УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета стандартов Совета Министров СССР 26 февраля 1976 г. № 499

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

Государственная система обеспечения единства измерений

ГОСУДАРСТВЕННЫЙ ПЕРВИЧНЫЙ ЭТАЛОН
И ОБЩЕСОЮЗНАЯ ПОВЕРОЧНАЯ СХЕМА
ДЛЯ СРЕДСТВ ИЗМЕРЕНИЙ ПОТОКА ЭЛЕКТРОНОВ
И ПОТОКА ЭНЕРГИИ ЭЛЕКТРОНОВ С ЭНЕРГИЕЙ
от 0,8 до 8,0 пДж (от 5 до 50 МэВ)

ΓΟCT 8.202—76

State system for ensuring the uniformity of measurements. The state primary standard and the all-union verification schedule for means measuring the flux of electrons and that of energy of the beam of accelerated electrons energy from 0,8 to 8,0 pJ (5÷50 MeV)

Постановлением Государственного комитета стандартов Совета Министров СССР от 26 февраля 1976 г. № 499 срок введения установлен

с 01.01.1977 г. до 01.01.1982 г.

Настоящий стандарт распространяется государственный на первичный эталон и общесоюзную поверочную схему для средств измерений потока электронов и потока энергии электронов с энергией от 0,8 до 8,0 пДж (от 5 до 50 МэВ) и устанавливает назначение государственного первичного эталона единиц потока электронов — электрона в секунду (с-1) и потока энергии электронов — ватта (Вт) с энергией от 0,8 до 8,0 пДж (от 5 до 50 МэВ) комплекс основных средств измерений, входящих в его состав, основные метрологические параметры эталона и порядок передачи размера единиц потока электронов и потока энергии электронов от первичного эталона при помощи вторичных эталонов и образцовых средств измерений рабочим средствам измерений с указанием погрешностей и основных методов поверки.

1. ЭТАЛОНЫ

1.1. Государственный первичный эталон

1.1.1. Государственный первичный эталон предназначен для воспроизведения и хранения единиц потока электронов и потока энергии электронов и передачи размеров единиц при помощи вторичных эталонов и образцовых средств измерений рабочим сред-

ствам измерений, применяемых в народном хозяйстве СССР с целью обеспечения единства измерений в стране.

- 1.1.2. В основу измерений потока электронов и потока энергии электронов, выполняемых в СССР, должны быть положены единицы, воспроизводимые указанным государственным эталоном.
- 1.1.3. Государственный первичный эталон состоит из комплекса следующих средств измерений:

электронный ускоритель;

устройство для вывода ускоренных электронов;

система транспортировки и фокусировки электронного пучка; калориметр-цилиндр Фарадея;

электростатический сигнальный электрод;

магнитоиндукционный измеритель;

регистрирующая и сигнальная аппаратура.

- 1.1.4. Диапазон значений потока электронов, воспроизводимых эталоном, составляет $10^{10} \div 10^{15}$ с⁻¹, потока энергии электронов $10^{-4} \div 1.0$ Вт при энергиях электронов от 0,8 до 8,0 пДж (от 5 до 50 МэВ).
- 1.1.5. Государственный первичный эталон обеспечивает воспроизведение единиц со средним квадратическим отклонением результата измерений (S_0) , не превышающим $1 \cdot 10^{-2}$ при неисключенной систематической погрешности (Θ_0) , не превышающей $3 \cdot 10^{-2}$.
- 1.1.6. Для воспроизведения единиц потока электронов и потока энергии электронов с указанной точностью должны быть соблюдены правила хранения и применения эталона, утвержденные в установленном порядке.
- 1.1.7. Государственный первичный эталон применяют для передачи размеров единиц потока электронов и потока энергии электронов рабочим средствам измерений высшей точности сличением при помощи компаратора (магнитоиндукционного измерителя или калориметра).

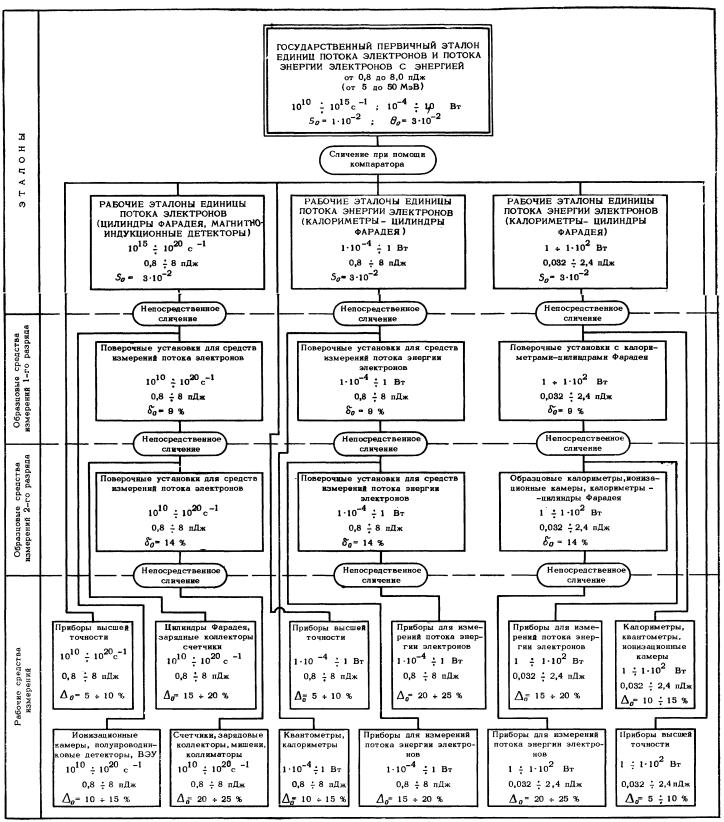
1.2. Вторичные эталоны

- 1.2.1. В качестве рабочих эталонов применяют установки для измерений потока электронов и потока энергии электронов с диапазоном измерений потока электронов $10^{15} \div 10^{20}$ с⁻¹ и потока энергии электронов $1 \div 10^2$ Вт с энергией от 0,032 до 2,4 пДж и потока энергии электронов $1 \cdot 10^{-4} \div 1,0$ Вт с энергией от 0,8 до 8,0 пДж.
- 1.2.2. Средние квадратические отклонения результата поверки рабочих эталонов не должны превышать 3·10⁻².
- 1.2.3. Рабочие эталоны применяют для передачи размера единицы образцовым средствам измерений 1-го разряда и рабочим средствам измерений повышенной точности непосредственным сличением.

2. ОБРАЗЦОВЫЕ СРЕДСТВА ИЗМЕРЕНИЙ

- 2.1. Образцовые средства измерений
- 2.1.1. В качестве образцовых средств измерений 1-го разряда применяют установки типов «Урал» и «Ветлуга», детекторы ЭСЭ, калориметры, ионизационные камеры и цилиндры Фарадея.

2.1.2. Доверительные относительные погрешности (δ_0) образцовых средств измерений 1-го разряда при доверительной вероятно-


сти 0,95 не должны превышать 9%.

- 2.1.3. Образцовые средства измерений 1-го разряда применяют для поверки образцовых 2-го разряда и рабочих средств измерений непосредственным сличением.
- 2.2. Образцовые средства измерений 2-го разряда
- 2.2.1. В качестве образцовых средств измерений 2-го разряда применяют установки типа «Витим», вторично-эмиссионные мониторы ЭСЭ, калориметры-цилиндры Фарадея, ионизационные камеры, квантометры и калориметры.
- 2.2.2. Доверительные относительные погрешности образцовых средств измерений 2-го разряда при доверительной вероятности 0.95 не должны превышать 14%.
- 2.2.3. Образцовые средства измерений 2-го разряда применяют для поверки рабочих средств измерений непосредственным сличением.
- 2.2.4. Соотношение доверительных относительных погрешностей образцовых средств измерений 1 и 2-го разрядов должно быть не более 1:1,5.

3. РАБОЧИЕ СРЕДСТВА ИЗМЕРЕНИЙ

- 3.1. В качестве рабочих средств измерений применяют ионизационные камеры, полупроводниковые детекторы, ВЭУ, цилиндры Фарадея, зарядовые коллекторы, счетчики, мишени, калориметры и приборы высшей точности для измерения потока электронов в диапазоне $1 \cdot 10^{10} \div 1 \cdot 10^{20}$ с⁻¹ при энергиях электронов от 0,8 до 8,0 пДж; квантометры, калориметры и приборы для измерений потока энергии электронов в диапазоне $1 \cdot 10^{-4} \div 1$ Вт при энергиях электронов от 0,8 до 8,0 пДж; калориметры, квантометры, ионизационные камеры и приборы для измерений потока энергии электронов в диапазоне $1 \div 1 \cdot 10^2$ Вт при энергиях электронов от 0,092 до 0,032 пДж.
- 3.2. Пределы допускаемых относительных погрешностей (Δ_0) рабочих средств измерений составляют от 5 до 25%.

3.3. Соотношение доверительных относительных погрешностей образцовых средств измерений и пределов относительных допускаемых погрешностей рабочих средств измерений не должно превышать 1:2.

Редактор Л. А. Бурмистрова Технический редактор О. Н. Никитина Корректор Г. М. Фролова

МЕЖДУНАРОДНАЯ СИСТЕМА ЕДИНИЦ (СИ)

	Единица				
Величина	Наименование	Обозначение			
	- I I I I I I I I I I I I I I I I I I I	русское	международно		
основны	Е ЕДИНИЦЫ				
длина	метр	M	m		
MACCA	килограмм	КГ	kg		
BPEMR	секунда	C	\$		
СИЛА ЭЛЕНТРИЧЕСНОГО ТОНА	ампер	Α	A K		
ТЕРМОДИНАМИЧЕСНАЯ ТЕМПЕРА- ТУРА НЕЛЬВИНА	кельвин	К			
СИЛА СВЕТА	кандела	кд	cd		
ДО ПОЛНИТЕЛЬ	ные единицы				
Плоский угол	радиан	рад	rad		
Телесный угол	стерадиан	Ср	sr		
-	ИЕ ЕДИНИЦЫ Н	• !			
Площадь	і квадратный метр	M ²	m²		
объем, вместимость	кубический метр	M ^S	m³		
Плотность	куонческий жетр	KΓ/M ⁸	kg/m³		
INOTHOUTE	кубический метр	101 / 44	~6/ ····		
Скорость	метр в секунду	M/C	m/s		
Угловая скорость	радиан в секунду	рад/с	rad/s		
Сила; сила тяжести (вес)	ньютон	H	N		
Давление; механическое напряжение	паскаль	Па	Pa		
Работа; энергия; количество теплоты	джоуль	Дж	J		
Мощность; тепловой поток	Eatt	Вт	W C		
Количество электричества; электриче- ский заряд	кулон	Кл	_		
Электрическое напряжение, электри-	вольт	8	\mathbf{V}		
ческий потенциал, разность электри-			1		
ческих потенциалов, электродвижущая сила					
Электрическое сопротивлени е	OM	Om	Ω		
Электрическая проводимость	сименс	CM	Q S F		
Электрическая емкость	фарада	Ф	F		
Магнитный поток	вебер	Вб	Wb		
Индуктивность, взаимная индуктивность	генри	ſ	H		
Удельная теплоемкость	джоуль на	Дж/(кг⋅К)	J/(kg·K)		
Т еплопр оводность	килограмм-кельвин ватт на метр-кельвин	Bt/(M·K)			
Световой поток	люмен	ЛМ	1 m		
Яркость	кандела на квадратный метр	КД/М²	cd/m²		
Освещенность	люкс	лк	lx		

МНОЖИТЕЛИ И ПРИСТАВКИ ДЛЯ ОБРАЗОВАНИЯ ДЕСЯТИЧНЫХ КРАТНЫХ И ДОЛЬНЫХ ЕДИНИЦ И ИХ НАИМЕНОВАНИЙ

Множитель, на который умн ож ается единица	Приставна	Обозначение		Множитель,		Обозначение	
		руссное	между- народное	на который умнежается единица	Приставна	русское	между- народно е
1012	тера	T	T	10-2	(санти)	С	С
10*	гига	Г	G	10-3	милли	M	m
10 ⁸	мега	M	M	10-6	микро	MK	μ
10³	кило	н	k	10-*	нано	H	n
10²	(гекто)	r	h	10-12	пико	П	p
101	(дека)	да	da	10-15	фемто	ф	f
10-1	(деци)	Д	d	10-18	2770	а	a

Примечание: В снебках указаны приставки, которые допускается применять только в наименованиях кротных и дольных единиц, уже получивших широкое респросарамение (навример, гентор, декалитр, дециметр, сантиметр/,