межгосударственный стандарт

СПЛАВЫ МЕДНО-ФОСФОРИСТЫЕ

ΓΟCT 6674.4—74*

Метод определения содержания висмута

Alloy copper-phosphorus.

Method for the determination of bismuth content

Взамен ГОСТ 6674—53 в части разд. V

OKCTY 1709

Постановлением Государственного комитета стандартов Совета Министров СССР от 26 декабря 1974 г. № 2798 срок введения установлен

c 01.01.76

Ограничение срока действия снято по протоколу № 5—94 Межгосударственного Совета по стандартизации, метрологии и сертификации (ИУС 11-12—94)

Настоящий стандарт устанавливает фотометрический метод определения висмута (при массовой доле от 0,001 до 0,005 %).

Метод основан на измерении при длине волны 530 нм оптической плотности раствора комплексного соединения висмута с ксиленоловым оранжевым, образованного в присутствии аскорбиновой кислоты и фтористого натрия.

(Измененная редакция, Изм. № 3).

1. ОБШИЕ ТРЕБОВАНИЯ

1 1. Общие требования к методу анализа — по ГОСТ 6674.1—74. (Измененная редакция, Изм. № 2).

2. АППАРАТУРА, РЕАКТИВЫ И РАСТВОРЫ

Фотоэлектроколориметр или спектрофотометр.

Кислота азотная по ГОСТ 4461—77, растворы концентрации 0,1 и 1 моль/дм³ и разбавленная 1:1.

Кислота соляная по ГОСТ 3118-77 и разбавленная 1:1.

Натрий фтористый по ГОСТ 4463—76, раствор 5 г/дм³.

Алюминий азотнокислый по ГОСТ 3757—75, раствор 100 г/дм3.

Аммоний хлористый по ГОСТ 3773—72, раствор 200 г/дм³.

Аммиак водный по ГОСТ 3760—79 и разбавленный 2:3.

Кислота аскорбиновая (витамин С), свежеприготовленный раствор 100 г/дм3.

Смесь кислот для растворения: смешивают концентрированные соляную и азотную кислоты в соотношении 3:1 и перемешивают.

Натрий углекислый по ГОСТ 83—79, раствор 100 г/дм³.

Ксиленоловый оранжевый, раствор 1 г/дм³ в растворе азотной кислоты концентрации 1 моль/дм³.

Висмут марки ВИО по ГОСТ 10928-90.

Растворы висмута

Раствор А: 0,1 г висмута растворяют в 20 см³ концентрированной азотной кислоты. Окислы азота удаляют кипячением. Раствор переводят в мерную колбу вместимостью 1 дм³, доливают до метки водой и перемешивают.

Издание официальное

Перепечатка воспрещена

*Переиздание (октябрь 1998 г.) с Изменениями № 1, 2, 3, утвержденными в декабре 1980 г., июле 1985 г., апреле 1990 г. (ИУС 2—81, 10—85, 8—90). 1 см³ раствора А содержит 0,0001 г висмута.

Раствор Б: 50 см³ раствора А переносят в мерную колбу вместимостью 500 см³, доливают до метки водой и перемешивают.

1 см³ раствора Б содержит 0,00001 г висмута.

Раздел 2. (Измененная редакция, Изм. № 3).

3. ПРОВЕДЕНИЕ АНАЛИЗА

3.1. Навеску сплава массой 1 г помещают в стакан вместимостью 600 см³ и растворяют в 40 см³ смеси кислот, прибавляя осторожно небольшими порциями. Раствор кипятят в течение 10 мин для удаления окислов азота, разбавляют горячей водой до 200 см³, прибавляют 2 см³ азотнокислого алюминия и нейтрализуют раствором углекислого натрия до образования осадка карбоната меди, не растворимого при энергичном перемешивании.

Раствор разбавляют водой до 300-400 см³, добавляют 2-3 см³ раствора 100 г/дм³ углекислого натрия, нагревают до кипения и кипятят в течение 10 мин, затем выдерживают 1 ч на водяной бане.

Раствор фильтруют через фильтр «белая лента». Осадок промывают 4—5 раз горячей водой и растворяют на фильтре в 15—20 см³ горячей соляной кислоты, разбавленной 1:1, при этом фильтрат собирают в стакан, в котором проводилось осаждение, а фильтр промывают 5—7 раз горячей водой. Фильтрат разбавляют водой примерно до 150 см³, добавляют 10 см³ раствора хлористого аммония и нагревают до кипения, затем осторожно нейтрализуют концентрированным раствором аммиака до появления неисчезающей мути, после чего постепенно приливают разбавленный 2:3 аммиак до перехода меди в ярко-синий комплекс, не допуская большого избытка аммиака.

Раствор с осадком кипятят 2—3 мин, фильтруют через фильтр «белая лента», осадок промывают горячей водой. Основную массу осадка переносят с фильтра в стакан, в котором проводили осаждение. Воронку с фильтром устанавливают в тот же стакан, промывают фильтр из пипетки 10 см^3 горячей соляной кислоты (1:1), 1—2 раза горячей водой и повторяют промывание еще один раз горячими растворами соляной кислоты и воды в том же порядке.

Солянокислый раствор переносят в стакан вместимостью 100 см³, выпаривают досуха, к сухому остатку приливают 1,5 см³ раствора азотной кислоты концентрации 1 моль/дм³. Стенки стакана обмывают 2—3 см³ воды и нагревают до кипения.

Раствор охлаждают, переносят в мерную колбу вместимостью 50 см³, прибавляют 1 см³ раствора аскорбиновой кислоты, выдерживают 5 мин, затем добавляют 1 см³ фтористого натрия. 1 см³ ксиленолового оранжевого, доливают водой до метки и перемешивают. Через 30—40 мин измеряют оптическую плотность раствора на фотоэлектроколориметре с зеленым светофильтром (область светопропускания 530 нм) в кювете с толщиной слоя 50 мм.

Количество висмута в растворе в граммах находят по градуировочному графику.

(Измененная редакция, Изм. № 1, 3).

3.2. Построение градуировочного графика

В стаканы вместимостью 100 см³ вводят 0; 1,0; 2,0; 3,0; 4,0; 5,0 см³ раствора Б. Наливают 1,5 см³ 1 моль/дм³ раствора азотной кислоты и кипятят. Раствор охлаждают и переводят водой в мерную колбу вместимостью 50 см³, добавляют 1 см³ раствора аскорбиновой кислоты, выдерживают 5 мин, прибавляют 1 см³ раствора фтористого натрия, 1 см³ раствора ксиленолового оранжевого, доливают до метки водой и перемешивают. Далее оптическую плотность измеряют, как указано в п. 3.1.

Раствором сравнения служит раствор, не содержащий висмута.

По полученным данным строят градуировочный график, по оси абсцисс которого откладывают массу висмута, по оси ординат — значение оптической плотности раствора.

(Измененная редакция, Изм. № 3).

4. ОБРАБОТКА РЕЗУЛЬТАТОВ

4.1. Содержание висмута (Х) в процентах вычисляют по формуле:

$$X = \frac{m_1 \cdot 100}{m} \ ,$$

где m_1 — масса висмута, найденная по градуировочному графику, г;

m — навеска сплава, г.

4.2. Абсолютные допускаемые расхождения результатов параллельных определений при доверительной вероятности P=0.95 приведены в таблице.

Массовая доля висмута, %	Абсолютное допускаемое расхождение, %
От 0,002 до 0,003 включ.	0,0003
Св. 0,003 » 0,005 »	0,0004

- 4.2, 4.3. (Измененная редакция, Изм. № 3). 4.3. (Исключен, Изм. № 3).

Редактор М.И. Максимова Технический редактор Н.С. Гришанова Корректор М.И. Першина Компьютерная верстка В.И. Грищенко

Изд. лиц. №021007 от 10.08.95.

8.95. Сдано в набор 30.09.98. Уч.-изд. л. 1,08. Тираж 164 экз.

Подписано в печать 23.11.98. С1467. Зак. 811.

Усл. печ. л.1,86.

ИПК Издательство стандартов, 107076, Москва, Колодезный пер., 14. Набрано в Издательстве на ПЭВМ Филиал ИПК Издательство стандартов — гип. "Московский печатник", Москва, Лялин пер., 6. Плр № 080102