АППАРАТУРА ЛИНЕЙНЫХ ТРАКТОВ ЦИФРОВЫХ ВОЛОКОННО-ОПТИЧЕСКИХ СИСТЕМ ПЕРЕДАЧИ

МЕТОДЫ ИЗМЕРЕНИЯ ОСНОВНЫХ ПАРАМЕТРОВ

Издание официальное

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

АППАРАТУРА ЛИНЕЙНЫХ ТРАКТОВ ЦИФРОВЫХ ВОЛОКОННО-ОПТИЧЕСКИХ СИСТЕМ ПЕРЕЛАЧИ

Методы измерения основных параметров

ГОСТ 28871—90

Line transmission path equipment of digital optical-fibre transmission systems.

Methods of measuring basic parameters

MKC 33.080 ΟΚΠ 66 6500

Дата введения 01.01.92

Настоящий стандарт распространяется на обслуживаемую и необслуживаемую аппаратуру линейных трактов (ЛТ) цифровых волоконно-оптических систем передачи (ЦВОСП).

Стандарт устанавливает методы измерения уровня средней мощности оптического излучения передатчиков ЦВОСП (ПД ЦВОСП), порога чувствительности приемников ЦВОСП (ПР ЦВОСП) с регенератором, коэффициента ошибок, фазового дрожания, длины волны и ширины огибающей спектра оптического излучения на участке регенерации волоконно-оптической линии передачи (ВОЛП).

Термины, применяемые в стандарте, — по ГОСТ 26599 и ГОСТ 15093, условные и графические обозначения компонентов ЦВОСП — по ГОСТ 26793 и ГОСТ 2.761.

1. СРЕДСТВА ИЗМЕРЕНИЙ И ВСПОМОГАТЕЛЬНЫЕ УСТРОЙСТВА

 При выполнении измерений должны быть применены средства измерений (СИ) и вспомогательные устройства, требования к которым приведены в таблице.

Наименование СИ и веломогательных устройств	Характеристика	Норма
1. Измеритель оптической мощности (ИОМ)	Диапазон средней мощности, дБм Рабочие длины волн, нм Погрешность измерения, дБ, не	Or -70* до +10 850 ± 10; 1300 ± 20; 1550 ⁺²⁰ ₋₁₀
	более: - при V — 60 дБм - св. V — 40 дБм	1,23 0,78
2. Генератор испытательных сигналов (ГИС)**	Тип кода	HDB-3, CM1, 10B1P1R, RZ, NRZ, 5B6B, OBC
	Число элементов в одном периоде псевдослучайной последовательности (ПСП) Обратные связи Длина периодически повторяемо- го кодового слова, бит Скорость передачи, кбит/с	2 ²³ , 2 ¹⁵ По ГОСТ 26783 16 2048, 8448, 10138, 34368, 139264, 167117, 668467

Издание официальное

Перепечатка воспрешена

© Издательство стандартов, 1991
© Стандартинформ, 2005

Наименование СИ и вспомогательных устройств	Характеристика	Норма
	Значение тактовых частот в режиме внутреннего запуска, кГц, коды HDB-3, СМ1, ОБС, 10В1Р1R, 5В6В	2048; 8448; 10138; 34368; 41242;
	Диапазон фазового дрожания, тактовый интервал $n \cdot T$, где $T = 1/F$, n — вещественное число Собственное фазовое дрожание, не более	139264; 167117; 668467 (0,01—10) · T 0.001 T
	Диапазон распределения фазового дрожания по частоте модуляции, кГц	0-3500
	Выходное сопротивление на час- тоте 2048 кГд, Ом Сопротивление несимметричных	120 ± 25***
	выходов, Ом Затухание несогласованности не- симметричного выхода в диапазоне	75
	частот 0,5—210 МГц, дБ, не менее Диапазон входных амплитуд внеш-	20 0.5—3.5
	ней фазовой модуляции, В Сопротивление входа внешней фа- зовой модуляции, Ом	50 ± 5
	Затухание несогласованности вхо- дов внешней фазовой модуляции, дБ, не менее	40
	Частота коммутации 8-разрядных комбинаций, кГц Погрешность установки частоты	0,01-100
3. Измеритель фазового	коммутации, %, не более Диапазон измерения фазового	1,0
дрожания (ИФД)**	дрожания, тактовый интервал n - T , где $T = 1/F$, n — вещественное число Разрешающая способность T , не	(0,05-20)·T
	менее Частотный диапазон фазовых дро- жаний, кГц	0,001 T 0-3500
	Стык Входное сопротивление на частоте 2048 кГц, Ом	По ГОСТ 26886
	Сопротивление несимметричных входа, выхода, Ом	75
	Затухание несогласованности не- симметричных входа и выхода в диа- пазоне частот 0,5—210 МГц, дБ, не	
	менее Скорость передачи, кбит/с Диапазон измерения длин волн,	20 2000—170000
4. Оптический анализатор спектра (ОАС)	нм Точность установки длин волн, нм	700—1700 0,05
	Разрешающая способность, нм Диапазон средней мощности вход- ного сигнала, дБм	0,1 От —70 до +10
	Погрешность измерения отдельных составляющих спектра, %	5
 Измеритель коэффици- ента ошибок (ИКО)*5 	Скорость передачи, кбит/с	2048, 8448, 10138, 34368, 41242, 139264, 167116, 668467
	Диапазон измерения коэффици- ента ошибок Режим проверки ошибок	10—11—10—2 Посимвольный
	Погрешность счета ошибок, ед. счета	± 1

Наименование СИ и веломогательных устройств	Характеристика	Норма
	Погрешность измерения коэффициента ошибок, % Диапазон длительности цикла счета ошибок, с Время непрерывной работы, ч	± 1,5 1—720 720
6. Оптический аттенюатор (OA)	Диапазон затухания, дБ Начальное затухание, дБ, не более Разрешение, дБ, не более Шаг установки затухания, дБ, по диапазонам, дБ: от 0,1 до 10 включ. » 1,0 » 10 » св. 10 » св. 10 » 40 » « 40 » 70 » Погрешность градуировки, дБ, не более, по диапазонам, дБ: от 0,1 до 10 включ. » 1,0 » 10 » св. 10 » св. 10 » 40 »	1—70 3,0 0,1 0,1 1 1 3
7. Оптический соедини- тель разъемный (ОСР)	» 40 » 70 » Вносимые потери, дБ, не более Коэффициент отражения, дБ, не менее	1.0 0,3 -30
8. Имитатор волоконно- оптической линии передачи (ИВОЛП)	Реализуется на волокие того же типа, что и линия передачи; соответствует параметрам регенера- ционного участка и паспортизуется в установленном порядке, либо другим способом, обеспечивающим имита- цию оптического кабеля на участке регенерации	_

^{*} При измерении уровней мощности излучателей применяют фильтр мод.

- 1.2. Измерительные приборы и вспомогательные устройства должны быть аттестованы в соответствии с ГОСТ 8.002* и ГОСТ 8.326**.
- Допускается изготовлять средства измерения на предприятиях изготовителях ЦВОСП с последующей их аттестацией по ГОСТ 22261.

2. ПОДГОТОВКА К ИЗМЕРЕНИЯМ

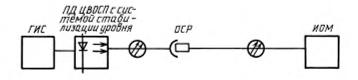
Параметры ЦВОСП измеряют в нормальных климатических условиях по ГОСТ 15150. Напряжение питания средств измерений — по ГОСТ 22261.

3. ПРОВЕДЕНИЕ ИЗМЕРЕНИЙ

3.1. Измерение уровня средней мощности оптического излучения ПД ЦВОСП

- 3.1.1. Метод основан на использовании измерителя оптической мощности, работающего на поглощение мощности.
 - 3.1.2. Измерения проводят по схеме, приведенной на черт. 1.

^{**} В состав ГИС введен модулятор фазовых дрожаний (МФД).


^{***} Выход сигнала симметричный.

^{*4} ИФД может быть реализован в ГИС.

^{*&}lt;sup>5</sup> ИКО возможно объединить с ГИС.

На территории Российской Федерации действуют ПР 50.2.002—94.

^{**} На территории Российской Федерации действуют ПР 50.2.009-94.

Черт. 1

 На ГИС устанавливают сигнал ПСП, структура которого соответствует сигналу на входе ПД ЦВОСП согласно требованиям технических условий (ТУ) на ПД ЦВОСП. По показаниям ИОМ измеряют уровень оптической мощности сигнала i-го измерения P_i для значения сигналов ПСП.

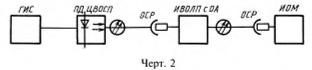
Уровень оптической мощности (P) вычисляют по формулам:

$$P = P_{co} \pm \Delta P \alpha; \qquad (1)$$

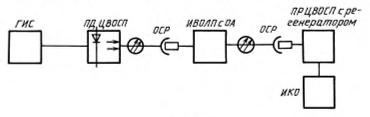
$$P_{cp} = \frac{1}{n_{i-1}} \sum_{i=1}^{n} P_i; \qquad (2)$$

$$P_{cp} = \frac{1}{n} \sum_{i=1}^{n} P_{i};$$

$$\Delta P = \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} (P_{cp} - P_{i})^{2}},$$
(2)


где ΔP — погрешность измерения уровня средней оптической мощности;

 коэффициент, учитывающий наличие погрешности измерения при проведении п измерений. При $n = 5 \alpha = 2,77$;


 $P_{\rm cp}$ — средняя оптическая мощность при пяти измерениях и более с интервалом 3 мин.

3.2. Измерение коэффициента ошибок (Ком)

- 3.2.1. Метод основан на посимвольном сравнении и подсчете ошибочно принятых элементарных импульсов.
- По схеме, приведенной на схеме черт. 2, с помощью изменений затухания ОА устанавливают уровень мощности оптического излучения, заданный в ТУ на аппаратуру ЛТ.

Далее приборы подключают к ЛТ по схеме черт. 3.

Черт. 3

- 3.2.4. Прибором ИКО измеряют коэффициент ошибок i-го измерения K_{out} при установленных уровнях средней мощности, заданных в ТУ на ПД ЦВОСП. Время измерения определяют в зависимости от скорости передачи информации и значений $K_{\text{ош}}$ от 1 до 720.
- 3.2.5. Коэффициент ошибок (K_{nm}) при заданном уровне оптического излучения вычисляют по формулам:

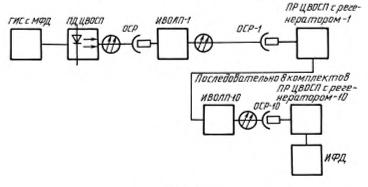
$$K_{\text{out}} = K_{\text{cp}} \pm \Delta K_{\text{out}} \alpha;$$
 (4)

$$K_{\rm cp} = \frac{1}{n_{J=1}} \sum_{n_{\rm d=1}}^{n} K_{\rm nut};$$
 (5)

$$K_{cp} = \frac{1}{n_{j-1}} \sum_{k=1}^{n} K_{om};$$

$$\Delta K_{om} = \sqrt{\frac{1}{n(n-1)} \sum_{j=1}^{n} (K_{cp} - K_{om j})^{2}},$$
(5)

где $\Delta K_{\text{ош}}$ — погрешность измерения коэффициента ошибок;


 K_{cp}^{m} — среднее значение коэффициента ошибок при пяти и более измерениях с интерва-

3.3. Измерение порога чувствительности ПР ЦВОСП с регенератором

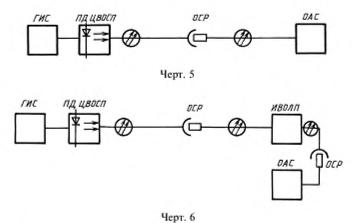
- 3.3.1. Метод основан на измерении минимального оптического сигнала на входе ПР ЦВОСП при значении коэффициента ошибок K_{our} , заданном в ТУ на аппаратуру ЛТ.
 - 3.3.2. Приборы подключают по схеме черт. 3.
 - З.З.З. Регулируя ОА, устанавливают коэффициент ошибок К_{ош}, заданный в ТУ на аппаратуру ЛТ.
 - 3.3.4. Приборы подключают по схеме черт. 2.
- По показаниям ИОМ измеряют уровень средней мощности, соответствующий порогу чувствительности.

3.4. Измерение вносимого фазового дрожания

- 3.4.1. Метод основан на сравнении фазовых дрожаний, вводимых в ЛТ с возникающими дрожаниями. Измерения проводят на оконечной станции.
- З.4.2. Приборы для измерения фазового дрожания подключают к ЛТ по схеме черт. 4 с учетом того, что в ЛТ включаются последовательно 10 комплектов ИВОЛП и ПР ЦВОСП с регенератором.

Черт. 4

- 3.4.3. Перед измерением на ОСР устанавливают уровень мощности оптического излучения, заданный в ТУ на ПР ЦВОСП конкретного типа, для чего к ОСР подключают ИОМ и измеряют уровень средней мощности.
- С помощью МФД на выходе ГИС устанавливают калиброванную частоту и калиброванный уровень фазового дрожания, приведенные в ТУ на аппаратуру линейного тракта измеряемой цвосп.
- 3.4.5. Значение i-го измерения фазового дрожания Ф_i определяют с помощью ИФД на выходе ПР ЦВОСП.
- Фазовое дрожание сигнала на измеряемом оптическом линейном участке (Ф) вычисляют по формулам:


$$\Phi = \Phi_{co} \pm \Delta \Phi \cdot \alpha ; \qquad (7)$$

$$\Phi_{cp} = \frac{1}{n} \sum_{i=1}^{n} \Phi_{i}; \qquad (8)$$

$$\Delta \Phi = \sqrt{\frac{1}{n(n-1)} \sum_{r=1}^{n} (\Phi_{ep} - \Phi_r)^2},$$
 (9)

где $\Delta\Phi$ — погрешность измерения фазового дрожания сигнала;

- Ф ср среднее фазовое дрожание сигнала при пяти измерениях и более с интервалом 3 мин.
- 3.5. Измерение длины волны и ширины огибающей спектра оптического излучения на выходе регенерационного участка
- 3.5.1. Метод основан на сравнении измеренных оптических характеристик на выходе ЛТ с заданными в ТУ.
- З.5.2. Длину волны и ширину огибающей спектра оптического излучения измеряют по схемам черт. 5 и 6.

 3.5.3. По схеме, приведенной на черт. 5, измеряют длину волны и ширину огибающей спектра оптического излучения на выходе ПЛ ЦВОСП.

Для этого на ГИС устанавливают сигналы, соответствующие передаваемым по измеряемому ЛТ, и по показаниям ОАС определяют значения длины и ширины огибающей спектра оптического излучения на выходе ПД ЦВОСП. Нормируемые параметры спектра определяют в соответствии с требованиями ТУ на аппаратуру регенерационного участка конкретного типа.

- 3.5.4. Затем подключают ИВОЛП по схеме, приведенной на черт. 6, измеряют длины волн и ширину огибающей спектра оптического излучения на выходе линейного тракта при тех же значениях сигналов, установленных в п. 3.1.2.
- 3.5.5. Не изменяя показаний ГИС, по показаниям ОАС измеряют ширину огибающей спектра оптического излучения аппаратуры ЛТ.

4. ОБРАБОТКА РЕЗУЛЬТАТОВ

- 4.1. В результаты измерений должны быть внесены поправки, которые складываются из алгебраических погрешностей, указанных в свидетельствах о поверке каждого из приборов и вносимых потерь ОСР.
- 4.2. Характеристики выходной мощности ПД ЦВОСП порога чувствительности ПР ЦВОСП с регенератором при заданных коэффициенте ошибок, фазовом дрожании, ширине огибающей спектра и дисперсионных искажениях должны быть представлены в виде графиков или таблиц.

C. 7 FOCT 28871-90

ИНФОРМАЦИОННЫЕ ДАННЫЕ

- 1. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по управлению качеством продукции и стандартам от 29.12.90 № 3704
- 2. Стандарт соответствует рекомендациям МККТТ G651, G652, G703, G821, G823, G956, 0.171
- 3. ВВЕДЕН ВПЕРВЫЕ
- 4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер раздела, пункта
FOCT 2.761—84	Вводная часть
FOCT 8.002-86	1.2
ГОСТ 8.326—89	1.2
ΓΟCT 15093—90	Вводная часть
ΓΟCT 15150—69	2
ГОСТ 22261—94	1.3. 2
ΓΟCT 26599—85	Вводная часть
ΓΟCT 26783—85	1.1
ΓΟCT 26793—85	Вводная часть
ΓΟCT 26886—86	1.1

5. ПЕРЕИЗДАНИЕ. Август 2005 г.

Редактор В.Н. Копысов Технический редактор О.Н. Взасова Корректор М.С. Бучноя Компьютерная перстка А.Н. Золотаревой

Подписано в печать 19.09.2005, Формат $60x84^1/_8$. Бумага офсетная. Гарнитура Таямс. Печать офсетная. Усл. печ.л. 0,93. Уч. чизд.л. 0,80. Тираж 11 экз. Зак. 169. С 1900.