

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

СТАТИСТИЧЕСКИЙ ПРИЕМОЧНЫЙ КОНТРОЛЬ ПО КОЛИЧЕСТВЕННОМУ ПРИЗНАКУ

планы контроля

ГОСТ 20736—75 (СТ СЭВ 1672—79)

Издание официальное

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР ПО СТАНДАРТАМ Москва

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

СТАТИСТИЧЕСКИЙ ПРИЕМОЧНЫЙ КОНТРОЛЬ ПО КОЛИЧЕСТВЕННОМУ ПРИЗНАКУ

Планы контроля

Sampling Inspection by variables. Control plans

ГОСТ 20736—75* (СТ СЭВ 1672—79)

Постановлением Государственного комитета стандартов Совета Министров СССР от 10 апреля 1975 г. № 909 срок введения установлен

c 01.01.76

Настоящий стандарт распространяется на все виды штучной продукции, поступающей на контроль в виде одиночных или последовательности партий, и устанавливает планы и порядок проведения статистического приемочного контроля качества продукции по количественному признаку при нормальном распределении контролируемого параметра.

В случае необходимости нормальность распределения контролируемого параметра проверяют по ГОСТ 11.006—74.

Обозначения терминов приведены в справочном приложении 1. Стандарт полностью соответствует СТ СЭВ 1672—79.

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Контроль по количественному признаку заключается в том, что у единиц продукции измеряют значения контролируемого параметра, вычисляют выборочное среднее арифметическое значение и оценивают его отклонение от одной (верхней или нижней) или двух заданных границ. Эти отклонения сравнивают с заранее установленными контрольными нормативами и по результатам этого сравнения принимают решение о соответствии или несоответствии продукции установленным требованиям.

Издание официальное

Перепечатка воспрещена

* Переиздание (июль 1982 г.), Изменением № 1, утвержденным в декабре 1981 г.; Пост. № 5656 от 25.12.1981 г.

(HYC 3-82).

С Издательство стандартов, 1982

1.2. Для выбора плана контроля должны быть установлены:

объем партии или ее верхнее и нижнее значения;

контролируемые параметры с указанием их границ;

приемочный уровень дефектности для каждого контролируемого параметра (п. 1.4);

среднее квадратическое отклонение или метод его оценки: (п. 1.5);

способ контроля — 1, 2 или графический (см. п. 1.4); уровень контроля (п. 1.6);

вид контроля, указания о начальном виде контроля и возможности перехода от одного вида контроля к другому (п. 1.7).

Примеры применения правил и таблиц настоящего стандарта для различных планов контроля приведены в справочном приложении 2.

1.3. Контроль качества продукции следует проводить по каждому установленному в нормативно-технической документации (НТД) контролируемому параметру. В зависимости от объема партии и уровня контроля из табл. 1 находим код объема выборки.

Выборку следует отбирать случайным образом, так чтобы каждая единица продукции имела одинаковую вероятность быть отобранной.

Правила отбора единиц продукции в выборку — по ГОСТ 18321—73.

- 1.4. Приемочный уровень дефектности AQL
- 1.4.1. AQL не определяет уровень дефектности продукции в одиночных партиях и поэтому не гарантирует выполнение требований потребителя в каждой одиночной партии, но гарантирует их выполнение в среднем для последовательности партий.

Чтобы определить риск потребителя при приемке одиночных партий, следует использовать оперативную характеристику установленного плана контроля.

1.4.2. При заданных верхней и нижней границах контролируемого параметра допускается:

устанавливать два значения AQL — для верхней $(AQL_{\rm B})$ и для нижней $(AQL_{\rm H})$ границ контролируемого параметра;

устанавливать одно значение AQL для общего уровня дефектности вне верхней и нижней границ контролируемого параметра.

Табл. 3, 4, 6—9; 11 и 19 стандарта составлены для значений $AQL\!=\!0,\!04~\%$; 0,065 % и т. д.

С помощью табл. 2 по установленному значению AQL выбирают из этого ряда одно значение.

- 1.4.3. AQL может быть установлен либо на основе анализа экономических показателей, либо соглашением поставщика и потребителя на основе заключений экспертов (ГОСТ 23853—79).
 - 1.5. Методы оценки и способы контроля
- 1.5.1. В качестве оценки для неизвестного среднего значения контролируемой партии следует использовать среднее арифметическое значение \bar{x} выборки.
- 1.5.2. Если среднее квадратическое отклонение σ в контролируемой партии известно, то следует использовать σ -план. Если среднее квадратическое отклонение σ неизвестно, то оно может быть оценено либо через среднее квадратическое отклонение s выборки, либо через средний размах \overline{R} выборки.

В первом случае следует принять s-план, во втором случае — R-план.

Указанные три типа плана (о-, s- и R-план) контроля имеют почти одинаковые оперативные характеристики (см. п. 1.8). Для каждого типа плана контроля задаются критерии принятия решения относительно приемки или браковки контролируемой партии продукции:

контроль при одной заданной границе (верхней или нижней) контролируемого параметра;

контроль при двух заданных границах контролируемого параметра:

- а) двум заданным границам (верхней и нижней) соответствуют различные AQL ($AQL_{\rm B}$ и $AQL_{\rm H}$);
- б) двум заданным границам (верхней и нижней) соответствует одинаковый AQL.

Планы обоих способов, а также графического способа контроля имеют для одинаковых значений AQL и соответствующих критериев приемки приблизительно идентичные оперативные характеристики.

Способ 1. Устанавливают код объема выборки и AQL, на освании которых из табл. 6—7, 11—12, 16—17 получают объем выборки n и контрольный норматив k. Затем по значениям границы контролируемого параметра, среднего арифметического значения \overline{x} и среднего квадратического отклонения σ (или его оценки) находят величину Q, которую сравнивают с k.

Данный способ следует применять в тех случаях, когда не требуется оценка входного уровня дефектности каждой партии, поскольку случайные отклонения этого уровня не сопровождаютсясерьезными последствиями.

Способ 2. Устанавливают код объема выборки и AQL, на основании которых из табл. 8—9; 13—14; 18—19 получают объем выборки n и допускаемый уровень дефектности M. Далее так же,

как при способе 1, находят величину Q и c ее помощью оценивают входной уровень дефектности P, который сравнивают c M.

Данный способ следует применять в тех случаях, когда для установления соответствия каждой партии продукции требованиям НТД необходимо знать входной уровень дефектности.

Графический способ. По значениям границы контролируемого параметра, среднего арифметического значения x и среднего квадратического отклонения σ (или его оценки) определяют величины

 $\frac{\sigma}{T_B-T_H}$ и $\frac{\overline{x}-T_B}{T_B-T_H}$, которые затем наносят на номограмму и соответственно по расположению этих точек принимают решение относительно приемки или браковки контролируемой партии. Аналогичным образом принимают решение при s- или R-планах контроля. Причем, если значение s или R больше максимального среднего квадратического отклонения (MSD) или максимального среднего размаха (MSR), то контролируемую партию продукции бракуют. Величину MSD или MSR следует определять умножением разности верхней и нижней границы контролируемого параметра на коэффициент f. Коэффициент f следует выбирать из табл. g для g-планов и из табл. g для g-планов.

1.6. Уровни контроля

В стандарте установлено пять уровней контроля (три общих и два специальных), определяющих соотношение между объемом партии и объемом выборки:

общие — I, II, III;

специальные — s—3 и s—4 (см. табл. 1).

Уровни контроля отличаются друг от друга объемом выборки и требованиями к контролю, что выражается крутизной оперативной характеристики (см. п. 1.8).

Объем выборки и требования к контролю для уровня *s*—3 являются наименьшими. Как правило, следует применять уровень контроля II. Уровень контроля III применяют в том случае, если приемка партий, не соответствующих установленным требованиям, приводит к большим потерям или стоимость контроля незначительна.

Уровень контроля I применяют в том случае, если требования к контролю I меньше, чем при уровне контроля II, и необоснованное принятие партии не приводит к значительным потерям.

Специальные уровни контроля s—3 и s—4 применяют в том случае, когда требуется контроль выборок малых объемов (например, при разрушающем контроле).

1.7. Виды контроля

В стандарте установлены три вида контроля: нормальный, усиленный и ослабленный.

Планы контроля для нормального и усиленного контроля выби-

рают из одних и тех же таблиц стандарта, причем сверху указаны значения AQL для нахождения контрольных нормативов при нормальном контроле, снизу — при усиленном.

Усиленный контроль по сравнению с нормальным означает уменьшение значения AQL при неизменном объеме выборки.

Для планов контроля при ослабленном контроле приведены отдельные таблицы. Ослабленный контроль требует меньшего объема выборки, чем нормальный контроль. Нормальный контроль является основным видом контроля и применяется во всех случаях, если не оговорено применение другого вида контроля. Нормальный контроль следует продолжать до тех пор, пока по правилам, указанным в пп. 1.7.1 или 1.7.3, не требуется переход к усиленному или ослабленному контролю.

Усиленный и ослабленный контроль следует применять для всех последующих партий до тех пор, пока по правилам, указанным в пп. 1.7.2 или 1.7.4, можно будет возвратиться к нормальному контролю. При этом следует учитывать только партии, представленные на контроль впервые.

1.7.1. Переход от нормального контроля к усиленному следует осуществлять в том случае, если при нормальном контроле две из пяти последовательных партий были забракованы при первом предъявлении.

Переход к усиленному контролю означает, что средний входной уровень дефектности проконтролированных партий превысил установленное значение AQL.

- 1.7.2. Переход от усиленного контроля к нормальному следует осуществлять только в тех случаях, если при усиленном контроле пять последовательных партий принимаются с первого предъявления. Если это правило не выполняется и необходимо сохранить в силе усиленный контроль для десяти последовательных партий, то выборочный контроль прекращается. Следует выяснить причины ухудшения качества продукции и принять меры по устранению этих причин.
- 1.7.3. Переход от нормального контроля к ослабленному следует осуществлять в том случае, если одновременно соблюдены следующие условия:

при нормальном контроле последние десять партий были приняты с первого предъявления;

технологический процесс является стабильным и выпуск продукции ритмичен;

применение ослабленного контроля разрешено НТД.

Переход к ослабленному контролю означает, что средний входной уровень дефектности проконтролированных партий меньше установленного значения AQL.

1.7.4. Переход от ослабленного контроля к нормальному сле-

дует осуществлять в том случае, если выполнено хотя бы одно из следующих условий:

очередная партия была забракована при первом предъявлении; нарушена стабильность технологического процесса или ритмичный выпуск продукции;

предъявляются другие условия, которые могут послужить основанием для перехода к нормальному контролю.

Эти условия указывают в НТД.

Примечание. Средний входной уровень дефектности проконтролированных партий определяется как взвещенное среднее арифметическое оценочных значений входного уровня дефектности проконтролированных партий.

1.8. Оперативная характеристика

Оперативная характеристика P выборочного плана контроля определяет вероятность приемки партии в зависимости от уровня дефектности p в партии.

Другими словами, Р есть вероятность приемки партии с уровнем дефектности р. Оперативные характеристики представлены на черт. 1—24 графически по порядку кода объема выборки (кодовых букв). По оперативной характеристике оценивается приемлемость выбранного плана контроля. При этом приемлемым планом контроля для последовательности партий считается такой, при котором для установленного браковочного уровня дефектности (LQ) риск потребителя при нормальном контроле будет не более заданного. Оперативные характеристики следует использовать в тех случаях, когда требуется выбрать план контроля одиночной партии при установленных приемочных и браковочных уровнях дефектности и рисках поставщика и потребителя. Для этого из комплекта приведенных в настоящем стандарте оперативных характеристик подбирается та, которая лучше удовлетворяет заданным требованиям, после чего принимается соответствующий план контроля.

Каждому коду объема выборки и AQL соответствует своя оперативная характеристика (см. черт. 1-24).

По оперативным характеристикам определяют риск поставщика α , как вероятность браковки для партии с уровнем дефектности P = AQL, и риск потребителя β , как вероятность приемки для партии с уровнем дефектности P = LQ. Чем больше крутизна оперативной характеристики, тем больше строгость выборочного плана контроля.

1.9. Сравнение объемов выборки при контроле по альтернативному и количественному признакам

Объемы выборок для планов контроля по альтернативному (ГОСТ 18242—72) и количественному признакам для одинаковых

кодов объема выборки и значений AQL приведены в табл. 5. Наименьшие объемы выборки получаются при σ -плане.

Разд. 1. (Измененная редакция, Изм. № 1).

2. ВЫБОР ПЛАНА КОНТРОЛЯ, КОГДА ДИСПЕРСИЯ КОНТРОЛИРУЕМОГО ПАРАМЕТРА НЕИЗВЕСТНА И ОЦЕНИВАЕТСЯ ПО ВЫБОРОЧНОЙ ДИСПЕРСИИ [S-ПЛАН]

2:1. Контроль при одной заданной границе (верхней или нижней) контролируемого параметра

Способ 1.

- 2.1.1. По заданному объему партии N и выбранному уровню контроля из табл. 1 находят код объема выборки. По коду объема выборки и установленному значению AQL из табл. 6—7 находят объем выборки n и контрольный норматив k_s .
- 2.1.2. Из n значений контролируемого параметра выборки x_1 , $x_2 \ldots x_n$ вычисляют: среднее арифметическое значение

$$\overline{x} = \frac{1}{n} \sum_{l=1}^{n} x_l, \tag{1}$$

- где x_i значение контролируемого параметра для i-й единицы продукции выборки;
 - s выборочное среднее квадратическое отклонение контролируемого параметра

$$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2}$$
 (2)

и величину

$$Q_{\rm B} = \frac{T_{\rm B} - \bar{x}}{s} \tag{3}$$

или

$$Q_{H} = \frac{\overline{x} - T_{H}}{s} \tag{4}$$

в зависимости от того, какая граница контролируемого параметра задана.

2.1.3. Если величина $Q_{\scriptscriptstyle \rm B}\!\gg\! k_{\scriptscriptstyle S}$ или $Q_{\scriptscriptstyle \rm H}\!\gg\! k_{\scriptscriptstyle S}$, то партию продукции принимают.

Если величина $Q_{\rm B} < k_s$ или $Q_{\rm H} < k_s$, или хотя бы одна из величин $Q_{\rm B}$ или $Q_{\rm H}$ отрицательна, то партию продукции бракуют (см. справочное приложение 2, пример 1).

Способ 2.

 $2.1.4.\ \ \,$ По заданному объему партии N и выбранному уровню контроля из табл. 1 находят код объема выборки. По коду объема

выборки и установленному значению AQL из табл. 8—9 находят объем выборки n и допускаемый уровень дефектности M_s .

- 2.1.5. С помощью значений \bar{x} и s, вычисленных по формулам (1) и (2), определяют величину $Q_{\rm B}$ или $Q_{\rm H}$ по формулам (3) или (4). По значению величины $Q_{\rm B}$ или $Q_{\rm H}$ и объему выборки n из табл. 10 находят оценочное значение $\hat{p}_{\rm B}$ или $\hat{p}_{\rm H}$ входного уровня дефектности партии.
- 2.1.6. Если величина $p_{\rm B} \ll M_s$ или $p_{\rm H} \ll M_s$, партию продукций принимают. Если величина $p_{\rm B} > M_s$ или $p_{\rm H} > M_s$, или хотя бы одна из величин $Q_{\rm B}$ или $Q_{\rm H}$ отрицательна, партию продукции бракуют (см. справочное приложение 2, пример 2).

2.2. Контроль при двух заданных границах

контролируемого параметра

2.2.1. Верхней и нижней заданным границам контролируемого параметра соответствуют различные AQL ($AQL_{\rm B}$ и $AQL_{\rm H}$).

Способ 1.

- 2.2.1.1. По заданному объему партии N и выбранному уровню контроля из табл. 1 находят код объема выборки. По коду объема выборки и установленным значениям $AQL_{\rm B}$ и $AQL_{\rm H}$ из табл. 6 и 7 находят объем выборки n и контрольные нормативы $k_{\rm SB}$ и $k_{\rm SH}$.
- 2.2.1.2. С помощью значений \overline{x} и s, вычисленных по формулам (1) и (2), определяют величины $Q_{\rm B}$ и $Q_{\rm H}$ по формулам (3) и (4).
- 2.2.1.3. Если величина $Q_{\rm B}\!\gg\!k_{\rm SB}$ и $Q_{\rm H}\!\gg\!k_{\rm SH}$, то партию продукции принимают.

Если величина $Q_{\rm B} < k_{\rm SB}$ или $Q_{\rm H} < k_{\rm SH}$, или хотя бы одна из величин $Q_{\rm B}$ или $Q_{\rm H}$ отрицательна, то партию продукции бракуют (см. справочное приложение 2, пример 3).

Способ 2.

- 2.2.1.4. По заданному объему партии N и выбранному уровню контроля из табл. 1 находят код объема выборки. По коду объема выборки и установленным значениям $AQL_{\rm B}$ и $AQL_{\rm H}$ из табл. 8 и 9 находят объем выборки n и допускаемые уровни дефектности $M_{\rm SB}$ и $M_{\rm SH}$.
- 2.2.1.5. С помощью значений \bar{x} и s, вычисленных по формулам (1) и (2), определяют величины $Q_{\rm B}$ и $Q_{\rm H}$ по формулам (3) и (4). По значению величин $Q_{\rm B}$ и $Q_{\rm H}$ и объему выборки n из табл. 10 находят оценочные значения $\hat{p}_{\rm B}$ и $\hat{p}_{\rm H}$ входного уровня дефектности партии, а также $\hat{p} = \hat{p}_{\rm B} + \hat{p}_{\rm H}$.
- 2.2.1.6. Если величина $\widehat{p_{_{\rm B}}} \ll M_{_{S{\rm B}}}$ и $\widehat{p_{_{\rm H}}} \ll M_{_{S{\rm H}}}$, и \widehat{p} меньше или равно большему из $M_{_{S{\rm B}}}$ и $M_{_{S{\rm H}}}$, партию продукции принимают.

Если величина $p_B > M_{SB}$ или $p_H > M_{SH}$, или хотя бы одна из величин Q_B или Q_H отрицательна, партию продукции бракуют (см. справочное приложение 2, пример 4).

2.2.2. Верхней и нижней заданным границам контролируемого

параметра соответствует одинаковый AQL.

Способ 2.

2.2.2.1. По заданному объему партии N и выбранному уровню контроля из табл. 1 находят код объема выборки. По коду объема выборки и установленному значению AQL из табл. 8-9 находят объем выборки n и допускаемый уровень дефектности M_s .

2.2.2.2. С помощью значений \bar{x} и s, вычисленных по формулам (1) и (2), определяют величины Q_{s} и Q_{s} , по формулам (3) и (4).

(1) и (2), определяют величины $Q_{\rm B}$ и $Q_{\rm H}$ по формулам (3) и (4). По значению величины $Q_{\rm B}$ и $Q_{\rm H}$ и объему выборки n из табл. 10 находят оценочные значения $\hat{p}_{\rm B}$ и $\hat{p}_{\rm H}$ входного уровня дефектности партии, а также $\hat{p}=\hat{p}_{\rm B}+\hat{p}_{\rm H}$

2.2.2.3. Если величина $\widehat{p} \ll M_s$, партию продукции принимают. Если величина $\widehat{p} > M_s$ или хотя бы одна из величин $Q_{\rm B}$ и $Q_{\rm H}$ отрицательна, партию продукции бракуют (см. справочное приложение 2, пример 5).

Графический способ.

2.2.2.4. По заданному объему партии N и выбранному уровню контроля из табл. 1 находят код объема выборки. По коду объема выборки из табл. 8-9 находят объем выборки n.

2.2.2.5. С помощью значений x и s, вычисленных по формулам (1) и (2), определяют величины

$$\frac{s}{T_{\rm B}-T_{\rm H}}$$
 и $\frac{\overline{x}-T_{\rm H}}{T_{\rm B}-T_{\rm H}}$.

2.2.2.6. По коду объема выборки и установленному значению AQL по черт. 25—36 выбирают соответствующую кривую. Точку $\left(\frac{s}{T_B-T_H}; \frac{\overline{x}-T_H}{T_B-T_H}\right)$ следует нанести на номограмму. Если точка будет расположена внутри кривой, то партию продукции принимают, в противном случае ее бракуют (черт. 62).

Если необходимо предварительное решение с помощью MSD, то по табл. 3 следует найти коэффициент f, где входными величинами являются объем выборки n и установленное значение AQL,

и вычислить

$$MSD = f(T_{\rm B} - T_{\rm H}) . ag{5}$$

Если s>MSD, партию продукции бракуют (см. справочное приложение 2, пример 6).

Разд. 2. (Измененная редакция, Изм. № 1).

3. ВЫБОР ПЛАНА КОНТРОЛЯ, КОГДА ДИСПЕРСИЯ КОНТРОЛИРУЕМОГО ПАРАМЕТРА НЕИЗВЕСТНА И ОЦЕНИВАЕТСЯ ПО РАЗМАХУ (R-ПЛАН)

3.1. Контроль при одной заданной границе (верхней или нижней) контролируемого параметра.

Способ 1.

3.1.1. По заданному объему партии N и выбранному уровню контроля из табл. 1 находят код объема выборки. По коду объема выборки и установленному значению AQL из табл. 11—12 находят объем выборки n и контрольный норматив k_R .

3.1.2. Из n значений контролируемого параметра выборки x_1 , $x_2 \ldots x_n$ по формуле (1) вычисляют его выборочное среднее

арифметическое значение.

Для определения среднего размаха выборку, в которой результаты измерений расположены в порядке их получения, разбивают на подгруппы по пять результатов измерений в каждой (с 1 по 5-й, с 6 по 10-й и т. д.). В каждой подгруппе определяют размах как разность между максимальным и минимальным значениями контролируемого параметра в подгруппе. Средний размах выборки (\overline{R}) определяют как среднее арифметическое значение размахов подгрупп рассматриваемой выборки

$$\overline{R} = \frac{1}{m} \sum_{i=1}^{m} R_i , \qquad (6)$$

где R_i — размах i-й подгруппы;

m — число подгрупп в выборке.

Выборки объемом 3, 4, 5 и 7 на подгруппы не разбиваются и вместо \overline{R} используется размах выборки объемом n.

3.1.3. С помощью значений \overline{x} и \overline{R} , вычисленных по формулам (1) и (6), определяют величины

$$Q_{\rm B} = \frac{T_{\rm B} - \overline{x}}{\overline{R}} \tag{7}$$

или

$$Q_{\rm H} = \frac{\overline{x} - T_{\rm H}}{\overline{R}} \tag{8}$$

в зависимости от того, какая граница контролируемого параметра задана (верхняя или нижняя).

3.1.4. Если величина $Q_{\rm B} \gg k_R$ или $Q_{\rm H} \gg k_R$, партию продукции принимают. Если величина $Q_{\rm B} < k_R$ или $Q_{\rm H} < k_R$, или хотя бы одна из величин $Q_{\rm B}$ или $Q_{\rm H}$ отрицательна, партию продукции бракуют (см. справочное приложение 2, пример 7).

Способ 2.

3.1.5. По заданному объему партии N и выбранному уровню контроля из табл. 1 находят код объема выборки. По коду объема

выборки и установленному значению AQL из табл. 13—14 находят объем выборки n и допускаемый уровень дефектности M_R . Из этих же таблиц по коду объема выборки находят коэффициент a.

3.1.6. С помощью значений \overline{x} , \overline{R} , $Q_{\rm B}$, $Q_{\rm H}$, вычисленных соответственно по формулам (1) и (6—8), а также коэффициента a определяют величину

$$Q_{\scriptscriptstyle \rm B}^* = a \cdot Q_{\scriptscriptstyle \rm B} \tag{9}$$

или
$$Q_{\scriptscriptstyle \mathrm{H}}^* = a \cdot Q_{\scriptscriptstyle \mathrm{H}}$$
 (10)

По значению величины $Q_{\rm B}^*$ или $Q_{\rm H}^*$ и объему выборки n из табл. 15 находят оценочное значение входного уровня дефектности $\stackrel{\frown}{p_{\rm B}}$ или $\stackrel{\frown}{p_{\rm H}}$ партии.

- 3.1.7. Если величина $\hat{p_{\rm B}} \ll M_R$ или $\hat{p_{\rm H}} \ll M_R$, партию продукции принимают. Если $\hat{p_{\rm B}} > M_R$ или $\hat{p_{\rm H}} > M_R$, или хотя бы одна из величин $Q_{\rm B}$ или $Q_{\rm H}$ отрицательна, партию продукции бракуют (см. справочное приложение 2, пример 8).
- 3.2. Контроль при двух заданных границах контролируемого параметра.
- 3.2.1. Верхней и нижней заданным границам контролируемого параметра соответствуют различные AQL ($AQL_{\rm B}$ и $AQL_{\rm H}$).

Способ 1.

- 3.2.1.1. По заданному объему партии N и выбранному уровню контроля из табл. 1 находят код объема выборки. По коду объема выборки и установленным значениям $AQL_{\rm B}$ и $AQL_{\rm H}$ из табл. 11—12 находят объем выборки n и контрольные нормативы $k_{R\rm B}$ и $k_{R\rm H}$.
- 3.2.1.2. С помощью значений \overline{x} и \overline{R} , вычисленных по формулам (1) и (6), определяют величины $Q_{\rm B}$ и $Q_{\rm H}$ по формулам (7) и (8).
- 3.2.1.3. Если величина $Q_{\rm B} \gg k_{R\rm B}$ и $Q_{\rm H} \gg k_{R\rm H}$, партию продукции принимают. Если величина $Q_{\rm B} < k_{R\rm B}$ или $Q_{\rm H} < k_{R\rm H}$, или хотя бы одна из величин $Q_{\rm B}$ или $Q_{\rm H}$ отрицательна, партию продукции бракуют (см. справочное приложение 2, пример 9).

Способ 2.

- 3.2.1.4. По заданному объему партии N и выбранному уровню контроля из табл. 1 находят код объема выборки. По коду объема выборки и установленным значениям $AQL_{\rm B}$ и $AQL_{\rm H}$ из табл. 13—14 находят объем выборки n и допускаемый уровень дефектности $M_{R\rm B}$ и $M_{R\rm H}$. По коду объема выборки из этих же таблиц находят коэффициент a.
- 3.2.1.5. С помощью значений \overline{x} , \overline{R} , $Q_{\rm B}^*$ и $Q_{\rm H}^*$, вычисленных соответственно по формулам (1), (6), (9) и (10), а также коэффициента a и объема выборки n из табл. 15-находят оценочное значе-

ние входного уровня дефектности $\hat{p}_{\scriptscriptstyle B}$ и $\hat{p}_{\scriptscriptstyle H}$ партии, а также $\hat{p}=\hat{p}_{\scriptscriptstyle B}+\hat{p}_{\scriptscriptstyle H}$.

3.2.1.6. Если величина $\hat{p}_{_{\rm B}} = M_{R_{\rm B}}$ и $\hat{p}_{_{\rm H}} \ll M_{R_{\rm H}}$ и \hat{p} меньше или равна большему из $M_{R_{\rm B}}$ и $M_{R_{\rm H}}$, партию продукции принимают.

Если величина $\hat{p}_{B} > M_{RB}$ или $\hat{p}_{H} > M_{RH}$, или хотя бы одна из величин Q_{B}^{*} и Q_{H}^{*} отрицательна, партию продукции бракуют (см. справочное приложение 2, пример 10).

3.2.2. Верхней и нижней заданным границам контролируемого

параметра соответствует одинаковый AQL.

Способ 2.

- 3.2.2.1. По заданному объему партии N и выбранному уровню контроля из табл. 1 находят код объема выборки. По коду объема выборки и установленному значению AQL из табл. 13-14 находят объем выборки n и допускаемый уровень дефектности M_R . Из этих же таблиц по коду объема выборки находят коэффициент a.
- 3.2.2.2. С помощью значений \overline{x} , \overline{R} , Q_B^* и Q_H^* , вычисленных соответственно по формулам (1), (6), (9), (10), а также коэффициента a и объема выборки n из табл. 15 находят оценочное значение \widehat{p}_B и \widehat{p}_H входного уровня дефектности партии, а также

$$\hat{p} = \hat{p}_{\mathsf{B}} + \hat{p}_{\mathsf{H}}$$

3.2.2.3. Если величина $\hat{p} \ll M_R$, партию продукции принимают. Если величина $\hat{p} > M_R$ или хотя бы одна из величин $Q_{\rm B}^*$ и $Q_{\rm H}^*$ отрицательна, партию продукции бракуют (см. справочное приложение 2, пример 11).

Графический способ.

- 3.2.2.4. По заданному объему партии N и выбранному уровню контроля из табл. 1 находят код объема выборки. По коду объема выборки из табл. 13—14 находят объем выборки n.
- 3.2.2.5. С помощью значений \overline{x} и \overline{R} , вычисленных по формулам (1) и (6), определяют величины $\frac{\overline{R}}{T_{\rm B}-T_{\rm H}}$ и $\frac{\overline{x}-T_{\rm H}}{T_{\rm B}-T_{\rm H}}$. 3.2.2.6. По колу объема выборки и услания.
- 3.2.2.6. По коду объема выборки и установленному значению AQL по черт. 37-48 выбирают соответствующую кривую. Точку $\left(\frac{\overline{R}}{T_{\rm B}-T_{\rm H}}; \frac{\overline{x}-T_{\rm H}}{T_{\rm B}-T_{\rm H}}\right)$ наносят на номограмму.
- 3.2.2.7. Если точка будет расположена внутри кривой, партию продукции принимают, в противном случае ее бракуют (см. черт. 62). Если необходимо предварительное решение с помощью MSR, то по табл. 4 следует найти коэффициент f, где входными

величинами являются объем выборки п и установленное значение AQL, и вычислить $MSR = f \cdot (T_{\rm B} - T_{\rm H})$.

Если $\overline{R} > MSR$, партию продукции бракуют (см. справочное приложение 2, пример 12).

4. ВЫБОР ПЛАНА КОНТРОЛЯ, КОГДА ДИСПЕРСИЯ КОНТРОЛИРУЕМОГО ПАРАМЕТРА ИЗВЕСТНА [О-ПЛАН]

одной 4.1. Контроль заданной при или нижней) контролируемого пара-(верхней метра.

Способ 1.

- 4.1.1. По заданному объему партии N и выбранному уровню контроля из табл. 1 находят код объема выборки. По коду объема выборки и установленному значению AQL из табл. 16-17 находят объем выборки и контрольный норматив k_{σ} :
- 4.1.2. Из n значений контролируемого параметра выборки x_1 , $x_2, \ldots x_n$ по формуле (1) вычисляют его среднее арифметическое значение х, а также величины

$$Q_{\rm B} = \frac{T_{\rm B} - \overline{x}}{\sigma} \tag{12}$$

или

$$Q_{\rm H} = \frac{\overline{x} - T_{\rm H}}{\sigma} \tag{13}$$

в зависимости от того, какая граница контролируемого параметра задана, где о - среднее квадратическое отклонение контролируемого параметра (предполагается известным на основании обработки предшествующего статистического материала).

4.1.3. Если величина $Q_{\rm B}\!\!>\!\!k_{\sigma}$ или $Q_{\rm H}\!\!>\!\!\hat{k}_{\sigma}$, партию продукции принимают. Если величина $Q_{\rm B}\!\!<\!\!k_{\sigma}$ или $Q_{\rm H}\!\!<\!\!k_{\sigma}$, или хотя бы одна из величин $Q_{\scriptscriptstyle \mathrm{H}}$ или $Q_{\scriptscriptstyle \mathrm{H}}$ отрицательна, партию продукции бракуют (см. справочное приложение 2, пример 13).

Способ 2.

- $4.1.4.\ \Pi$ о заданному объему партии N и выбранному уровню контроля из табл. 1 находят код объема выборки. По коду объема выборки и установленному значению AQL из табл. 18—19 находят объем выборки n и допускаемый уровень дефектности M_{σ} . Из этих же таблиц по коду объема выборки находят коэффициент v.
- 4.1.5. С помощью значений \overline{x} , $Q_{\scriptscriptstyle \mathrm{B}}$ и $Q_{\scriptscriptstyle \mathrm{H}}$, вычисленных соответст-(1), (12) и (13), а также коэффициента v формулам венно по эпределяют величины

$$Q_{\rm B}^* = v \cdot Q_{\rm B} \tag{14}$$

$$Q_{\scriptscriptstyle \mathrm{B}}^* = v \cdot Q_{\scriptscriptstyle \mathrm{B}}$$
 (14)
или $Q_{\scriptscriptstyle \mathrm{H}}^* = v \cdot Q_{\scriptscriptstyle \mathrm{H}}$, (15)

в зависимости от того, какая граница контролируемого параметра задана.

По значению величины $Q_{\rm B}^*$ или $Q_{\rm H}^*$ из табл. 20 находят оценочные значения $\hat{p_{\rm B}}$ или $\hat{p_{\rm H}}$ входного уровня дефектности партии.

- 4.1.6. Если величина $\hat{p}_{\rm B} \ll M_{\rm G}$ или $\hat{p}_{\rm H} \ll M_{\rm G}$, партию продукции принимают. Если величина $\hat{p}_{\rm B} > M_{\rm G}$ или $\hat{p}_{\rm H} > M_{\rm G}$, или котя бы одна из величин $Q_{\rm B}^*$ или $Q_{\rm H}^*$ отрицательна, партию продукции бракуют (см. сиравочное приложение 2, пример 14).
- 4.2. **Қ**онтроль при двух заданных границах контролируемого параметра
- 4.2.1. Верхней и нижней границам контролируемого параметра соответствуют различные AQL ($AQL_{\rm B}$ и $AQL_{\rm H}$).

Способ 1.

- 4.2.1.1. По заданному объему партии N и выбранному уровню контроля из табл. 1 находят код объема выборки. По коду объема выборки и установленным значениям $AQL_{\rm B}$ и $AQL_{\rm H}$ из табл. 16—17 находят объемы выборки $n_{\rm B}$ и $n_{\rm H}$ и контрольные нормативы $k_{\rm GB}$ и $k_{\rm GH}$. В дальнейшем для контроля следует использовать меньший из двух объемов выборки $n=\min\ (n_{\rm B},n_{\rm H})$.
- 4.2.1.2. С помощью значения \overline{x} , вычисленного по формуле (1), и о определяют величины $Q_{\rm B}$ и $Q_{\rm H}$ по формулам (12) и (13). 4.2.1.3. Если величина $Q_{\rm B} \gg k_{\rm GB}$ и $Q_{\rm H} \gg k_{\rm GH}$, партию продукции
- 4.2.1.3. Если величина $Q_{\rm B} > k_{\sigma \rm B}$ и $Q_{\rm H} > k_{\sigma \rm H}$, партию продукции принимают. Если величина $Q_{\rm B} < k_{\sigma \rm B}$ или $Q_{\rm H} < k_{\sigma \rm H}$, партию продукции бракуют (см. справочное приложение 2, пример 15).

Способ 2.

- 4.2.1.4. По заданному объему партии N и выбранному уровню контроля из табл. 1 находят код объема выборки. По коду объема выборки и установленным значениям $AQL_{\rm B}$ и $AQL_{\rm H}$ из табл. 18—19 находят объемы выборки $n_{\rm B}$ и $n_{\rm H}$ и допускаемый уровень дефектности $M_{\sigma \rm B}$ и $M_{\sigma \rm H}$. В дальнейшем для контроля следует использовать меньший из двух объемов выборки $n=\min\ (n_{\rm B}, n_{\rm H})$. Из этих же таблиц по коду объема выборки находят коэффициент v.
- 4.2.1.5. С помощью значения \bar{x} , вычисленного по формуле (1), σ и υ определяют величины $Q_{\rm B}^*$ и $Q_{\rm H}^*$ по формулам (14) и (15). По значениям величин $Q_{\rm B}^*$, $Q_{\rm H}^*$ из табл. 20 находят оценочные значения входного уровня дефектности $\hat{p}_{\rm B}$ и $\hat{p}_{\rm H}$, а также $\hat{p}=\hat{p}_{\rm B}+\hat{p}_{\rm H}$ партии.
- 4.2.1.6. Если $p_{\scriptscriptstyle B} \! < \! M_{\scriptscriptstyle {\rm GB}}$ и $p_{\scriptscriptstyle H} \! < \! M_{\scriptscriptstyle {\rm GH}}$ и p меньше или равно большему значению $M_{\scriptscriptstyle {\rm GB}}$ или $M_{\scriptscriptstyle {\rm GH}}$, партию продукции принимают. Ес-

- ли $\widehat{p_{\rm B}} > M_{\rm GB}$ или $\widehat{p_{\rm H}} > M_{\rm GH}$, или хотя бы одна из величин $Q_{\rm B}^*$ и $Q_{\rm H}^*$ отрицательна, партию продукции бракуют (см. справочное приложение 2, пример 16).
- 4.2.2. Верхней и нижней заданным границам контролируемого параметра соответствует одинаковый AQL.

Способ 2.

- 4.2.2.1. По заданному объему партии N и выбранному уровню контроля из табл. 1 находят код объема выборки. По коду объема выборки и установленному значению AQL из табл. 18—19 находят объем выборки n и допускаемый уровень дефектности M_{\circ} . Из этих же таблиц по коду объема выборки находят коэффициент v.
- 4.2.2.2. С помощью значения \bar{x} , вычисленного по формуле (1), σ и v определяют величины $Q_{\rm B}^*$ и $Q_{\rm H}^*$ по формулам (14) и (15). По значениям величин $Q_{\rm B}^*$ и $Q_{\rm H}^*$ из табл. 20 находят оценочное значение входного уровня дефектности $\hat{p}_{\rm B}$ и $\hat{p}_{\rm H}$, а также $\hat{p}=\hat{p}_{\rm B}+\hat{p}_{\rm H}$.
- 4.2.2.3. Если $p \ll M_{\sigma}$, партию продукции принимают. Если $\widehat{p} > M_{\sigma}$ или хотя бы одна из двух величин $Q_{\rm B}^*$ или $Q_{\rm H}^*$ отрицательна, партию продукции бракуют (см. справочное приложение 2, пример 17).

Графический способ.

- 4.2.2.4. По заданному объему партии N и выбранному уровню контроля из табл. 1 находят код объема выборки. По коду объема выборки из табл. 18 находят объем выборки n.
 - 4.2.2.5. С помощью значения \bar{x} , вычисленного по формуле
- (1), и σ определяют величины $\frac{\sigma}{T_{\rm B}-T_{\rm H}}$ и $\frac{\overline{x}-T_{\rm H}}{T_{\rm B}-T_{\rm H}}$.
- 4.2.2.6. По коду объема выборки и установленному значению AQL по черт. 49—61 выбирают соответствующую кривую. Точку $\left(\frac{\mathbf{\sigma}}{T_{\mathrm{B}}-T_{\mathrm{H}}}\right)$ наносят на номограмму.
- 4.2.2.7. Если точка будет расположена внутри кривой, партию продукции принимают, в противном случае ее бракуют (см. черт. 62 и справочное приложение 2, пример 18).

Таблица 1

	Ke	од объема в	ыборки при	уровне ког	троля
Объем партии	Специ	альном		Общем	
оодем партик	<i>s</i> -3	s-4	I	H	111
2— 8		1			С
9 15				${\mathbf{B}}$	D
16 25			B	С	Е
26— 50			С	D	F
51— 90		B	D	E	G
91— 150		С	E	F	Н
151— 280	} ↓ B	D	F	G	I
281⊢ 500	С	E	G	H/I*	J
501— 1200	Д	F	Н	J	K.
1201— 3200	E	G	I	К	L
3201— 10000	F	Ħ	ј	L	M.
10001 35000	G	I	K	M	N.
35001150000	Н	J	L	N	P
150001—500000		К	M	Р	1
Св. 500001		†	N	1	

Примечания: 1. * — применяют *Н* для объемов партии 281—400 и 1 для объемов партии 401—500 2. ↓ — применяют первый код под стрелкой. 3. ↑ — применяют первый код над стрелкой.

Таблица 2

Установленное значение AQL, %	Значение AQL, применяемые для выбора плана контроля, %
До 0,049	0.04
OT 0,050—0,069	0,065
0,070-0,109	0,10
0,110-0,164	0,15
0,165-0,279	0,25
0,280-0,439	0,40
0,440-0,699	0,65
0,700—1,09	1,0
1,10 -1,64	1,5
1.65 - 2.79	2,5
2,80 —4,39	4,0
4,40 —6,99	6,5
7,00 —10,9	10,0
11.016.4	15,0

s-план

						. 17 WOLL						,	Габлі	ица З
			Коэф	официент <i>f</i>		-план D при A	QL (нор	мальный	контро:	ль), %				
Объем вы- борки п	0,04	0,65	0,10	0,15	0,25	0,40	0,65	1,00	1,50	2,50	4,00	6,50	10,00	15,00
3		-	-		_	_	_		-	0,436	0,453	0,475	0,502	0,538
4		_	_			_		0,339	0,353	0,374	0,399	0,432	0,472	0,528
5	-		<u> </u>	-	-	_	0,294	0,308	0,323	0,346	0,372	0,408	0,452	0,511
7		_	_	-	0,242	0,253	0,266	0,280	0,295	0,318	0,345	0,381	0,425	0,485
10		-	_	0,214	0,224	0,235	0,248	0,261	0,276	0,298	0,324	0,359	0,403	0,460
15	0,182	0,188	0,195	0,202	0,211	0,222	0,235	0,248	0,262	0,284	0,309	0,344	0,386	0,442
20	0,177	0,183	0,190	0,197	0,206	0,216	0,229	0,242	0,255	0,277	0,302	0,336	0,377	0,433
25	0,174	0,180*	0,187	0,193	0,203	0,212	0,225	0,238	0,251	0,273	0,297	0,331	0,372	0,426
35	0,170	0,176	0,183	0 ,189	0,198	0,208	0,220	0,232	0,245	0,266	0,291	0,323	0,364	0,416
50	0,166	0,172	0,178	0,184	0,194	0,203	0,214	0,227	0,241	0,261	0,284	0,317	0.356	0,408
7 5	0,162	0,168	0,174	0,181	0,189	1	0,211	Į.				1.	[0.399
100	0,160	0,166	0,172	0,179	1		0,208			ŀ			1	0,395
150	0,158	0,163	0,170	0,176	0,185	J	0,206	J '	0,230		1		1	0,388
200	0,157	0,163	0,168	0,175	0,183	0,193	0,203	0,215	0,228	0,248	0,269	0,302	0,338	0,386
Объем	0,65	0,10	0,15	0,25	0,40	0,65	1,00	1,50	2,50	4,00	6,50	10,00	15,00	
выборки <i>п</i>	Коэффициент f для MSD при AQL (усиленный контроль), %													

TOCT
20736-75
Стр.
1 9

Объем			Коэс	рфициент	f для MS	SR при .	AQL (H	рмальн	ый контр	оль), %)			
выборки п	0,04	0,065	0,10	0,15	0,25	0,40	0,65	1,00	1,50	2,50	4,00	6,50	10,00	15,00
3				_	_					0,833	0,865	0,507	0,958	1,028
4		-	→	-		<u> </u>	<u> </u>	0,756	0,788	0,836	0,891	0,965	1,056	1,180
5		-	-	_	_	_	0,730	0,764	0,801	0,857	0,923	1,011	1,118	1,263
7	-	_	<u>-</u>		0,695	0, 7 27	0,765	0,804	0,846	0,910	0,985	1,086	1,209	1,374
10		_		0 ,529	0,553	0,579	0,610	0,642	0,677	0,730	0,793	0,876	0,977	1,112
15	0,444	0,460	0,477	0,493	0,517	0,542	0,572	0,602	0,637	0,688	0,748	0,830	0,928	1,058
2 5	0,416	0,432	0,447	0,463	0,486	0,509	0,537	0,567	0,600	0,649	0,707	0,785	0,879	1,004
30	0,411	0,426	0,442	0,457	0,480	0,503	0,531	0,560	0,593	0,642	0,699	0,776	0,870	0,993
40	0,402	0,417	0,432	0,447	0,469	0,492	0,519	0,548	0,580	0,628	0,684	0,761	0,852	0,968
60	0,390	0,405	0,419	0,434	0,455	0,478	0,505	0,533	0,564	0,608	0; 6 66	0,740	0,830	0,949
85	0,382	0,398	0,412	0,427	0,448	0,470	0,497	0,525	0,555	0,602	0,656	0,729	0,818	0,934
115	0,378	0,392	0,406	0,421	0,442	0,464	0,490	0,517	0,548	0,594	0,648	0,720	0,808	0,923
1 7 5	0,371	0,384	0,399	0,413	0,434	0,455	0,481	0,508	0,538	0,584	0,637	0,708	0,794	0,908
230	0,369	0,384	0,397	0,412	0,432	0,454	0,480	0,507	0,536	0,582	0,633	0,706	0,792	0,906
Объем	0,065	0,10	0 ,15	0,25	0,40	0,65	1,00	1,50	2,50	4,00	6,50	10,00	15,00	<u> </u>
выборки <i>п</i>	Коэффициент f для MSR при AQL (усиленный контроль),%													

			Объем в	ыборки	при конт	гроле по	количе	ственно	му приз	наку для	плана			
Код объема			1				σ	при АQ	L					Объем выборки при контроле по альтер-
выборки	S	R	0,10	0,10 / 0,15		0,40	0,65	1,0	1,5	2,5	4,0	6,5	10,0	нативному признаку
В	3	3											 	3
С	4	4					↓ ↓	2	2	2	2	3	3	5
D	5	5			1 ↓		2	2	2	3	3	3	4	8
E	7	7		 	2	2	3	3	3	4	4	5	5	13
F	10	10	 	3	3	3	4	4	4	5	5	6	7	20
G	15	15	4	4	4	5	5	6	6	7	8	9	11	32
Н	20	2 5	5	5	6	6	7	7	8	9	10	12	14	50
I	25	30	6	6	7	8	8	9	10	11	13	15	17	
J	35	4 0	8	9	9	10	11	12	14	15	18	20	24	80
К	50	60	11	12.	13	14	16	17	19	22	25	29	3 3	125
L	7 5	8 5	16	17	19	21	23	2 5	28	32	36	42	49	200
M	100	115	22	23	25	27	30	33	36	42	48	55	64	315
N	150	175	31	34	37	40	44	49	54	61	70	82	95	500
P	200	230	42	45	49	54	59	6 5	71	81	93	109	127	800

Примечание. ↓— выбирают первый объем выборки под стрелкой

Vor	Объем	l			Контр	ольный	нормати	в $k_{_{\mathcal{S}}}$ (но	рмальнь	ій контр	оль) прі	AQL,	%	·	
Код объема выборки	вы б орки п	0,04	0,065	0,10	0,15	0,25	0,40	0,65	1,00	1,50	2,50	4,00	6,50	10,00	15,00
В	3									 	1,12	0,958	0,566	0,341	
С	4							↓	1,45	1,34	1,17	1,01	0,814	0,617	0,393
D	5					 	 	1, 6 5	1,53	1,40	1,24	1,07	0,874	0,675	0,456
E	7					2,00	1,88	1,75	1,62	1,50	1,33	1,15	0,955	0,755	0,536
F	10		 		2,24	2,11	1,98	1,84	1,72	1,58	1,41	1,23	1,03	0,828	0,611
G	15	2,64	2 ,53	2,42	2,32	2 ,20	2,06	1,91	1,79	1,65	1,47	1,30	1,09	0,886	0,664
H	20	2,69	2,58	2,47	2,36	2,24	2,11	1,96	1,82	1,69	1,51	1,33	1,12	0,917	0,695
1	25	2,72	2,61	2,50	2,40	2,26	2,14	1,98	1,85	1,72	1,53	1,35	1,14	0,936	0,712
J	35	2,77	2,65	2,54	2,4 5	2,31	2,18	2,03	1,89	1,76	1,57	1,39	1,18	0,969	0,745
K	50	2,83	2,71	2,60	2,50	2,35	2,22	2,08	1,93	1,80	1,61	1,42	1,21	1,00	0,774
L	75	2,90	2,77	2,66	2,55	2,41	2,27	2,12	1,98	1,84	1,65	1,46	1,24	1,03	0,804
M	100	2,92	2,80	2,69	2,58	2 ,43	2,29	2,14	2,00	1,86	1,67	1,48	1,26	1,05	0,819
N	150	2,96	2,84	2,73	2,61	2,47	2,33	2,18	2,03	1,89	1,70	1,51	1,29	1,07	0,841
P	200	2,97	2,85	2 ,73	2,62	2,47	2,33	2,18	2,04	1,89	1,70	1,51	1,29	1,07	0,845
Код объема выборки	Объем выборки	0 ,065	0,10	0,15	0,25	0,40	0,65	1,00	1,50	2,50	4,00	6,50	10,00	15,00	
	n	Контрольный норматив k_s (усиленный контроль) при AQL , 9								, %	·····				

s-план

				Контрольнь	ій норма	тив $k_{_{\mathcal{S}}}$	(ослабле	енный ко	нтроль)	при АС	QL, %			
Код объема выборки	Объем выборки п	0,04	0,065	0,10	0,15	0,25	0,40	0,65	1,00	1,50	2,50	4,00	6,50	10,00
В	3									1,12	0,958	0,765	0,566	0,34
C	3		\ \							1,12	0,958	0,765	0,566	0,34
D	3									1,12	0,958	0,76 5	6,566	0,34
E	3	•								1,12	0,958	0,76 5	0,566	0,34
F	4						 ↓	1,45	1,34	1,17	1,01	0,814	0,617	0,39
G	5				{	l ↓	1,65	1,53	1,40	1,24	1,07	0,874	0,67 5	0,45
Н	7			[2,00	1,88	1,7 5	1,62	1,50	1,33	1,15	0,955	0,755	0,53
I	10	ļ	↓	2,,24	2,11	1,98	1,84	1,72	1,58	1,41	1,23	1,03	0,828	0,61
J	15	2,53	2,42	2,32	2,20	2,06	1,91	1,79	1,65	1,47	1,30	1,09	0,886	0,66
K	20	2,58	2,47	2,36	2,24	2,11	1,96	1,82	1,69	1,51	1,33	1,12	0,917	0,69
L	25	2,61	2,50	2,40	2,26	2,14	1,98	1,85	1,72	1,53	1,35	1,14	0,936	0,71
M	35	2,65	2,55	2,45	2,31	2,18	2,03	1,89	1,75	1,57	1,39	1,18	0,969	0,74
N	50	2,71	2,60	2,50	2,35	2,22	2,08	1,93	1,80	1,61	1,42	1,21	1,00	0,77
P	79	2,77	2,66	2,55	2,41	2,27	2,12	1,98	1,84	1,65	1,46	1,24	1,03	0,80
														[
	1 1		ļ.)	ļ	l	ļ	ļ	l	ļ]	ļ		ļ

	LOCI
	20736-75
	Стр.
I	N

				J	Іопускає	мый ур	овень де	дефектности $M_{_{S}}$, % (нормальный контроль) при AQL , %									
Код объема выборки	Объем вы б орк и п	0,0	4	0,005	0,10	0,15 0,25		0,40	0,65	1,00	1,50	2,50	4,00	6,50	10 ,0 0	15,00	
В	3									 	ļ 	7,59	18,86	26,94	33,69	40,47	
С	4							1	+	1,53	5,50	10,92	16,45	22,86	29,45	36,90	
D	5		:				! ↓ ¦	ļ	1,33	3,32	5,83	9,80	14,39	20,19	26,56	33,99	
E	7					! ↓	0,442	1,06	2,14	3,55	5,35	9,40	12,20	17,35	23,29	30,5 0	
F	10	+		1	 	0,349	0,716	1,30	2,17	3,26	4,77	7,29	10,54	15,17	20,74	27,57	
G	15	0,0)9 9	0,186	0,312	0,503	0,818	1,31	2,11	3,0 5	4,31	6,56	9,46	13,71	18,94	25,61	
H	20	0,1	35	0,228	0,365	0,544	0,846	1,29	2, 0 5	2,95	4,09	6,17	8,92	12,99	18,03	24,53	
I	25	0,1	55	0,250	0,380	0,551	0,877	1,29	2,00	2,86	3,97	5,97	8,63	12,57	17,51	23,97	
J	35	0,1	170	0 ,2 64	0,388	0,535	0,847	1,23	1,87	2,68	3,70	5,57	8,10	11,87	16,65	2 2,91	
K	5 0	0,1	163	0,250	0,363	0,5 03	0,789	1,17	1,71	2,49	3,45	5,20	7,61	11,23	15,87	22,00	
$oldsymbol{r}$	75	0,1	47	0,228	0,330	0,467	0,720	1,07	1,60	2,29	3,20	4,87	7,15	10,63	15,13	21,11	
M	100	0,1	145	0,220	0,317	0,447	0,689	1,02	1,53	2,20	3,07	4,69	6,91	10,32	14,75	20,66	
N	150	0,1	134	0,203	0,293	0,413	0,638	0,949	1,43	2,05	2,89	4,43	6,5 7	9,88	14,20	2 0,02	
P	200	0,1	1 3 5	0,204	0,294	0,414	0,637	0,945	1,42	2,04	2,87	4,40	6,53	9,81	14,12	19,92	
Код объема выборки	Объем выборки	0,0	065	0,10	0,15	0,25	0,40	0,65	1,00	1,50	2,50	4,00	6,50	10,00	15,00		
	n	Доџускаемый уровень дефектности $M_{_{\mathcal{S}}},$ % (усиленный контроль) при $AQL,$ %)						

s-план

			Допуска	емый ур	о вень де	фектно	сти М _s ,	% (осла	бленны	й контро	оль) при	AQL,	%	
Код объема выборки	а Объем выборки п	0,04	0,065	0,10	0,15	0,25	0,40	0,65	1,00	1,50	2,5 0	4,00	6,50	10,00
В	3									7,59	18,86	2 6,94	33,69	40,4
С	3									7,59	18,86	26,94	33,69	40,4
D	3									7,59	18,86	26,94	33,69	40,4
Е	3							\	1	7,59	18,86	26,94	33,69	40,4
F	4						. ↓	1,53	5,50	10,92	16,45	22,86	29,45	36,9
G	5				•	↓	1,33	3,32	5 ,83	9,80	14,39	20,19	26,56	33,9
Н	7			↓	0,422	1,06	2,14	3,55	5,35	8,40	12,20	17,35	2 3, 2 9	30,5
I	10	1	i	0,349	0,716	1,30	2,17	3,26	4,77	7,29	10,54	15,17	20,74	27,5
J	15	0,186	0,312	0,503	0,818	1,31	2,11	3,05	4,31	6,56	9,46	13,71	18,94	25,6
К	20	0,228	0,365	0,544	0,846	1,29	2,05	2,95	4,09	6,17	8 ,92	12,99	18,03	24,5
L	25	0,250	0,380	0,551	0,877	1,29	2,00	2,86	3,97	5,97	8,63	12,57	17,51	23,9
M	35	0,266	0,383	0,540	0,833	1,23	1,45	2,71	3,70	5,64	8,09	11,87	16,69	22,9
N	50	0,25 0	0,363	0,503	0,789	1,17	1,71	2,49	3,45	5,20	7,61	11,23	15,87	22,0
P	75	0,228	0,330	0,467	0,720	1,07	1,60	2,29	3,20	4,87	7,15	10,63	15,13	21,1

Примечания к табл. 6—9: 1. ↓— Выбирают первый план под стрелкой. 2. Если объем выборки *п* равен или превосходит объем партии *N*, следует перейти к сплошному контролю.

}	гост
	20736-
	75 Ctp.
ł	25

<u></u>								5-IIVIAI						
•				0	ценочно	значен	ие входи	юго уро	вня деф	ектн о сти р ,	%, при п			
Q	3	4	5	7	10	15	20	25	35	5 0	75	100	150	200
0 0,1 0,2 0,3 0,31 0,32 0,33 0,34 0,35 0,36 0,37	50,00 47,24 44,46 41,63 41,35 41,06 40,77 40,49 40,20 39,91 39,62	50,00 46,67 43,33 40,00 39,67 39,33 39,00 38,67 38,33 38,00 37,67	46,44 42,90 39,37 39,02 38,67 38,32 37,97	46,26 42,54 38,87 38,50 38,14 37,78 37,42 37,06	50,00 46,16 42,35 38,60 38,23 37,86 37,49 37,12 36,75 36,38 36,02	46,10 42,24 38,44 38,06 37,69 37,31 36,94 36,57	46,08 42,19 38,37 37,99 37,62 37,24 36,87 36,49	50,00 46,06 42,16 38,33 37,95 37,58 37,20 36,83 36,45 36,08 35,71	50,00 46,05 42,13 38,29 37,91 37,54 37,16 36,78 36,41 36,04 35,66	50,00 46,04 42,11 38,27 37,89 37,51 37,13 36,75 36,38 36,01 35,63	50,00 46,03 42,10 38,25 37,87 37,49 37,11 36,73 36,36 35,98 35,61	50,00 46,03 42,09 38,24 37,86 37,48 37,10 36,72 36,35 35,97 35,60	50,00 46,02 42,08 38,22 37,84 37,46 37,09 36,71 36,33 35,96 35,59	50,00 46,00 42,00 38,20 37,8 37,40 36,7 36,30 35,9 35,5
0,38 0,39 0,40 0,41 0,42 0,43 0,44 0,45 0,46	39,03 38,74 38,45 38,15	37,00 36,67 36,33 36,00 35,67	36,23 35,88 35,54 35,19 34,85 34,50	35,62 35,26 34,90 34,55 34,19	35,63 35,29 34,93 34,57 34,21 33,85 33,49 33,13 32,78	35,10 34,73 34,37 34,00	35,01 34,65 34,28 33,92 33,56 33,20 32,84	35,34 34,97 34,60 34,24 33,87 33,51 33,15 32,79 32,43	35,29 34,93 34,56 34,19 33,83 33,46 33,10 32,74 32,38	35,26 34,89 34,53 34,16 33,79 33,43 33,07 32,71 32,35	35,24 34,87 34,50 34,13 33,77 33,40 33,04 32,68 32,32	35,23 34,86 34,49 34,12 33,76 33,39 33,03 32,67 32,31	35,22 34,85 34,48 34,11 33,74 33,38 33,02 32,66 32,30	35,2 34,8 34,4 34,1 33,7 33,3 33,0 32,6 32,2
0,47 0,48 0,49 0,50 0,51 0,52	35,44	34,00 33,67 33,33 33,00	32,78 32,44 32,10	32,43 32,08 31,74	32,42 32,07 31,72 31,37 31,02 30,67	31,85 31,50 31,15 30,80	32,12 31,77 31,41 31,06 30,71 30,36	32,07 31,72 31,36 31,01 30,66 30,31	32,02 31,67 31,31 30,96 30,61 30,26	31,99 31,63 31,28 30,93 30,57 30,23	31,96 31,61 31,25 30,90 30,55 30,20	31,96 31,60 31,24 30,89 30,54 30,19	31,94 31,58 31,23 30,87 30,52 30,17	31,9 31,5 31,2 30,8 30,5 30,1

Q					Оцено	чное зн	ачение г	ходн ог о	уровня	дефектност (и <i>р</i> , %, при	n		
*	3	4	5	7	10	15	20	25	35	50	75	100	150	200
0,53 0,54 0, 5 5 0,56	34,82 34,51 34,20 33,88	32,00 31,67	31,42 31,08 30,74 30,40	30,36 30,01	29,98	30,10 29,76 29,41 29,07	30,01 29,67 29,32 28,98	29,96 29,62 29,27 28,93	29,91 29,57 29,22 28,88	29,88 29,53 29,19 28,85	29,85 29,51 29,16 28,82	29,84 29,49 29,15 28,81	29,83 29,48 29,14 28,79	29,89 29,44 29,13 28,79
0,57 0,58 0,59 0,60 0,61 0,62 0,63 0,64 0,65 0,66	33,25 32,43 32,61 32,28 31,96 31,63 31,30	30,67 30,33 30,00 29,67 29,33 29,00 28,67 28,33	29,7 3	28,99 28,66 28,32 27,98 27,65 27,32 26,99	28,28 27,94 27,60 27,27 26,94 26,61 26,28	28,39 28,05 27,72 27,39 27,05 26,72 26,39 26,07	27,96	28,25 27,92 27,58 27,25 26,92 26,59 26,26	28,54 28,20 27,87 27,53 27,20 26,87 26,54 26,21 25,88 25,56	28,51 28,17 27,83 27,50 27,16 26,83 26,50 26,18 25,85 25,53	28,48 28,14 27,81 27,47 27,14 26,81 26,48 26,15 25,83 25,51	28,47 28,13 27,79 27,46 27,13 26,80 26,47 26,14 25,82 25,49	28,45 28,12 27,78 27,45 27,11 26,78 26,45 26,13 25,80 25,48	28,4 28,1 27,7 27,4 27,1 26,7 26,4 26,1 25,8 25,4
0,67 0,68 0,69 0,70 0,71 0,72 0,73 0,74 0,75	29,27 28,92 28,57 28,22 27,86	26,00 25,67	26,73 26,40 26,07 25,74 25,41 25,09 24,76 24,44 24,11 23,79	25,68 25,35 25,03 24,71 24,39 24,07 23,75	25,31 24,99 24,67 24,35 24,03 23,72 23,41	25,10 24,78 24,46 24,15 23,83 23,52	25,33 25,01 24,70 24,38 24,06 23,75 23,44 23,13 22,83 22,52	24,33 24,02 23,71 23,40	25,24 24,92 24,60 24,29 23,98 23,67 23,36 23,05 22,75 22,44	25,21 24,89 24,57 24,26 23,95 23,64 23,33 23,02 22,72 22,42	25,19 24,87 24,55 24,24 23,92 23,61 23,31 23,00 22,70 22,40	25,17 24,86 24,54 24,23 23,91 23,60 23,30 22,99 22,69 22,39	25,16 24,84 24,53 24,21 23,90 23,59 23,29 22,68 22,68 22,38	25,16 24,8 24,5 24,2 23,9 23,5 23,2 22,6 22,6 22,3

FOCT
20736-
-75 C
тр. 27

					Оцено	чное зна	ичение в	отонгох	уровня	дефект ност	∧ г <i>р</i> , %, при	n		
Q	3	4	5	7	10	15	20	25	35	50	75	100	150	200
0,77 0,78 0,79 0,80 0,81 0,82 0,83 0,84 0,85 0,86 0,87 0,88	22,84 22,42	24,00 23,67 23,33 23,00 22,67 22,33 22,00 21,67 21,33 21,00	23,47 23,15 22,83 22,51 22,19 21,87 21,56 21,24 20,93 20,62 20,31 20,00 19,69	22,81 22,50 22,19 21,88 21,58 21,27 20,97 20,67 20,67 20,07 19,78 19,48 19,19	22,48 22,18 21,87 21,57 21,27 20,98 20,68 20,39 20,10 19,81 19,52 19,23 18,95	21,40 21,10 20,81 20,52 20,23 19,94 19,66 19,38 19,10	21,33 21,04 20,75 20,46 20,17 19,89 19,60 19,32	22,18 21,89 21,59 21,29 21,00 20,71 20,42 20,14 19,86 19,57 19,30 19,02 18,74	22, 14 21, 85 21, 55 21, 56 20, 97 20, 68 20, 39 20, 11 19, 82 19, 54 19, 54 19, 72	22,12 21,82 21,53 21,23 20,94 20,65 20,37 20,09 19,80 19,53 19,25 18,98 18,70	22,10 21,80 21,51 21,22 20,93 20,64 20,35 20,07 19,79 19,51 19,24 18,96 18,69	22,09 21,79 21,50 21,21 20,92 20,63 20,35 20,06 19,78 19,51 19,23 18,96 18,69	22,08 21,78 21,49 21,20 20,91 20,62 20,34 20,06 19,78 19,50 19,22 18,95 18,68	22,08 21,78 21,49 21,20 20,62 20,62 20,34 20,05 19,77 19,50 19,22 18,95 18,68
0,91	21,11 20,66 20,20 19,74 19,25 18,76 18,25 17,74 17,21	19,33 19,00 18,67 18,33 18,00 17,67 17,33 17,00	17,56 17,25 16,96 16,66	18,61 18,33 18,04 17,76 17,48 17,20 16,92 16,65 16,37	18,39 18,11 17,84 17,57 17,29 17,03 16,76 16,49 16,23	18,27 18,00 17,73 17,46 17,20 16,94 16,68 16,42 16,16	18,22 17,96 17,69 17,43 17,17 16,91 16,65 16,39 16,14	18,47 18,20 17,94 17,67 17,41 17,15 16,89 16,63 16,38 16,13	18,45 18,18 17,91 17,65 17,39 17,13 16,88 16,62 16,37 16,12	18,43 18,17 17,90 17,64 17,38 17,12 16,87 16,61 16,36 16,12	18,42 18,16 17,89 17,63 17,37 17,12 16,86 16,61 16,36 16,11	18,42 18,15 17,89 17,63 17,37 17,11 16,86 16,61 16,36 16,11	18,41 18,15 17,88 17,62 17,36 17,11 16,86 16,60 16,36 16,11	18,41 18,15 17,88 17,62 17,36 17,11 16,85 16,60 16,11

														
1,04 1,05 1,06 1,07 1,08 1,09 1,10 1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,18 1,19 1,20					Оцено	чное зна	ачение в	ходного	уровня	дефектност	л ∧ и <i>p</i> , %, при	n		
	3	4	5	7	10	15	20	25	35	50	75	100	150	200
1,04 1,05 1,06 1,07 1,08 1,09 1,10 1,11 1,12 1,13 1,14 1,15 1,16 1,17	14,31 13,66 12,98 12,27 11,51 10,71 9,84 8,89 7,82 6,60	15,67 15,33 15,00 14,67 14,33 14,00 13,67 13,33 13,00 12,67 12,33 12,00 11,67 11,33 11,00 10,67	15,48 15,19 14,91 14,62 14,33 14,06 13,76 13,48 13,20 12,93 12,65 12,37 12,10 11,83 11,56 11,29	15,03 14,77 14,51	13,26 13,03 12,80 12,57 12,34 12,12 11,90	15,17 14,92 14,68 14,44 14,20 13,97 13,74 13,51 13,28 13,05 12,83 12,61 12,39 12,18 11,96 11,75	15,15 14,91 14,67 14,44 14,20 13,97 13,74 13,52 13,29 13,07 12,85 12,63 12,63 12,42 12,21 12,00 11,79	14,21 13,98 13,75 13,52 13,30 13,08 12,86 12,65 12,44	15,15 14,91 14,67 14,44 14,21 13,98 13,76 13,54 13,31 13,10 12,88 12,67 12,46 12,25 12,04 11,84	15,15 14,91 14,68 14,45 14,22 13,99 13,77 13,54 13,32 13,11 12,89 12,68 12,47 12,26 12,06 11,85	15,15 14,91 14,68 14,45 14,22 13,99 13,77 13,55 13,33 13,12 12,90 12,69 12,48 12,28 12,07 11,87	15,15 14,91 14,68 14,45 14,22 14,00 13,77 13,55 13,34 13,12 12,91 12,70 12,49 12,28 12,08 11,88	15,15 14,91 14,68 14,45 14,22 14,00 13,78 13,56 13,34 13,12 12,91 12,70 12,49 12,29 12,08 11,88	15,15 14,91 14,68 14,45 14,23 14,00 13,78 13,56 13,34 13,13 12,92 12,70 12,50 12,29 12,09 11,89
1,19	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	10,67 10,33 10,00 9,67 9,33 9,00 8,67 8,33 8,00 7,67 7,33 7,00	11,29 11,02 10,76 10,50 10,23 9,97 9,72 '9,46 9,21 8,96 8,71 8,46	11,56 11,33 11,10 10,87 10,65 10,42 10,20 9,98 9,77 9,55 9,34 9,13	11,46 11,24 11,03	11,54	11,79 11,58 11,38 11,18 10,98 10,78 10,59 10,40 10,21 10,02 9,84 9,65	11,61 11,41 11,21 11,01 10,81 10,62	11,84 11,63 11,43 11,24 11,04 10,85 10,66 10,47 10,29 10,10 9,92 9,74	11,85 11,65 11,46 11,26 11,07 10,88 10,69 10,50 10,32 10,13 9,95 9,78	11,87 11,67 11,47 11,28 11,09 10,90 10,71 10,52 10,34 10,16 9,98 9,80	11,88 11,68 11,48 11,29 11,09 10,91 10,72 10,53 10,35 10,17 9,99 9,82	11,88 11,69 11,49 11,30 11,10 10,91 10,73 10,54 10,36 10,18 10,00 9,83	11,89 11,69 11,49 11,30 11,11 10,92 10,73 10,55 10,37 10,19 10,01 9,83

Q					Оцено	чное зн	ачение 1		уровня	дефектност	^ ги <i>р</i> , %, пр	i n		
	3	4	5	7	10	15	20	25	35	50	75	100	150	200
1,30 1,31 1,32 1,33 1,34 1,35 1,36 1,37 1,38 1,39	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	6,67 6,33 6,00 5,67 5,33 5,00 4,67 4,33 4,00 3,67	8,21 7,97 7,73 7,49 7,25 7,02 6,79 6,56 6,33 6,10	8,93 8,72 8,52 8,32 8,12 7,92 7,73 7,54 7,35 7,17	9,22 9,03 8,85 8,66 8,48 8,30 8,12 7,95 7,77 7,60	9,40 9,22 9,04 8,86 8,69 8,52 8,35 8,18 8,01 7,85	9,48 9,30 9,12 8,95 8,78 8,61 8,44 8,28 8,12 7,96	9,52 9,34 9,17 9,00 8,83 8,66 8,50 8,33 8,17 8,01	9,57 9,39 9,22 9,05 8,88 8,72 8,55 8,39 8,24 8,08	9,60 9,43 9,26 9,02 8,92 8,76 8,60 8,44 8,28 8,12	9,63 9,46 9,29 9,12 8,95 8,79 8,63 8,47 8,31 8,16	9,64 9,47 9,30 9,13 8,97 8,81 8,65 8,49 8,33 8,18	9,65 9,48 9,31 9,15 8,98 8,82 8,66 8,50 8,35 8,19	9,66 9,49 9,32 9,15 8,99 8,83 8,67 8,51 8,35 8,20
1,40 1,41 1,42 1,43 1,44 1,45 1,46 1,47 1,48	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	3,33 3,00 2,67 2,33 2,00 1,67 1,33 1,00 0,67 0,33	5,88 5,66 5,44 5,23 5,01 4,81 4,60 4,39 4,19 3,99	6,98 6,80 6,62 6,45 6,27 6,10 5,93 5,77 5,60 5,44	7,44 7,27 7,10 6,94 6,78 6,63 6,47 6,32 6,17 6,02	7,69 7,53 7,37 7,22 7,07 6,92 6,77 6,63 6,48 6,34	7,80 7,64 7,49 7,34 7,19 7,04 6,90 6,75 6,61 6,48	7,86 7,70 7,55 7,40 7,26 7,11 6,97 6,83 6,69 6,55	7,92 7,77 7,62 7,47 7,33 7,18 7,04 6,90 6,77 6,63	7,97 7,82 7,67 7,52 7,38 7,24 7,10 6,96 6,82 6,69	8,01 7,86 7,71 7,56 7,42 7,28 7,14 7,00 6,86 6,73	8,02 7,87 7,73 7,58 7,44 7,30 7,16 7,02 6,88 6,75	8,04 7,89 7,74 7,60 7,46 7,31 7,18 7,04 6,90 6,77	8,05 7,90 7,75 7,61 7,47 7,33 7,19 7,05 6,91 6,78
1,50 1,51 1,52 1,53 1,54 1,55	0,00 0,00 0,00 0,00 0,00 0,00	0,00 0,00 0,00 0,00 0,00 0,00	3,80 3,61 3,42 3,23 3,05 2,87	5,28 5,13 4,97 4,82 4,67 4,52	5,87 5,73 5,59 5,45 5,31 5,18	6,20 6,06 5,93 5,80 5,67 5,54	6,34 6,20 6,07 5,94 5,81 5,69	6,41 6,28 6,15 6,02 5,89 5,77	6,50 6,36 6,23 6,11 5,98 5,86	6,55 6,42 6,29 6,17 6,04 5,92	6,60 6,47 6,34 6,21 6,09 5,97	6,62 6,49 6,36 6,24 6,11 5,99	6,64 6,51 6,38 6,26 6,13 6,01	6,65 6,52 6,39 6,27 6,15 6,02

								s-n x ai	i			П	оодолжени	е табл. 10
				C)ценочно	е значе	ние вхо	цного ур	овн я деф	ректности <i>р</i>	. %, при <i>п</i>			
Q 	3	4	5	7	1,0	15	20	2 5	35	50	75	100	150	200
1,56 1,57 1,58 1,59	0,00 0,00 0,00 0,00	0,00 0,00 0,00 0,00	2,69 2,52 2,35 2,19	4,38 4,24 4,10 3,96	5,05 4,92 4,79 4,66	5,41 5,29 5,16 5,04	5,56 5,44 5,32 5,20	5,65 5,53 5,41 5,29	5,74 5,62 5,50 5,38	5,80 5,68 5,56 5 ,45	5,85 5,73 5,61 5,50	5,87 5,75 5,64 5,52	5,89 5,78 5,66 5,54	5,90 5,79 5,67 5,56
1,60 1,61 1,62 1,63 1,64 1,65 1,66 1,67 1,68 1,69	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	2,03 1,87 1,72 1,57 1,42 1,28 1,15 1,02 0,89 0,77	3,83 3,69 3,57 3,44 3,31 3,19 3,07 2,95 2,84 2,73	4,54 4,41 4,30 4,18 4,06 3,95 8,84 3,73 3,62 3,52	4,92 4,81 4,69 4,58 4,47 4,36 4,25 4,15 4,05 3,94	5,09 4,97 4,86 4,75 4,64 4,53 4,43 4,32 4,22 4,12	5,17 5,06- 4,95 4,84 4,73 4,62 4,52 4,42 4,32 4,22	5,27 5,16 5,01 4,94 4,83 4,72 4,62 4,52 4,42 4,32	5,33 5,22 5,11 5,01 4,90 4,79 4,69 4,59 4,49 4,39	5,38 5,27 5,16 5,06 4,95 4,85 4,74 4,64 4,55 4,45	5,41 5,30 5,19 5,08 4,98 4,87 4,77 4,67 4,67 4,57 4,47	5,43 5,32 5,21 5,11 5,00 4,90 4,80 4,70 4,60 4,50	5,44 5,34 5,23 5,12 5,01 4,91 4,81 4,71 4,61 4,51
1,70 1,71 1,72 1,73 1,74 1,75 1,76 1,77 1,78	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	0,66 0,55 0,45 0,36 0,27 0,19 0,12 0,06 0,02 0,00	2,62 2,51 2,41 2,30 2,20 2,11 2,01 1,92 1,83 1,74	3,41 3,31 3,21 3,11 3,02 2,93 2,83 2,74 2,66 2,57	3,84 3,75 3,65 3,56 3,46 3,37 3,28 3,20 3,11 3,03	4,02 3,93 3,83 3,74 3,65 3,56 3,47 3,38 3,30 3,21	4,12 4,02 3,93 3,84 3,75 3,66 3,57 3,48 3,40 3,32	4,22 4,13 4,04 3,94 3,85 3,77 3,68 3,59 3,51 3,43	4,30 4,20 4,11 4,02 3,93 3,84 3,76 3,67 3,59 3,51	4,35 4,26 4,17 4,08 3,99 3,90 3,83 3,73 3,64 3,56	4,38 4,29 4,19 4,10 4,01 3,93 3,84 3,76 3,67 3,59	4,41 4,31 4,22 4,13 4,04 3,95 3,87 3,78 3,70 3,63	4,42 4,32 4,23 4,14 4,05 3,97 3,88 3,80 3,71 3,63

	TOCT
	20736—75
	CTp.
l	w

				0	ценочно	значен	ие вход	ного ур	овня деф	^ рект ности <i>р</i>	. %. при <i>п</i>			
Q	3	4	5	7	10	15	20	25	35	50	75	100	150	200
1,80 1,81 1,82 1,83 1,84 1,85 1,86 1,87 1,88 1,89 1,90 1,91 1,92 1,93 1,94 1,95 1,96	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	1,65 1,57 1,49 1,41 1,34 1,26 1,19 1,12 1,06 0,99 0,93 0,87 0,81 0,76 0,65 0,60	2,49 2,40 2,32 2,25 2,17 2,09 2,02 1,95 1,88 1,81 1,75 1,68 1,56 1,56 1,50 1,44 1,38	2,94 2,86 2,79 2,71 2,63 2,56 2,48 2,41 2,34 2,28 2,21 2,14 2,08 2,02 1,96 1,90 1,84	3,13 3,05 2,98 2,90 2,82 2,75 2,68 2,61 2,54 2,40 2,34 2,27 2,21 2,15 2,09 2,03	3,24 3,16 3,08 3,00 2,93 2,85 2,78 2,71 2,64 2,57 2,51 2,44 2,38 2,32 2,25 2,19 2,14	3,35 3,27 3,19 8,11 3,04 2,97 2,89 2,75 2,69 2,56 2,49 2,43 2,37 2,31 2,25	3,43 3,35 3,27 3,19 3,12 3,05 2,97 2,90 2,87 2,77 2,70 2,63 2,57 2,51 2,45 2,39 2,33	3,48 3,40 3,33 3,25 3,18 3,10 3,03 2,96 2,89 2,83 2,76 2,69 2,63 2,57 2,51 2,45 2,39	3,51 3,43 3,36 3,28 3,21 3,13 3,06 2,99 2,92 2,85 2,79 2,72 2,66 2,60 2,54 2,48 2,42	3,54 3,46 3,38 3,31 3,23 3,16 3,09 3,02 2,95 2,88 2,82 2,75 2,69 2,62 2,56 2,50 2,44	3,55 3,47 3,40 3,32 3,25 3,17 3,10 3,03 2,96 2,90 2,83 2,77 2,70 2,64 2,58 2,52 2,46
1,97 1,98 1,99	0,00 0,00 0,00	0,00 0,00 0,00	0,00 0,00 0,00	0,56 0,51 0,47	1,33 1,27 1,22	1,78 1,73 1,67	1,97 1,92 1,86	2,08 2,02 1,97	2,19 2,13 2,08	2,27 2,21 2,16	2,33 2,27 2,22	2,36 2,30 2,25	2,39 2,33 2,27	2,40 2,34 2,29
2,00 2,01 2,02 2,03 2,04 2,05	0,00 0,00 0,00 0,00 0,00 0,00	0,00 0,00 0,00 0,00 0,00 0,00	0,00 0,00 0,00 0,00 0,00 0,00	0,43 0,39 0,36 0,32 0,29 0,26	1,17 1,12 1,07 1,03 0,98 0,94	1,62 1,57 1,52 1,47 1,42 1,37	1,81 1,76 1,71 1,66 1,61 1,56	1,91 1,86 1,81 1,76 1,71 1,66	2,03 1,97 1,92 1,87 1,82 1,77	2,10 2,05 2,00 1,95 1,90 1,85	2,16 2,11 2,06 2,01 1,96 1,91	2,19 2,14 2,09 2,04 1,99 1,94	2,22 2,17 2,11 2,06 2,01 1,96	2,23 2,18 2,13 2,08 2,03 1,98

				Oı	(е ночное	значени	ие входн	oro ypoi	зня дефе	ктности p ,	%. при <i>п</i>			
Q	3	4	5	7	10	15	20	25	35	50	75	100	150	200
2,06 2,07 2,08 2,09	0,00 0,00 0,00 0,00	0,00 0,00 9,00 0,00	0,00 0,00 0,00 0,00	0,23 0,21 0,18 0,16	0,90 0,86 0,82 0,78	1,33 1,28 1,24 1,20	1,51 1,47 1,42 1,38	1,61 1,57 1,52 1,48	1,72 1,68 1,63 1,59	1,80 1,76 1,71 1,66	1,86 1,81 1,77 1,72	1,89 1,84 1,79 1,75	1,92 1,87 1,82 1,78	1,93 1,88 1,84 1,79
2,10 2,11 2,12 2,13 2,14 2,15 2,16 2,17 2,18 2,19	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	0,14 0,12 0,10 0,08 0,07 0,06 0,05 0,04 0,03 0,02	0,74 0,71 0,67 0,64 0,61 0,58 0,55 0,52 0,49 0,46	1,16 1,12 1,08 1,04 1,00 0,97 0,93 0,90 0,87 0,83	1,34 1,30 1,26 1,22 1,18 1,14 1,10 1,07 1,03 1,00	1,44 1,39 1,35 1,31 1,28 1,24 1,20 1,16 1,13	1,54 1,50 1,46 1,42 1,38 1,34 1,30 1,27 1,23 1,20	1,62 1,58 1,54 1,50 1,46 1,42 1,38 1,34 1,30 1,27	1,68 1,63 1,59 1,55 1,51 1,47 1,43 1,40 1,36 1,32	1,71 1,66 1,62 1,58 1,54 1,50 1,46 1,42 1,39 1,35	1,73 1,69 1,65 1,61 1,57 1,53 1,49 1,45 1,41	1,75 1,70 1,66 1,62 1,58 1,54 1,50 1,46 1,42 1,39
2,20 2,21 2,22 2,23 2,24 2,25 2,26 2,27 2,28 2,29	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	0,015 0,010 0,006 0,003 0,002 0,001 0,00 0,00 0,00	0,413 0,389 0,366	0,743 0,715 0,687 0,660 0,634 0,609 0,585	0,936 0,905 0,875 0,845 0,816 0,789 0,762	1,028 0,996 0,965 0,935 0,905 0,876 0,848 0,821	1,128 1,095 1,063 1,032 1,002 0,972 0,943 0,915	1,233 1,199 1,166 1,134 1,102 1,071 1,041 1,011 0,982 0,954	1,287 1,253 1,219 1,186 1,154 1,123 1,092 1,062 1,033 1,004	1,314 1,279 1,245 1,212 1,180 1,148 1,117 1,087 1,058 1,029	1,340 1,305 1,271 1,238 1,205 1,173 1,142 1,112 1,082 1,053	1,352 1,318 1,283 1,250 1,218 1,186 1,155 1,124 1,094 1,065

	<u>-</u> -							s-план		_				140л. 10
0				O1	ценочное	значен	ие в х оді	ного урс	вня деф	ектности p ,	%, при <i>п</i>			
Ų	3	4	5	7	10	15	20	25	35	50	75	100	150	200
2,30 2,31 2,32 2,33 2,33 2,34 2,35 2,36 2,37 2,38 2,40 2,41 2,42 2,43 2,44 2,45 2,46 2,47 2,48 2,49 2,50 2,51 2,52 2,53 2,54	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,218 0,203 0,189 0,175 0,163 0,151 0,139 0,128 0,118 0,109 0,091 0,091 0,083 0,076 0,069 0,063 0,057 0,051 0,046 0,041 0,037 0,033 0,029 0,026	0,516 0,495 0,474 0,454 0,435 0,316 0,381 0,364 0,332 0,317 0,302 0,288 0,275 0,262 0,249 0,237 0,226 0,249 0,237 0,204 0,193 0,184 0,174	0,661 0,637 0,614 0,592 0,571 0,550 0,530 0,510 0,491 0,473 0,455 0,437 0,421 0,389 0,373 0,359 0,344 0,331 0,317 0,292 0,280 0,268	0,743 0,719 0,695 0,672 0,650 0,628 0,606 0,586 0,566 0,566 0,527 0,509 0,491 0,474 0,457 0,440 0,425 0,394 0,380 0,366 0,352 0,339 0,326	0,834 0,809 0,784 0,760 0,736 0,714 0,691 0,691 0,68 0,628 0,569 0,551 0,533 0,516 0,499 0,482 0,466 0,421 0,436 0,436 0,439	0,687 0,667 0,646 0,627 0,608 0,589 0,571 0,553 0,536 0,519 0,503 0,487 0,472 0,457 0,442	0,977 0,949 0,923 0,897 0,872 0,847 0,823 0,799 0,777 0,754 0,732 0,711 0,691 0,670 0,651 0,632 0,613 0,595 0,577 0,560 0,543 0,527 0,511 0,495 0,480	1,001 0,974 0,947 0,921 0,895 0,870 0,846 0,822 0,799 0,777 0,755 0,733 0,712 0,692 0,672 0,653 0,634 0,615 0,598 0,598 0,546 0,530 0,514 0,499	1,025 0,997 0,971 0,944 0,915 0,893 0,869 0,845 0,799 0,777 0,755 0,734 0,713 0,693 0,673 0,635 0,617 0,600 0,582 0,565 0,549 0,533 0,517	1,037 1,009 0,982 0,956 0,930 0,905 0,880 0,856 0,833 0,810 0,787 0,766 0,744 0,724 0,703 0,684 0,646 0,627 0,609 0,592 0,575 0,558 0,542 0,527 0,511
	2,31 2,32 2,33 2,33 2,34 2,35 2,36 2,37 2,38 2,39 2,40 2,41 2,42 2,43 2,44 2,45 2,46 2,47 2,48 2,49 2,50 2,51 2,52 2,53	2,30 0,000 2,31 0,000 2,32 0,000 2,33 0,000 2,34 0,000 2,35 0,000 2,36 0,000 2,37 0,000 2,38 0,000 2,39 0,000 2,41 0,000 2,41 0,000 2,41 0,000 2,42 0,000 2,43 0,000 2,44 0,000 2,45 0,000 2,45 0,000 2,46 0,000 2,47 0,000 2,48 0,000 2,48 0,000 2,49 0,000 2,50 0,000 2,51 0,000 2,51 0,000 2,52 0,000 2,53 0,000 2,54 0,000 2,54 0,000 2,55 0,000 2,51 0,000 2,52 0,000 2,53 0,000 2,54 0,000	2,30	2,30 0,000 0,000 0,000 0,000 2,31 0,000 0,000 0,000 0,000 2,32 0,000 0,000 0,000 0,000 2,33 0,000 0,000 0,000 0,000 2,34 0,000 0,000 0,000 0,000 2,35 0,000 0,000 0,000 0,000 2,37 0,000 0,000 0,000 0,000 2,38 0,000 0,000 0,000 0,000 2,41 0,000 0,000 0,000 0,000 2,42 0,000 0,000 0,000 0,000 2,43 0,000 0,000 0,000 0,000 2,44 0,000 0,000 0,000 0,000 2,45 0,000 0,000 0,000 0,000 2,47 0,000 0,000 0,000 0,000 2,48 0,000 0,000 0,000 0,000 2,50 0,000<	Q 3 4 5 7 2,30 0,000 0,000 0,000 0,000 0,000 0,000 2,31 0,000 0,000 0,000 0,000 0,000 0,000 2,32 0,000 0,000 0,000 0,000 0,000 0,000 2,34 0,000 0,000 0,000 0,000 0,000 0,000 2,35 0,000 0,000 0,000 0,000 0,000 0,000 2,36 0,000 0,000 0,000 0,000 0,000 0,000 2,38 0,000 0,000 0,000 0,000 0,000 0,000 2,39 0,000 0,000 0,000 0,000 0,000 0,000 2,41 0,000 0,000 0,000 0,000 0,000 0,000 2,43 0,000 0,000 0,000 0,000 0,000 0,000 2,45 0,000 0,000 0,000 0,000 0,000	Q 3 4 5 7 10 2,30 0,000 0,000 0,000 0,000 0,000 0,233 2,31 0,000 0,000 0,000 0,000 0,000 0,233 2,32 0,000 0,000 0,000 0,000 0,000 0,203 2,34 0,000 0,000 0,000 0,000 0,000 0,175 2,35 0,000 0,000 0,000 0,000 0,000 0,151 2,37 0,000 0,000 0,000 0,000 0,000 0,151 2,38 0,000 0,000 0,000 0,000 0,000 0,118 2,40 0,000 0,000 0,000 0,000 0,000 0,118 2,41 0,000 0,000 0,000 0,000 0,000 0,109 2,42 0,000 0,000 0,000 0,000 0,000 0,000 2,43 0,000 0,000 0,000 0,000 <th>Q 3 4 5 7 10 15 2,30 0,000 0,000 0,000 0,000 0,000 0,233 0,538 2,31 0,000 0,000 0,000 0,000 0,203 0,495 2,32 0,000 0,000 0,000 0,000 0,000 0,474 2,34 0,000 0,000 0,000 0,000 0,000 0,151 0,454 2,35 0,000 0,000 0,000 0,000 0,151 0,416 2,37 0,000 0,000 0,000 0,000 0,128 0,381 2,38 0,000 0,000 0,000 0,000 0,128 0,381 2,39 0,000 0,000 0,000 0,000 0,118 0,364 2,40 0,000 0,000 0,000 0,000 0,118 0,348 2,41 0,000 0,000 0,000 0,000 0,000 0,000 0,001 0,332</th> <th>Q 3 4 5 7 10 15 20 2,30 0,000 0,000 0,000 0,000 0,000 0,538 0,685 2,31 0,000 0,000 0,000 0,000 0,233 0,516 0,661 2,32 0,000 0,000 0,000 0,000 0,203 0,495 0,637 2,33 0,000 0,000 0,000 0,000 0,474 0,614 2,34 0,000 0,000 0,000 0,000 0,189 0,474 0,614 2,35 0,000 0,000 0,000 0,000 0,163 0,435 0,571 2,36 0,000 0,000 0,000 0,000 0,151 0,416 0,550 2,37 0,000 0,000 0,000 0,128 0,381 0,510 2,38 0,000 0,000 0,000 0,128 0,381 0,510 2,40 0,000 0,000 0,000 0,000<th>Q Оценочное значение входного урсовата в разрание в разраного урсовата ур</th><th>Q 3 4 5 7 10 15 20 25 35 2,30 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000</th><th>Оценочное значение входного уровия дефектности р. 2 3 4 5 7 10 15 20 25 35 50 2,30 0,000 0,000 0,000 0,000 0,000 0,233 0,538 0,685 0,769 0,861 0,927 2,31 0,000 0,000 0,000 0,000 0,000 0,495 0,637 0,719 0,809 0,874 2,33 0,000 0,000 0,000 0,000 0,189 0,474 0,614 0,695 0,784 0,848 2,34 0,000 0,000 0,000 0,000 0,175 0,454 0,592 0,672 0,784 0,848 2,34 0,000 0,000 0,000 0,000 0,000 0,163 0,435 0,571 0,650 0,736 0,799 2,35 0,000 0,000 0,000 0,132 0,388 0,530 0,666 0,691 0,753 2,37 0,000</th><th>Q 3</th><th>S-план Оценочное значение вхолного уровня дефектности р, ж, при л Оценочное значение вхолного уровня дефектности р, ж, при л 3 4 5 7 10 15 20 25 35 50 75 100 2,30 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,900 0,900 0,947 1,001 2,31 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,947 0,923 0,947 2,33 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000</th><th>S-IIABH Ouenounce shauerine bxoardoro ypobin дефектности р, %, при д 3 4 5 7 10 15 20 25 35 50 75 100 150 2,30 0,000 0,000 0,000 0,000 0,000 0,233 0,538 0,685 0,769 0,861 0,927 0,977 1,001 1,025 2,31 0,000 0,000 0,000 0,000 0,003 0,495 0,637 0,719 0,809 0,874 0,993 0,947 0,971 2,33 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000</th></th>	Q 3 4 5 7 10 15 2,30 0,000 0,000 0,000 0,000 0,000 0,233 0,538 2,31 0,000 0,000 0,000 0,000 0,203 0,495 2,32 0,000 0,000 0,000 0,000 0,000 0,474 2,34 0,000 0,000 0,000 0,000 0,000 0,151 0,454 2,35 0,000 0,000 0,000 0,000 0,151 0,416 2,37 0,000 0,000 0,000 0,000 0,128 0,381 2,38 0,000 0,000 0,000 0,000 0,128 0,381 2,39 0,000 0,000 0,000 0,000 0,118 0,364 2,40 0,000 0,000 0,000 0,000 0,118 0,348 2,41 0,000 0,000 0,000 0,000 0,000 0,000 0,001 0,332	Q 3 4 5 7 10 15 20 2,30 0,000 0,000 0,000 0,000 0,000 0,538 0,685 2,31 0,000 0,000 0,000 0,000 0,233 0,516 0,661 2,32 0,000 0,000 0,000 0,000 0,203 0,495 0,637 2,33 0,000 0,000 0,000 0,000 0,474 0,614 2,34 0,000 0,000 0,000 0,000 0,189 0,474 0,614 2,35 0,000 0,000 0,000 0,000 0,163 0,435 0,571 2,36 0,000 0,000 0,000 0,000 0,151 0,416 0,550 2,37 0,000 0,000 0,000 0,128 0,381 0,510 2,38 0,000 0,000 0,000 0,128 0,381 0,510 2,40 0,000 0,000 0,000 0,000 <th>Q Оценочное значение входного урсовата в разрание в разраного урсовата ур</th> <th>Q 3 4 5 7 10 15 20 25 35 2,30 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000</th> <th>Оценочное значение входного уровия дефектности р. 2 3 4 5 7 10 15 20 25 35 50 2,30 0,000 0,000 0,000 0,000 0,000 0,233 0,538 0,685 0,769 0,861 0,927 2,31 0,000 0,000 0,000 0,000 0,000 0,495 0,637 0,719 0,809 0,874 2,33 0,000 0,000 0,000 0,000 0,189 0,474 0,614 0,695 0,784 0,848 2,34 0,000 0,000 0,000 0,000 0,175 0,454 0,592 0,672 0,784 0,848 2,34 0,000 0,000 0,000 0,000 0,000 0,163 0,435 0,571 0,650 0,736 0,799 2,35 0,000 0,000 0,000 0,132 0,388 0,530 0,666 0,691 0,753 2,37 0,000</th> <th>Q 3</th> <th>S-план Оценочное значение вхолного уровня дефектности р, ж, при л Оценочное значение вхолного уровня дефектности р, ж, при л 3 4 5 7 10 15 20 25 35 50 75 100 2,30 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,900 0,900 0,947 1,001 2,31 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,947 0,923 0,947 2,33 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000</th> <th>S-IIABH Ouenounce shauerine bxoardoro ypobin дефектности р, %, при д 3 4 5 7 10 15 20 25 35 50 75 100 150 2,30 0,000 0,000 0,000 0,000 0,000 0,233 0,538 0,685 0,769 0,861 0,927 0,977 1,001 1,025 2,31 0,000 0,000 0,000 0,000 0,003 0,495 0,637 0,719 0,809 0,874 0,993 0,947 0,971 2,33 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000</th>	Q Оценочное значение входного урсовата в разрание в разраного урсовата ур	Q 3 4 5 7 10 15 20 25 35 2,30 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	Оценочное значение входного уровия дефектности р. 2 3 4 5 7 10 15 20 25 35 50 2,30 0,000 0,000 0,000 0,000 0,000 0,233 0,538 0,685 0,769 0,861 0,927 2,31 0,000 0,000 0,000 0,000 0,000 0,495 0,637 0,719 0,809 0,874 2,33 0,000 0,000 0,000 0,000 0,189 0,474 0,614 0,695 0,784 0,848 2,34 0,000 0,000 0,000 0,000 0,175 0,454 0,592 0,672 0,784 0,848 2,34 0,000 0,000 0,000 0,000 0,000 0,163 0,435 0,571 0,650 0,736 0,799 2,35 0,000 0,000 0,000 0,132 0,388 0,530 0,666 0,691 0,753 2,37 0,000	Q 3	S-план Оценочное значение вхолного уровня дефектности р, ж, при л Оценочное значение вхолного уровня дефектности р, ж, при л 3 4 5 7 10 15 20 25 35 50 75 100 2,30 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,900 0,900 0,947 1,001 2,31 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,947 0,923 0,947 2,33 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	S-IIABH Ouenounce shauerine bxoardoro ypobin дефектности р, %, при д 3 4 5 7 10 15 20 25 35 50 75 100 150 2,30 0,000 0,000 0,000 0,000 0,000 0,233 0,538 0,685 0,769 0,861 0,927 0,977 1,001 1,025 2,31 0,000 0,000 0,000 0,000 0,003 0,495 0,637 0,719 0,809 0,874 0,993 0,947 0,971 2,33 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000

								5-план						
				Oı	ценочно	эн а чен	не вході	юго уро	вня деф	$\stackrel{\wedge}{\sim}$ ектн ости ho ,	%. при <i>п</i>			
Q	3	4	5	7	10	15	20	25	35	50	75	100	150	200
2,56 2,57 2,58 2,59	0,000 0,000 0,000 0,000	0,000	0,000 0,000 0,000 0,000	0,000	0,017	0,156 0,148 0,140 0,133	0,236 0,226	0,302 0,291 0,279 0,269	0,366 0,354 0,341 0,330	0,414 0,401 0,388 0,375	0,451 0,437 0,424 0,410	0,469 0,455 0,441 0,428	0,487 0,473 0,459 0,445	0,496 0,482 0,468 0,454
2,60 2,61 2,62 2,63 2,65 2,65 2,66 2,67 2,68 2,69	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000	0,011 0,009 0,008 0,007 0,005 0,005 0,004 0,003 0,002 0,002	0,112 0,105 0,099 0,094 0,088 0,083 0,078	0,198 0,189 0,181 0,172 0,165 0,157 0,150 0,143	0,258 0,248 0,238 0,229 0,220 0,211 0,202 0,194 0,186 0,179	0,307 0,296 0,285 0,275 0,265 0,256 0,246 0,237	0,363 0,351 0,339 0,328 0,317 0,307 0,296 0,286 0,277 0,267	0,398 0,385 0,373 0,361 0,350 0,339 0,328 0,317 0,307 0,297	0,415 0,402 0,390 0,378 0,366 0,355 0,344 0,333 0,322 0,312	0,432 0,419 0,406 0,394 0,382 0,371 0,359 0,348 0,338 0,327	0,441 0,428 0,415 0,402 0,390 0,379 0,367 0,356 0,345 0,335
2,70 2,71 2,72 2,73 2,74 2,75 2,76 2,77 2,78 2,79	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000	0,001 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,064 0,060 0,057 0,055 0,049 0,046 0,043 0,040	0,124 0,118 0,112 0,107 0,102 0,097 0,092 0,087	0,171 0,164 0,157 0,151 0,144 0,138 0,132 0,126 0,121 0,115	0,212 0,204 0,197 0,189 0,182 0,175 0,168 0,162	0,258 0,249 0,241 0,232 0,224 0,216 0,209 0,201 0,194 0,187	0,288 0,278 0,269 0,260 0,252 0,243 0,235 0,227 0,220 0,212	0,302 0,293 0,283 0,274 0,266 0,257 0,249 0,241 0,233 0,225	0,317 0,307 0,298 0,288 0,279 0,271 0,262 0,254 0,246 0,238	0,325 0,315 0,305 0,296 0,286 0,277 0,269 0,260 0,252 0,244

100
20736
6-75
CTp.
35

Q	\wedge Оценочное значение входного уровня дефектности p , %, при n													
¥	3	4	5	7	10	15	20	25	35	50	75	100	150	200
2,80 2,81 2,82 2,83 2,84 2,85 2,86 2,87 2,88 2,88	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000	0,026 0,024 0,022 0,020 0,019	0,075 0,071 0,067 0,064 0,060 0,057 0,054 0,051	0,105 0,101 0,096 0,092 0,088 0,084 0,080	0,144 0,138 0,133 0,128 0,122 0,118 0,113 0,108	0,181 0,174 0,168 0,162 0,156 0,150 0,145 0,133 0,134 0,129	0,205 0,198 0,192 0,185 0,179 0,173 0,167 0,161 0,155 0,150	0,218 0,211 0,204 0,197 0,190 0,184 0,178 0,172 0,166 0,160	0,230 0,223 0,216 0,209 0,202 0,195 0,189 0,183 0,177 0,171	0,237 0,229 0,222 0,215 0,208 0,201 0,195 0,188 0,182 0,176
2,90 2,91 2,92 2,93 2,94 2,95 2,96 2,97 2,98 2,99	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000	0,013 0,012 0,011 0,010 0,009 0,009	0,043	0,066 0,063 0,060 0,057 0,054 0,051	0,096 0,092 0,088 0,084 0,081 0,077 0,074 0,071	0,125 0,120 0,115 0,111 0,107 0,103 0,099 0,095 0,091 0,088	0,145 0,140 0,135 0,130 0,125 0,121 0,117 0,112 0,108 0,104	0,155 0,150 0,145 0,140 0,135 0,130 0,126 0,121 0,117 0,113	0,165 0,160 0,155 0,149 0,144 0,140 0,135 0,136 0,126 0,122	0,171 0,165 0,160 0,154 0,149 0,144 0,140 0,135 0,130 0,126
3,00 3,01 3,02 3,03 3,04 3,05	0,000 0,000 0,000	0,000 0,000 0,000 0,000	0,000 0,000 0,000	0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000	0,005 0,005	0,024 0,022 0,021 0,019	0,040 0,038 0,036	0,057 0,054	0,084 0,081 0,078 0,075 0,072 0,069	0,101 0,097 0,093 0,090 0,087 0,083	0,109 0,105 0,101 0,098 0,094 0,091	0,118 0,114 0,110 0,106 0,102 0,099	0,122 0,118 0,114 0,110 0,106 0,103

s-план

0	Оценочное значение входного уровня дефектности p , %, при n													
Q	3	4	5	7	10	15	20	25	35	50	75	100	150	200
3,06 3,07 3,08 3,09		0,000	0,000	0,000 0,000 0,000 0,000	0,000		0,016 0,015	0,029	0,050 0,047 0,045 0,043	0,066 0,064 0,061 0,059	0,080 0,077 0,074 0,072	0,088 0,085 0,081 0,079	0,095 0,092 0,089 0,086	0,099 0,096 0,092 0,089
3,10 3,11 3,12 3,13 3,14 3,15 3,16 3,17 3,18 3,19	0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000		0,012 0,011 0,011 0,010 0,009 0,009	0,022 0,021 0,019 0,018 0,017 0,016	0,039 0,038 0,036 0,034 0,033 0,031 0,030	0,056 0,054 0,052 0,050 0,048 0,046 0,044 0,042 0,040 0,038	0,069 0,066 0,064 0,061 0,059 0,057 0,055 0,053 0,050 0,049	0,076 0,073 0,070 0,068 0,065 0,063 0,060 0,058 0,056 0,054	0,083 0,080 0,077 0,074 0,071 0,069 0,066 0,064 0,062 0,059	0,086 0,083 0,080 0,077 0,075 0,072 0,069 0,067 0,065 0,062
3,20 3,21 3,22 3,23 3,24 3,25 3,26 3,27 3,28 3,29	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000	0,006 0,005 0,005 0,005 0,004 0,004 0,004 0,003	0,013 0,012 0,011 0,011 0,010 0,009 0,009 0,008	0,017	0,037 0,035 0,034 0,032 0,031 0,030 0,028 0,027 0,026 0,025	0,047 0,045 0,043 0,041 0,040 0,038 0,037 0,035 0,034 0,032	0,052 0,050 0,048 0,046 0,044 0,043 0,041 0,040 0,038 0,037	0,057 0,055 0,053 0,051 0,049 0,048 0,046 0,044 0,042 0,041	0,060 0,058 0,056 0,054 0,052 0,050 0,048 0,046 0,045 0,043

ſ	7
l	0
ł	0
ı	_
ı	
L	\simeq
l	207
ı	w
ł	<u>~</u>
t	T
1	1
ı	Ċ
1	Š
ı	••
1	\sim
ı	
ľ	귱
ı	Ų
ı	*
ı	
ı	w

	Оценочное значение входного уровня дефектности p , %, при n													
Q	3	4	5	7	10	15	20	25	35	50	75	100	150	200
3,30 3,31 3,32 3,33 3,34 3,35 3,36 3,37 3,38 3,39 3,40 3,41 3,42 3,43 3,44 3,44 3,45 3,46 3,47 3,48 3,49	0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,002 0,002 0,002 0,002 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001	0,007 0,007 0,006 0,006 0,005 0,005 0,005 0,004 0,004 0,003 0,003 0,003 0,003 0,003 0,003 0,003 0,003 0,002 0,002 0,002	0,015 0,014 0,013 0,013 0,012 0,011 0,011 0,010 0,010 0,009 0,009 0,008 0,008 0,007 0,007 0,007 0,007 0,006 0,006 0,005	0,024 0,023 0,022 0,021 0,020 0,019 0,018 0,017 0,016 0,016 0,014 0,014 0,014 0,014 0,012 0,012 0,011 0,010 0,010	0,031 0,030 0,029 0,027 0,026 0,025 0,024 0,023 0,022 0,021 0,020 0,019 0,018 0,017 0,016 0,016 0,015 0,014 0,014	0,035 0,034 0,032 0,031 0,030 0,029 0,028 0,026 0,025 0,024 0,022 0,022 0,022 0,021 0,020 0,019 0,018 0,017 0,016	0,039 0,038 0,036 0,035 0,034 0,032 0,031 0,030 0,029 0,028 0,025 0,025 0,025 0,024 0,023 0,022 0,021 0,020 0,019 0,019	0,042 0,040 0,039 0,037 0,036 0,033 0,032 0,031 0,029 0,028 0,027 0,026 0,025 0,025 0,024 0,023 0,022 0,022 0,021 0,020
3,50 3,51 3,52 3,53 3,54 3,55	0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000	0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000	0,002 0,002 0,001 0,001		0,009 0,009 0,008 0,008 0,008 0,007	0,013 0,013 0,012 0,012 0,011 0,011	0,015 0,015 0,014 0,014 0,013 0,012	0,018 0,017 0,017 0,016 0,015 0,015	0,019 0,018 0,018 0,017 0,016 0,016

s-план

					***********			S-IIJIAI	1					
Q					Оцено	чное зн	ачение в	вх одного	уровня	дефектност	^. ч <i>р</i> , %, при	ı n		
	3	4	5	7	10	15	20	25	35	50	75	100	150	200
3,56 3,57 3,58 3,59	0,000 0,000 0,000 0,000		0,000	0,000	0,000 0,000		0,000 0,000 0,000 0,000	0,001	0,003	0,007 0,006 0,006 0,006	0,010 0,010 0,009 0,009	0,012 0,011 0,011 0,010	0,014 0,013 0,013 0,012	0,015 0,014 0,014 0,013
3,60 3,61 3,62 3,63 3,64 3,65 3,66 3,66 3,68 3,69	0,000	0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,001 0,001 0,001 0,001	0,003 0,003 0,002 0,002 0,002 0,002 0,002 0,002	0,006 0,005 0,005 0,005 0,004 0,004 0,004 0,004 0,003	0,008 0,008 0,008 0,007 0,007 0,006 0,006 0,006 0,005	0,010 0,010 0,009 0,009 0,008 0,008 0,008 0,007 0,007	0,012 0,011 0,010 0,010 0,010 0,010 0,009 0,009 0,008 0,008	0,013 0,012 0,012 0,011 0,010 0,010 0,010 0,009 0,009
3,70 3,71 3,72 3,73 3,74 3,75 3,76 3,77 3,78 3,79	0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000	0,001 0,001 0,001 0,001 0,001 0,001	0,003 0,003 0,003 0,003 0,002 0,002 0,002 0,002 0,002	0,005 0,005 0,005 0,004 0,004 0,004 0,004 0,004 0,004	0,006 0,006 0,006 0,005 0,005 0,005 0,005 0,004 0,004	0,008 0,007 0,007 0,007 0,006 0,006 0,006 0,005 0,005	0,008 0,008 0,007 0,007 0,007 0,007 0,006 0,006

	Оценочное значение входного уровня дефектности p , %, при n													
Q	3	4	5	7	10	15	20	25	35	50	75	100	150	200
3,80 3,81 3,82 3,83 3,84 3,85 3,86 3,86 3,88 3,88	0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,001 0,001 0,001 0,001 0,001 0,000 0,000	0,002 0,002 0,002 0,002 0,001 0,001 0,001 0,001 0,001	0,003 0,003 0,003 0,003 0,003 0,002 0,002 0,002 0,002 0,002	0,004 0,004 0,004 0,003 0,003 0,003 0,003 0,003 0,003	0,005 0,005 0,005 0,004 0,004 0,004 0,004 0,004 0,003	0,006 0,005 0,005 0,005 0,005 0,004 0,004 0,004 0,004

<i>R</i> -план	R- 1	ПЛ	ан
----------------	--------	----	----

						Þ	-план						т	абли	ца 11
**************************************				Кон	трольнь			(норма.	льный к	онтроль	, при А	QL, %			
Код объема выборки	Объем выборки <i>п</i>	0,04	0,065	0,10	0,15	0,25	0,40	0,65	1,00	1,50	2,50	4,00	6,50	10,00	15,00
В	3								! ↓	 	0,587	0,502	0,401	0,296	0,178
С	4							l ↓	0,651	0,598	0,525	0,450	0,364	0,276	0,176
D	5					,	1	0,663	0 ,614	0,565	0,498	0,431	0,352	0,272	0,184
E	7				 ↓	0,702	0,659	0,613	0,569	0 ,525	0,465	0 ,405	0,336	0,266	0,189
F	10	↓	↓	↓	0,916	0,863	0,811	0,755	0,703	0,650	0,579	0 ,507	0,424	0,341	0,252
G	15	1,09	1,04	0,999	0,958	0,903	0,850	0,792	0,738	0,684	0,610	0,536	0,452	0,368	0,276
Н	25	1,14	1,10	1,05	1,01	0,951	0,896	0,835	0,779	0,723	0,647	0,571	0,484	0,398	0,305
I	30	1,15	1,10	1,06	1,02	0,959	0,904	0,843	0,787	0,730	0,654	0 ,577	0,490	0,403	0,310
J	40	1,18	1,13	1,08	1,04	0,978	0,921	0,860	0,8 03	0,746	0,668	0,591	0,503	0,415	0,321
K	60	1,21	1,16	1,11	1,06	1,00	0,948	0,885	0,826	0,768	0,689	0,610	0,521	0,432	0,336
L	85	1,23	1,17	1,13	1,08	1,02	0 ,9 62	0,899	0,839	0,780	0,701	0,621	0,530	0,441	0,345
M	115	1,24	1,19	1,14	1,09	1,03	0,975	0,911	0,851	0,791	0,711	0,631	0,539	0,449	0,353
N	175	1 ,2 6	1,21	1,16	1,11	1,05	0,994	0,929	0,868	0,807	0,726	0,644	0,552	0,460	0,363
P	230	1,27	1,21	1,16	1,12	1,06	0,996	0,931	0,870	0,809	0,728	0,646	0,553	0,462	0,364
Код объема	Объем	<u></u>	<u> </u>	Контр	ольный	норма	тив k _F	усил	енный	контро	ль) пр	ри AQL	, %	·	
выборки	выборки <i>п</i>	0,065	0,10	0,15	0,25	0,40	0,65	1,00	1,50	2,50	4,00	6,50	10,00	15,00	

R-план

	Контрольный норматив k_R (ослабленный контроль) при AQL , %													
Код объема выборки	Объем выборки <i>п</i>	0,04	0,065	0,10	0,15	0,25	0,40	0,65	1,00	1,50	2,50	4,00	6,50	10,00
BCDEFGHIJKLMNP	3 3 3 4 5 7 10 15 25 30 40 60 85	1,04 1,10 1,10 1,13 1,16 1,17	0,999 1,05 1,06 1,09 1,11 1,13	0,916 0,958 1,01 1,02 1,04 1,06 1,08	0,903	0,811 0,850 0,896 0,904	0,835 0,843 0,860 0,885	0,569 0,703 0,738 0,779 0,787 0,803 0,826	0,565 0,525 0,650 0,684 0,723 0,730 0,746	0,587 0,525 0,498 0,465 0,679 0,610 0,647 0,668 0,689	0,502 0,502 0,502 0,450 0,431 0,507 0,536 0,571 0,571 0,591 0,610	0,401 0,401 0,364 0,352 0,336 0,424 0,452 0,484 0,490 0,503 0,521	0,296 0,296 0,276 0,272 0,266 0,341 0,368 0,398	0,178 0,178 0,178 0,176 0,189 0,252 0,276 0,305 0,310 0,321 0,336

	b]			Per .		***									
Код объе-	выбор-	нци-			Доп у ск	аемый у	уровень	дефектн	ости М	R ' * (1	нормаль	ный кон	троль) г	іри <i>AQL</i>	·, %	
ма выбор- ки	Обьем ки п	Коэффиин- еңт а	0, 40	0,065	0,10	0,15	0,25	0,40	0,65	1,00	1,50	2,50	4,00	6,50	10,00	15,00
В	3	1,910										7,59	18,86	26,94	33,69	40,47
С	4	2,234							}	1,53	5,,50	10,92	16,45	22,86	29,45	36,90
D	5	2,474					,	.	1,42	3,44	5,93	9,90	14,47	20,27	26,59	33,95
E	7	2,830				. ↓	0,28	0,8 9	1,99	3,46	5,32	8,47	12,35	17,54	23,50	30,66
F	10	2,405] ↓ ¦		0,23	0,58	1,14	2,0 5	3,23	4,77	7,42	10,79	15,49	21,06	27,90
G	15	2,379	0,061	0,136	0,253	0,430	0,786	1,30	2,10	3,11	4,44	6,76	9,76	14,09	19,30	25,92
Н	2 5	2,358	0,125	0,214	0,336	0,506	0,827	1,27	1,95	2,82	3,96	5,98	8,65	12,59	17,48	23,79
I	30	2,353	0,147	0,240	0,366	0,537	0,856	1,29	1,96	2,81	3,92	5,88	8,50	12,36	17,19	23,42
J	40	2,346	0,160	0,252	0,375	0,539	0,842	1,25	1,88	2,69	3,73	5,61	8,11	11,84	16,55	22,38
K	60	2,339	0,158	0,244	0,356	0,504	0,781	1,16	1,74	2,47	3,44	5,17	7,54	11,10	15,64	21,63
L	85	2,335	0,156	0,242	0,350	0,493	0,755	1,12	1,67	2,37	3,30	4,97	7,27	10,73	15,17	21,05
M	115	2,333	0,153	0,230	0,333	0,468	0,718	1,06	1,58	2,25	3,14	4,76	6,99	10,37	14,74	20,57
N	175	2,331	0,139	0,210	0,303	0,427	0,655	0,972	1,46	2,08	2,93	4,47	6,60	9,89	14,15	19,88
P	2 30	2,330	0,142	0,215	0,308	0,432	0,661	0,976	1,47	2,08	2,92	4,46	6,57	9,84	14,10	19,82
Код объема	вы-	Коэф- фици-	0,065	0,10	0,15	0,25	0,40	0,65	1,00	1,50	2,50	4,00	6,50	10,00	15,00	
выборки	борки п	ент a		Цопуск	аемый	уровен	ь дефе	ктност	и M_R	, % (y	силенн	ый кол	нтроль)	, при	AQL, %	1

10,00

40,47

6.50

33,69

33,69

29,45

26,59

19,30

0,25

0,89

1,14 1,30

1,27

1,29

1,23

1,16

0,40

1,42

1,99

2,05

2,10

1,95 1,96 1,89

1,74

1,67

0.15

0,28 0,58

0,786

0,827

Допускаемый уровень дефектности M_{R} , % (ослабленный контроль) при AQL, %

0,65

1,53

3,44

3,46

3,11

2,82 2,81

2,70

2,47

2,37

1,00

5,50

5,93

5,32

4,77

4,44

3,96

3,92

3,74

3,44

3,30

1.50

7,59

7,59

10,92

9,90

8,47

7,42

6,76

5,98

5,88 5,53

5,17

4,97

2,50

18,86

18,86

18,86

18,86

16,45

14,47

10,79

9,76

8,65

8,50

8,11

7,27

4,00

26,94

26,94

22,86

20,27

12,35 | 17,54 | 23,50

15,49

14,09

7,54 | 11,10 | 15,64

26,94 | 33,69

26,94 | 33,69

12,59 17,48

12,36 17,19

11,66 | 16,55

10.73 | 15.17

36,90 33,95 30,66 27,90 25,92 23,79 23,42 22,69 21,63 21,05	
	1001

П	n u	MA	u a	u	U	Œ	12"	табл	1	 	14 ·	٠

Коэффи-

циент а

1,910

1,910

1,910

1,910

2,234

2,474

2,830

2,405

2,379

2,358

2,353

2,346

2,339

2,335

0.04

0,136

0,214

0.240

0,224

0.244

0,242

0,065

0,10

0,23

0.366 | 0.537 | 0.856

0,363 | 0,524 | 0,849

10,356 | 0,504 | 0,781

0,350 | 0,493 | 0,755

0,253 0,430

 $0.336 \mid 0.506$

Код объ-

ема

BCDEFG

H

K

M

0

Объем

выборки п

3

3

3

3

4 5

7

10

15

25

30

40

60

85

1. 1. — Выбирают первый план под стрелкой.

20736—75

^{2.} Если объем выборки n равен или превосходит объем партии N, следует перейти к сплошному контролю.

Q*			Оцен	очное значе	ение входно	го уровя	ня дефек	тности /	~ », % прі	1 n		· · · · · · · · · · · · · · · · · · ·		
	3	4	5	7	10	15	25	30	40	60	85	115	175	230
0 0,1 0,2 0,3 0,31 0,32 0,33 0,34 0,35 0,36 0,37 0,38 0,39	50,00 47,24 44,46 41,63 41,35 41,06 40,77 40,49 40,20 39,91 39,62 39,33 39,03	50,00 46,67 43,33 40,00 39,67 39,33 39,00 38,67 38,33 38,00 37,67 37,33 37,00	50,00 46,44 42,90 39,37 39,02 38,67 38,32 37,96 37,62 37,28 36,93 36,58 36,58	50,00 46,29 42,60 38,95 38,50 38,23 37,87 37,51 37,15 36,79 36,43 36,07 35,72	50,00 46,20 42,42 38,70 38,33 37,96 37,60 37,23 36,87 36,50 36,14 35,78 35,41	50,00 46,13 42,29 38,51 38,14 37,77 37,39 37,02 36,65 36,29 35,55 35,19	50,00 46,08 42,19 38,38 38,00 37,63 37,25 36,88 36,50 36,13 35,76 35,39 35,02	37,96 37,59 37,21 36,84	37,93 37,55 37,18 36,80 36,43 36,05 35,68 35,31	50,00 46,04 42,12 38,27 37,89 37,51 37,14 36,76 36,39 36,01 35,64 35,27 34,90	50,00 46,03 42,10 38,26 37,88 37,50 37,12 36,74 36,37 35,99 35,62 35,25 34,88	46,03 42,10 38,24 37,86 37,48 37,11 36,73 36,36 35,97 35,61 35,24	37,47 37,09 36,71 36,34 35,96	50,00 46,02 42,08 38,22 37,84 37,46 37,09 36,71 36,33 35,96 35,59 35,22 34,85
0,40 0,41 0,42 0,43 0,44 0,45 0,46 0,47 0,48 0,49	38,74 38,45 38,15 37,85 37,56 37,26 36,96 36,66 36,35 36,05	36,67 36,33 36,00 35,67 35,33 35,00 34,67 34,33 34,00 33,67	35,88 35,54 35,19 34,85 34,50 34,16 33,81 33,47 33,12 32,78	35,36 35,01 34,65 34,30 33,95 33,60 33,24 32,89 32,55 32,20	35,05 34,69 34,33 33,98 33,62 33,27 32,91 32,56 32,21 31,86	34,82 34,46 34,10 33,74 33,38 33,02 32,66 32,31 31,96 31,50	34,66 34,29 33,93 33,57 33,21 32,85 32,49 32,13 31,78 31,42	34,62 34,25 33,89 33,53 33,17 32,81 32,45 32,09 31,74 31,38	34,58 34,21 33,85 33,48 33,12 32,76 32,40 32,04 31,69 31,33	34,53 34,17 33,80 33,44 33,08 32,72 32,36 32,00 31,64 31,29	34,51 34,14 33,78 33,41 33,05 32,69 32,33 31,97 31,62 31,26	34,12 33,77 33,39 33,03 32,67 32,31 31,95	33,75 33,38 33,02 32,66 32,30 31,94 31,59	34,48 34,11 33,74 33,38 33,02 32,66 32,30 31,94 31,58 31,23
0,50 0,51 0,52 0,53	35,75 35,44 35,13 34,82	33,33 33,00 32,67 32,33	32,44 32,10 31,76 31,42	31,85 31,51 31,16 30,82	31,51 31,16 30,81 30,46	31,25 30,90 30,55 30,21	31,07 30,72 30,37 30,02	31,03 30,68 30,33 29,98	30,98 30,63 30,28 29,93	30,94 30,59 30,24 29,89		30,55 30,19	30,18	30,87 30,52 30,17 29,83

3,12 7,78	
,45 ,11 ,78 ,45 ,13 ,80 ,48 ,16 ,84	
, 21 , 90 , 59 , 29 , 98 , 68 , 38 , 08 , 78 , 49	

Q*		Оценочное значение входного уровня дефектности \widehat{p} , % при n												
	3	4	5	7	10	15	25	30	40	60	85	115	175	230
0,54 0,55 0,56 0,57 0,58 0,59	34,51 34,20 33,88 33,57 33,25 32,93	32,00 31,67 31,33 31,00 30,67 30,32	31,08 30,74 30,40 30,06 29,73 29,39	30,47 30,13 29,79 29,45 29,11 28,77	30,12 29,78 29,44 29,09 28,76 28,42	29,86 29,52 29,18 28,83 28,50 28,16	29,33 28,99 28,65 28,31	29,64 29,29 28,95 28,61 28,27 27,93	29,59 29,24 28,90 28,56 28,22 27,89	29,54 29,20 28,86 23,52 28,18 27,84	29,52 29,17 28,83 28,49 28,15 27,82	28,47	29,48 29,14 28,80 28,46 28,12 27,78	29,48 29,14 38,79 28,45 28,12 27,78
0,60 0,61 0,62 0,63 0,64 0,65 0,66 0,67 0,68 0,69	32,61 32,28 31,96 31,63 31,30 30,97 30,63 30,30 29,96 29,61	30,00 29,67 29,33 29,00 28,67 28,33 28,00 27,67 27,33 27,00	29,05 28,72 28,39 28,05 27,72 27,39 27,06 26,73 26,40 26,07	28,44 28,10 27,77 27,44 27,11 26,78 26,45 26,12 25,79 25,47	28,08 27,75 27,41 27,08 26,75 26,42 26,10 25,77 25,45 25,12	27,82 27,49 27,16 26,82 26,50 26,17 25,84 25,52 25,26 24,88	27,31 26,97 26,64 26,32 25,99 25,67 25,34	26,93 26,60 26,28 25,95 25,63 25,30 24,98		27,51 27,17 26,84 26,51 26,19 25,86 25,54 25,22 24,90 24,58	27,48 27,15 26,82 26,49 26,16 25,84 25,52 25,20	27,46 27,14 26,81 26,48 26,14 25,83 25,50 25,18 24,87	27,45 27,12 26,79 26,46 26,13 25,81 25,48 25,16	27,45 27,11 26,78 26,45 26,13 25,80 25,48 25,16 24,84 24,53
0,70 0,71 0,72 0,73 0,74 0,75 0,76 0,77 0,78 0,79	29,27 28,92 28,57 28,22 27,86 27,50 27,13 26,77 26,39 26,02	26,67 26,33 26,00 25,67 25,33 25,00 24,67 24,33 24,00 23,67	25,74 25,41 25,09 24,76 24,44 24,11 23,79 23,47 23,15 22,83	25,14 24,82 24,50 24,18 23,86 23,55 23,23 22,92 22,60 22,29	24,80 24,48 24,17 23,85 23,54 23,22 22,91 22,60 22,30 21,99	24,56 24,24 23,93 23,61 23,30 22,99 22,69 22,38 22,08 21,78	24,07 23,76 23,45 23,14 22,84 22,53 22,23 21,93	24,35 24,03 23,72 23,41 23,10 22,80 22,49 22,19 21,90 21,60	24,31 23,99 23,68 23,37 23,07 22,76 22,46 22,16 21,86 21,57	24,27 23,95 23,64 23,33 23,03 22,72 22,42 22,12 21,83 21,53	24,25 23,93 23,62 23,32 23,01 22,71 22,41 22,11 21,81 21,52	24,24 23,91 23,60 23,30 23,00 22,69 22,39 22,09 21,80		24,21 23,90 23,59 23,29 22,98 22,68 22,38 22,38 21,78 21,49

Q*			Оцено	очное значе	ние входног	о уровн	я дефект	гности	^ o, % пр	и п				
	3	4	5	7	10	15	25	30	40	-60	85	115	175	230
0,80 0,81 0,82 0,83 0,84 0,85 0,86 0,87 0,88	25,64 25,25 24,86 24,47 24,07 23,67 23,26 22,84 22,42 21,99	23,33 23,00 22,67 22,33 22,00 21,67 21,33 21,00 20,67 20,33	22,51 22,19 21,87 21,56 21,24 20,93 20,62 20,62 20,31 20,00 19,69	21,98 21,68 21,37 21,06 20,76 20,46 20,16 19,86 19,57 19,27	21,69 21,39 21,09 20,79 20,49 20,20 19,90 19,61 19,33 19,04		19,89 19,60 19,32 19,04	21,01 20,72 20,43 20,15 19,87 19,58 19,31 19,03	21,27 20,98 20,69 20,40 20,12 19,84 19,56 19,28 19,00 18,73	20,66 20,37 20,09 19,81 19,54 19,25 18,98	21,22 20,93 20,64 20,36 20,08 19,79 19,52 19,24 18,97 18,69	21,22 20,93 20,64 20,35 20,06 19,79 19,51 19,24 18,96 18,69	21,20 20,91 20,62 20,34 20,06 19,78 19,50 19,22 18,95 18,68	21,20 20,91 20,62 20,34 20,06 19,78 19,50 19,22 18,95 18,68
0,90 0,91 0,92 0,93 0,94 0,95 0,96 0,97 0,98 0,99	21,55 21,11 20,66 20,20 19,74 19,25 18,76 18,25 17,74 17,21	20,00 19,67 19,33 19,00 18,67 18,33 18,00 17,67 17,33 17,00	19,38 19,07 18,77 18,46 18,16 17,86 17,56 17,25 16,96 16,66	18,98 18,69 18,40 18,11 17,82 17,54 17,26 16,97 16,70 16,42	18,75 18,47 18,19 17,91 17,64 17,36 17,09 16,82 16,55 16,28	17,78 17,51 17,24 16,98 16,71	18,22 17,96 17,69 17,43 17,17 16,91 16,65 16,39	18,21 17,95 17,68 17,42 17,16 16,90 16,64 16,38	18,46 18,19 17,92 17,66 17,40 17,14 16,88 16,63 16,37 16,12	18,17 17,90 17,65 17,39 17,13 16,87 16,62 16,37	18,42 18,17 17,89 17,63 17,37 17,12 16,86 16,61 16,36	18,16 17,89 17,63 17,37 17,12 16,86 16,61	18,41 18,15 17,88 17,62 17,36 17,11 16,86 16,60 16,36 16,11	18,41 18,15 17,88 17,62 17,36 17,11 16,86 16,60 16,36 16,11
1,00 1,01 1,02 1,03 1,04 1,05	16,67 16,11 15,53 14,93 14,31 13,66	16,67 16,33 16,00 15,67 15,33 15,00	16,36 16,07 15,78 15,48 15,19 14,91	16,14 15,87 15,60 15,33 15,06 14,79	16,02 15,76 15,50 15,24 14,98 14,73	15,68 15,43 15,18 14,94	15,89 15,64 15,40 15,15 14,91 14,67	15,63 15,39 15,15 14,91	15,88 15,63 15,39 15,15 14,91 14,67	15,63 15,39 15,15 14,91		15,62 15,38	15,87 15,62 15,38 15,15 14,91 14,68	15,87 15,62 15,38 15,15 14,91 14,68

	_
ı	TOCT
ı	Ā
ı	-11
ı	_
ł	
ł	Ņ
Ł	0
ı	~
ı	w
ı	20736
ı	- 1
L	ŀ
L	~
ı	VI
ı	
ı	_
1	CTD
ı	_=
1	Ų
ı	•
ı	
	4
•	

Q*			Оп	еночное зна	чение вход	ного ур	овня деф	ектност	и ̂р, % :	при п				
	3	4	5	7	10	15	25	30	40	60	85	115	175	230
1,06 1,07 1,08 1,09	12,98 12,27 11,51 10,71	14,67 14,33 14,00 13,67	14,62 14,33 14,05 13,76	14,53 14,27 14,01 13,75	14,48 14,23 13,98 13,74	14,45 14,21 13,97 13,73	14,44 14,20 13,97 13,74	14,44 14,21 13,98 13,75	14,44 14,21 13,98 13,75	14,44 14,21 13,99 13,76	14,22	14,45 14,22 13,99 13,77	14,45 14,22 14,00 13,78	14,45 14,22 14,00 13,78
1,10 1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,18 1,19	9,84 8,89 7,82 6,60 5,08 0,29 0,00 0,00 0,00	13,33 13,00 12,67 12,33 12,00 11,67 11,33 11,00 10,67 10,33	13,48 13,20 12,93 12,65 12,37 12,10 11,83 11,56 11,29 11,02	13,50 13,24 12,99 12,74 12,49 12,25 12,00 11,76 11,52 11,29	13,49 13,25 13,02 12,78 12,55 12,31 12,08 11,86 11,63 11,41	13,50 13,27 13,04 12,81 12,59 12,37 12,15 11,93 11,71 11,50	13,29 13,07 12,85 12,63 12,42 12,21 12,00 11,79	13,52 13,30 13,08 12,86 12,64 12,43 12,22 12,01 11,80 11,60	13,53 13,31 13,09 12,87 12,66 12,45 12,24 12,03 11,82 11,62	13,32 13,10 12,89 12,67 12,46 12,25 12,06 11,84	13,32 13,12 12,89 12,69 12,48 12,27 12,07 11,86	13,33 13,12 12,90 12,69 12,48 12,28 12,07 11,88	13,56 13,34 13,12 12,91 12,70 12,49 12,29 12,08 11,88 11,69	13,56 13,34 13,12 12,91 12,70 12,49 12,29 12,08 11,88 11,69
1,20 1,21 1,22 1,23 1,24 1,25 1,26 1,27 1,28 1,29	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	10,00 9,67 9,33 9,00 8,67 8,33 8,00 7,67 7,33 7,00	10,79 10,50 10,23 9,97 9,72 9,46 9,21 8,96 8,71 8,46	11,05 10,82 10,59 10,36 10,13 9,91 9,69 9,47 9,25 9,04	11,19 10,97 10,76 10,54 10,33 10,12 9,92 9,71 9,51 9,31	11,29 11,08 10,88 10,67 10,47 10,27 10,08 9,88 9,69 9,50	11,38 11,18 10,98 10,78 10,58 10,39 10,20 10,01 9,83 9,64	11,40 11,20 11,00 10,80 10,61 10,42 10,24 10,05 9,87 9,68	11,22 11,03 10,84 10,64 10,46 10,27 10,09 9,90	11,26 11,06 10,87 10,68 10,49 10,31 10,13	11,27 11,08 10,89 10,70 10,51 10,33	11,29 11,09 10,90 10,71 10,52 10,34	10,18	11,49 11,30 11,10 10,91 10,73 10,54 10,36 10,18 10,00 9,83
1,30 1,31	0,00 0,00	6,67 6,63	8,21 7,97	8,83 8,62	9,11 8,9 2	9,32 9,13	9,47 9,29	9,51 9,33	9,55 9,37		9,62 9,45	9,64 9,47		9,65 9, 48

Q*			Оц	еночное зна	чение вход	ного ура	овня дес	ректност	си p , %	при п			***	
	3	4	5	7	10	15	25	30	40	60	85	115	175	230
1,32 1,33 1,34 1,35 1,36 1,37 1,38 1,39	0,00 0,00 0,00 0,00 0,00 0,00 0,00	6,00 5,67 5,33 5,00 4,67 4 ,33 4 ,00 3,67	7,73 7,49 7,25 7,02 6,79 6,56 6,33 6,10	8,41 8,20 8,00 7,80 7,60 7,40 7,21 7,02	8,73 8,54 8,35 8,16 7,98 7,80 7,62 7,45	8,95 8,77 8,59 8,41 8,24 8,07 7,90 7,73	9,11 8,94 8,77 8,60 8,43 8,27 8,11 7,95	9,15 8,98 8,81 8,64 8,48 8,31 8,15 7,99	9,20 9,03 8,86 8,69 8,53 8,37 8,21 8,05	9,25 9,08 8,91 8,75 8,59 8,43 8,26 8,11	9,28 9,11 8,94 8,78 8,62 8,46 8,30 8,14	9,30 9,13 8,96 8,80 8,64 8,48 8,32 8,17	9,31 9,14 8,98 8,82 8,66 8,50 8,34 8,19	9,31 9,15 8,98 8,82 8,66 8,50 8,35 8,19
1,40 1,41 1,42 1,43 1,44 1,45 1,46 1,47 1,48 1,49	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	3,33 3,00 2,67 2,33 2,00 1,67 1,33 1,00 0,67 0,33	5,88 5,66 5,44 5,23 5,01 4,81 4,60 4,39 4,19 3,99	6,83 6,65 6,46 6,28 6,10 5,93 5,75 5,58 5,41 5,24	7,27 7,10 6,93 6,76 6,60 6,44 6,28 6,12 5,96 5,81	7,57 7,41 7,25 7,09 6,93 6,78 6,63 6,48 6,34 6,19	7,79 7,63 7,48 7,33 7,18 7,03 6,89 6,74 6,60 6,47	7,84 7,68 7,53 7,38 7,24 7,09 6,95 6,80 6,66 6,53	7,90 7,74 7,59. 7,44 7,30 7,15 7,01 6,87 6,73 6,60	7,96 7,81 7,66 7,51 7,37 7,23 7,09 6,95 6,81 6,67	8,00 7,85 7,70 7,54 7,41 7,27 7,13 6,99 6,85 6,72	8,02 7,87 7,72 7,57 7,43 7,29 7,15 7 ,01 6,87 6,74	8,03 7,88 7,74 7,59 7,45 7,30 7,17 7,03 6,89 6,76	8,04 7,89 7,74 7,60 7,46 7,32 7,18 7,04 6,90 6,77
1,50 1,51 1,52 1,53 1,54 1,55 1,56 1,57	0,00 0,00 0,00 0,00 0,00 0,00 0,00	0,00 0,00 0,00 0,00 0,00 0,00 0,00	3,80 3,61 3,42 3,23 3,05 2,87 2,69 2,52	5,08 4,92 4,76 4,60 4,45 4,30 4,15 4,01	5,66 5,51 5,37 5,22 5,08 4,94 4,81 4,67	6,05 5,91 5,77 5,64 5,50 5,37 5,24 5,11	6,33 6,19 6,06 5,93 5,80 5,68 5,55 5,43	6,39 6,25 6,12 5,99 5,86 5,74 5,62 5,50	6,46 6,33 6,20 6,07 5,95 5,82 5,70 5,58	6,54 6,41 6,28 6,15 6,03 5,90 5,78 5,66	6,58 6,45 6,32 6,20 6,07 5,95 5,83 5,71	6,61 6,48 6,35 6,22 6,10 5,98 5,86 5,74	6,63 6,50 6,37 6,25 6,12 6,00 5,88 5,77	6,64 6,51 6,38 6,26 6,14 6,01 5,89 5,79

l	0
ı	_
ı	\Box
ı	
l	N
l	207
l	3
1	Ö
ł	
İ	7
۱	S
1	_
ŀ	\subseteq
i	ਨੁ
۱	•
ı	4
•	9

Q*			Оц	еночное зна	ичение вход	ного урс	вня деф	ектност	и p , % 1	при п				
	3	4	5	7	10	15	25	30	40	60	85	115	175	230
1,58 1,59	0,00	0,00 0,00	2,35 2,19	3,86 3,72	4,54 4,41	4,99 4,86	5,31 5,19	5,38 5,26	5,46 5,34	5,55 5,43	5,59 5,48	5,62 5,51	5,65 5,53	5,6 5,5
1,60 1,61 1,62 1,63 1,64 1,65 1,66 1,67 1,68 1,69	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	2,03 1,87 1,72 1,57 1,42 1,28 1,15 1,02 0,89 0,77	3,58 3,45 3,31 3,18 3,06 2,93 2,81 2,69 2,57 2,46	4,28 4,16 4,03 3,91 3,79 3,68 3,56 3,45 3,34 3,23	4,74 4,62 4,51 4,39 4,28 4,17 4,06 3,95 3,85 3,74	5,08 4,96 4,85 4,74 4,63 4,52 4,41 4,31 4,21 4,10	5,14 5,03 4,92 4,81 4,70 4,59 4,49 4,39 4,29 4,19	5,23 5,12 5,01 4,90 4,79 4,68 4,58 4,48 4,38 4,28	5,32 5,20 5,09 4,99 4,88 4,77 4,67 4,57 4,47 4,37	5,36 5,25 5,14 5,04 4,93 4,83 4,72 4,62 4,53 4,43	5,39 5,28 5,17 5,07 4,96 4,86 4,75 4,65 4,56 4,46	5,42 5,31 5,20 5,10 4,99 4,89 4,79 4,69 4,59 4,49	5,4 5,3 5,1 5,0 4,9 4,8 4,7 4,6 4,5
1,70 1,71 1,72 1,73 1,74 1,75 1,76 1,77	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	0,66 0,55 0,45 0,36 0,27 0,19 0,12 0,06 0,02 0,00	2,35 2,24 2,13 2,03 1,93 1,83 1,73 1,64 1,55 1,46	3,13 3,02 2,92 2,82 2,73 2,63 2,54 2,45 2,36 2,27	3,64 3,54 3,45 3,35 3,26 3,16 3,07 2,99 2,90 2,81	4,00 3,92 3,82 3,73 3,63 3,54 3,45 3,45 3,28 3,20	4,09 3,99 3,90 3,81 3,72 3,63 3,54 3,45 3,37 3,28	4,18 4,09 3,99 3,90 3,81 3,72 3,63 3,55 3,47 3,38	4,28 4,18 4,09 4,00 3,91 3,82 3,74 3,65 3,57 3,49	4,33 4,24 4,15 4,06 3,97 3,88 3,79 3,71 3,62 3,54	4,36 4,27 4,18 4,09 4,00 3,91 3,82 3,74 3,65 3,57	4,40 4,30 4,21 4,12 4,03 3,94 3,86 3,77 3,69 3,61	4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,
1,80 1,81 1,82	0,00 0,00 0,00	0,00 0,00 0,00	0,00 0,00 0,00	1,38 1,29 1,21	2,19 2,10 2,02	2,73 2,65 2,57	3,11 3,03 2,96	3,20 3,12 3,05	3,30 3,22 3,15	3,41 3,33 3,25	3,46 3,38 3,31	3,49 4,41 3,34	3,53 3,45 3,37	3,5 3,4 3,3

Q*			Оц	еночное зна	чение вход	ного урс	вня деф	ектност	и p , %	при п				· · · · ·
¥	3	4	5	7	10	15	25	30	40	60	85	115	175	230
1,83 1,84 1,85 1,86 1,87 1,88 1,89	0,00 0,00 0,00 0,00 0,00 0,00 0,00	0,00 0,00 0,00 0,00 0,00 0,00 0,00	0,00 0,00 0,00 0,00 0,00 0,00	1,14 1,06 0,99 0,92 0,86 0,79 0,73	1,94 1,87 1,79 1,72 1,65 1,58	2,49 2,42 2,34 2,27 2,20 2,13 2,06	2,88 2,80 2,73 2.66 2,59 2,52 2,45	2,97 2,89 2,82 2,75 2,68 2,61 2,54	3,07 2,99 2,92 2,85 2,78 2,71 2,64	3,17 3,10 3,03 2,95 2,88 2,81 2,75	3,23 3,16 3,08 3,01 2,94 2,87 2,81	3,26 3,19 3,11 3,04 2,97 2,90 2,84	3,30 3,22 3,15 3,08 3,01 2,94 2,84	3,32 3,24 3,17 3,10 3,03 2,96 2,89
1,90 1,91 1,92 1,93 1,94 1,95 1,96 1,97 1,98 1,99	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	0,67 0,62 0,56 0,51 0,46 0,42 0,37 0,33 0,30 0,26	1,45 1,38 1,32 1,26 1,20 1,15 1,09 1,04 0,99 0,94	1,99 1,93 1,86 1,80 1,74 1,68 1,62 1,57 1,51	2,38 2,32 2,25 2,19 2,13 2,07 2,01 1,95 1,90 1,84	2,47 2,41 2,34 2,28 2,22 2,16 2,10 2,04 1,99 1,93	2,57 2,51 2,45 2,38 2,32 2,26 2,20 2,14 2,09 2,03	2,68 2,61 2,55 2,49 2,43 2,37 2,31 2,25 2,19 2,14	2,74 2,67 2,61 2,55 2,49 2,43 2,37 2,31 2,25 2,20	2,77 2,70 2,64 2,58 2,52 2,46 2,40 2,34 2,28 2,23	2,81 2,74 2,68 2,61 2,55 2,49 2,43 2,38 2,38 2,32 2,26	2,83 2,76 2,70 2,63 2,57 2,51 2,45 2,40 2,34 2,28
2,00 2,01 2,02 2,03 2,04 2,05 2,06 2,07 2,08 2,09	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	0,23, 0,20 0,17 0,14 0,12 0,10 0,08 0,06 0,05 0,03	0,89 0,84 0,80 0,75 0,71 0,67 0,63 0,60 0,50 0,53	1,41 1,36 1,31 1,26 1,21 1,17 1,12 1,08 1,04 1,00	1,79 1,74 1,69 1,64 1,59 1,54 1,49 1,45 1,40	1,88 1,83 1,78 1,73 1,68 1,63 1,58 1,54 1,49	1,98 1,93 1,87 1,82 1,77 1,73 1,68 1,63 1,59	2,08 2,03 1,98 1,93 1,88 1,83 1,79 1,74 1,69 1,64	2,14 2,09 2,04 1,99 1,94 1,89 1,84 1,79 1,75	2,17 2,12 2,07 2,02 1,97 1,92 1,87 1,82 1,78	2,21 2,16 2,10 2,05 2,00 1,95 1,91 1,86 1,81 1,77	2,23 2,18 2,12 2,07 2,02 1,97 1,93 1,88 1,83 1,79

, 			0	ценочное зн	пачение вхо	дного ур	овня де	фектнос	ти $\widehat{p},~\%$	при ѝ				
Q*	3	4	5	7	10	15	25	30	40	60	85	115	175	230
2,10 2,11 2,12 2,13 2,14 2,15 2,16 2,17 2,18 2,19	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	0,02 0,01 0,00 0,00 0,00 0,00 0,00 0,00	0,49 0,46 0,43 0,40 0,38 0,35 0,32 0,30 0,28 0,26	0,96 0,92 0,88 0,85 0,81 0,78 0,75 0,71 0,68 0,65	1,32 1,28 1,24 1,20 1,16 1,13 1,09 1,06 1,02 0,99	1,41 1,36 1,32 1,28 1,25 1,21 1,17 1,13 1,10	1,50 1,46 1,42 1,38 1,34 1,30 1,26 1,22 1,19 1,15	1,60 1,56 1,52 1,48 1,44 1,40 1,36 1,32 1,28 1,25	1,66 1,61 1,57 1,53 1,49 1,45 1,41 1,38 1,34 1,30	1,69 1,64 1,60 1,56 1,52 1,48 1,44 1,41 1,37	1,72 1,68 1,64 1,60 1,56 1,52 1,48 1,44 1,40	1,74 1,70 1,66 1,62 1,58 1,54 1,50 1,46 1,41 1,39
2,20 2,21 2,22 2,23 2,24 2,25 2,26 2,27 2,28 2,29	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,236 0,217 0,199 0,182 0,166 0,150 0,136 0,123 0,111 0,099	0,625 0,597 0,570 0,544 0,519 0,495 0,471 0,449 0,427 0,406	0,775	1,030 0,997 0,966 0,935 0,875 0,847 0,819 0,792 0,766	1,025	1,214 1,180 1,147 1,115 1,083 1,052 1,022 0,993 0,964 0,936	1,267 1,233 1,199 1,167 1,135 1,104 1,073 1,043 1,014 0,986	1,231 1,197 1,165 1,134 1,103 1,073	1,330 1,295 1,261 1,228 1,195 1,163 1,132 1,103 1,073 1,044	1,346 1,311 1,277 1,244 1,211 1,179 1,148 1,118 1,088 1,059
2,30 2,31 2,32 2,33 2,34 2,35	0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000	0,089 0,079 0,070 0,061 0,054 0,047	0,386 0,387 0,348 0,330 0,313 0,296		0,668 0,645	0,799 0,774 0,750 0,720	0,909 0,882 0,856 0,831 0,807 0,782	0,959 0,931 0,905 0,879 0,854 0,829	0,960 0,934 0,908	1,016 0,988 0,962 0,935 0,909 0,884	1,031 1,003 0,976 0,950 0,924 0,899

			Оц	еночное зна	чение вход	ного урс	вня деф	ектност	м <i>p</i> , % г	три <i>п</i>				
Q*	3	4	5	7	10	15	25	30	40	60	85	115	175	230
2,36 2,37 2,38 2,39	0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000	0,000 · 0,000 0,000 0,000	0,040 0,035 0,029 0,025	0,280 0,265 0,250 0,236	0,538 0,518 0,498 0,479			0,736	0,782	0,833 0,809 0,787 0,764	0,860 0,836 0,813 0,791	0,874 0,850 0,827 0,804
2,40 2,41 2,42 2,43 2,44 2,45 2,46 2,47 2,48 2,49	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,021 0,017 0,014 0,011 0,009 0,007 0,005 0,004 0,003 0,002	0,210 0,198 0,186 0,175 0,165	0,443	0,503 0,485 0,467 0,450 0,434 0,417	0,521 0,503 0,486 0,470 0,454	0,651 0,631 0,611 0,593 0,573 0,556 0,538	0,695	0,701 0,679 0,660 0,641 0,622 0,604	0,769 0,747 0,726 0,705 0,685 0,665 0,646 0,627 0,609 0,593	0,782 0,760 0,739 0,718 0,698 0,678 0,659 0,640 0,622 0,605
2,50 2,51 2,52 2,53 2,54 2,55 2,56 2,57 2,58 2,59	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,001 0,001 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,111 0,103 0,096 0,089 0,083 0,077 0,071	0,294 0,282 0,270 0,258 0,247 0,237 0,227 0,217	0,345 0,331 0,319 0,306 0,294	0,394 0,381 0,367 0,354 0,341	0,473 0,458 0,444 0,428 0,415 0,401 0,388 0,376	0,528 0,512 0,497 0,481 0,466 0,451 0,437 0,424 0,411 0,397	0,552 0,536 0,519 0,503 0,488 0,473 0,459 0,445 0,432 0,418		0,587 0,570 0,553 0,537 0,522 0,506 0,491 0,477 0,463 0,449
2,60 2,61	0,000 0,000	0,000 0,000	0,000 0,000	0,000 0,000	0 ,000 0 ,000	0,056 0,052	0,198 0,189	0,240 0,231	0,294 0,283	0,351 0,339	0,385 0,372	0,406 0,393	0,426 0,413	0,436 0,423

Ō
Ü
×
9
تي
P
7
Q,
_
Ü
귱
٠.
1.5

			Оц	еночное зна	чение вх о ді	ног о у рс	вня деф	ектності	ор. % п	ри п				
Q*	3	4	5	7	10	15	25	30	40	60	85	115	175	230
2,62 2,63 2,64 2,65 2,66 2,67 2,68 2,69	0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,048 0,044 0,040 0,037 0,034 0,031 0,028 0,025	0,164 0,157 0,149 0,143	0,203 0,195 0,186 0,179	0,244 0,234 0,225 0,217	0,316 0,306 0,295 0,285 0,275	0,360 0,349 0,338 0,327 0,316 0,305 0,296 0,286			0,410 0,398 0,386 0,375 0,363 0,352 0,342 0,331
2,70 2,71 2,72 2,73 2,74 2,75 2,76 2,77 2,78 2,79	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,023 0,021 0,019 0,017 0,015 0,014 0,012	0,123 0,117 0,111 0,106 0,101 0,096 0,091 0,086	0,156 0,150 0,143 0,137 0,131 0,125 0,120 0,114 0,109 0,103	0,201 0,193 0,185 0,178 0,171 0,164 0,158 0,152 0,146	0,248 0,239 0,231 0,222 0,215 0,207 0,200 0,192	·	0,295 0,285 0,275 0,266 0,258	0,311 0,302 0,292 0,283 0,274 0,266 0,257 0,249 0,241 0,233	0,321 0,311 0,301 0,292 0,282 0,274 0,265 0,257 0,249 0,241
2,80 2,81 2,82 2,83 2,84 2,85 2,86 2,86	0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,007 0,007 0,006 0,005 0,004 0,004 0,003 0,003	0,070 0,066 0,062 0,059	0,082 0,078 0,074	0,129 0,123 0,118 0,113 0,109 0,104	0,165 0,159 0,154 0,148 0,143	0,183 0,176 0,170 0,164	0,204	0,218 0,211 0,204 0,197 0,191	0,233 0,226 0,219 0,212 0,205 0,198 0,192 0,185

			Оц	еночное зна	чение в х од	ного урс	вня деф	ектност	^ и р. % т	при п				
Q*	3	4	5	7	10`	15	25	30	40	60	85	115	175	230
2,88 2,89	0,000 0,000	0,000 0,000	0,000 0,000	0,000 0,000	0,000 0,000	0,002				0,127 0,122			0,173 0,167	0,179 0,173
2,90 2,91 2,92 2,93 2,94 2,95 2,96 2,97 2,98	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0, 0 00 0,000 0,000 0,000 0,000 0,000	0,001 0,001 0,001 0,001 0,000 0,000	0,039 0,037 0,035 0,033 0,031 0,029 0,027 0,025	0,057 0,055 0,052 0,049 0,047 0,044 0,042 0,039	0,084 0,080 0,077 0,073 0,070 0,067 0,064 0,061	0,112 0,107 0,104 0,100 0,096 0,092 0,088 0,085	0,132 0,127 0,123 0,118 0,114 0,110 0,105 0,101	0,140 0,134 0,129 0,125 0,121 0,116 0,112	0,156 0,151 0,146 0,141 0,136 0,132 0,127 0,123	0,168 0,162 0,157 0,151 0,146 0,142 0,137 0,132 0,128
2,99 3,00 3,01 3,02 3,03 3,04 3,05 3,06 3,07 3,08 3,09	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000	0,017 0,01 6 0,015 0,014	0,034 0,032 0,030 0,028 0,027 0,025	0,056 0,053 0,050 0,048 0,045 0,043 0,041 0,039	0,078 0,075 0,072 0,069	0,098 0,094 0,091 0,087 0,084 0,078 0,075 0,072 0,069 0,067	0,105 0,101 0,097 0,094 0,090 0,086 0,083 0,080 0,077	0,119 0,115 0,111 0,107 0,103 0,099 0,096 0,092 0,089 0,086 0,083	0,124 0,120 0,116 0,112 0,108 0,104 0,101 0,097 0,094 0,091 0,088
3,10 3,11 3,12 3,13	0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000	0,000	0,011	0,019 0,018	0,034 0,032 0,031	0,050	0,061 0,060	0,072	0,080 0,077 0,074	0,085 0,082 0,079 0,075

	Оценочное значение входного уровня дефектности \widehat{p} , % при n													
Q*	3	4	5	7	10	15	25	30	40	60	85	115	175	230
3, 14 3, 15 3, 16 3, 17 3, 18 3, 19	0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000	0,008 0,008 0,007	0,014	0,026 0,025 0,024 0,022	0,042 0,040 0,038 0,036	0,053 0,051 0,049 0,046	0,062 0,060 0,057 0,056 0,053 0,052	0,067 0,064	0,073 0,070 0,067 0,065 0,063 0,060
3,20 3,21 3,22 3,23 3,24 3,25 3,26 3,27 3,28 3,29	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000	0,005 0,004 0,004 0,003 0,003	0,011 0,010 0,009 0,009 0,009 0,008 0,007 0,007 0,006 0,006	0,019 0,018 0,017 0,016 0,015 0,015 0,014 0,013	0,032 0,031 0,029 0,028 0,027 0,025 0,024 0,023	0,041 0,040 0,037 0,037 0,035 0,033 0,032	0,043 0,042 0,040 0,039	0,053 0,051 0,049 0,047 0,046 0,044 0,042 0,040	0,058 0,056 0,054 0,052 0,050 0,049 0,047 0,045 0,043 0,042
3,30, 3,31 3,32 3,33 3,34 3,35 3,36 3,37 3,38 3,39	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,003 0,002 0,002 0,002	0,005 0,005 0,004 0,004 0,004 0,004 0,004 0,003 0,003	0,011 0,010 0,010 0,009 0,009 0,008 0,008 0,007	0,021 0,020 0,019 0,018 0,017 0,016 0,015 0,014	0,027 0,026 0,025 0,024 0,023 0,022	0,032 0,030 0,029 0,028 0,027 0,026 0,024	0,036 0,034 0,033 0,032 0,031 0,030 0,028	0,040 0,039 0,037 0,036 0,035 0,032 0,031 0,030 0,029

			Оц	еночное зна	чение вход	ного ур	овня деф	ректност	ги р , %	при п				
Q*	3	4	5	7	10	15	25	30	40	60	85	115	175	230
3,40 3,41 3,42 3,43 3,44 3,45 3,46 3,47 3,48 3,49	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000	0,001 0,001 0,001 0,001 0,001 0,001	0,002 0,002 0,002 0,002 0,002 0,002 0,002	0,007 0,006 0,006 0,005 0,005 0,005 0,004 0,004 0,004	0,012 0,012 0,011 0,011 0,010 0,010 0,009	0,018 0,017 0,016 0,015 0,014 0,014	0,021 0,020 0,019 0,018 0,017 0,017	0,023 0,022 0,021 0,020 0,019 0,018	0,028 0,027 0,026 0,025 0,024 0,023 0,022 0,021 0,020 0,020
3,50 3,51 3,52 3,53 3,54 3,55 3,56 3,57 3,58 3,59	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,001 0,001 0,001 0,001 0,001 0,001 0,001	0,003 0,003 0,003 0,003 0,003 0,002 0,002	0,008 0,007 0,007	0,012 0,011 0,010 0,010 0,010 0,009 0,009 0,008 0,008 0,008	0,014 0,013 0,013 0,012 0,012 0,011 0,011	0,016 0,016 0,015	0,019 0,018 0,017 0,016 0,015 0,014 0,013 0,013 0,012
3,60 3,61 3,62 3,63 3,64 3,65	0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000	0,001 0,001 0,001 0,001	0,002 0,002 0,002 0,001 0,001 0,001	0,005 0,004 0,004 0,004 0,003 0,003	0,006		0,011 0,011 0,010 0,010 0,009 0,009	0,012 0,011 0,011 0,010 0,010 0,010

1	-
ł	0
ı	ō
l	Ľ
I	-
l	
ı	207
ı	207
ı	ىيا
ı	Ò
ı	- 1
ł	ů
l	S
ı	
ı	\sim
ı	Cip
ı	ਰ
ſ	
ı	_
ı	Ŋ
	~

			Оц	еночное зна	чение вход	ного урс	эвня деф	ректн о ст	^ и р , % і	при п				
Q*	3	4	5	7	10	15	25	30	40	60	85	115	175	230
3,66 3,67 3,68 3,69	0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000	0,001	0,003 0,003 0,003 0,002	0,005 0,005	0,007 0,007 0,006 0,006	0,009 0,008 0,008 0,008	0,009 0,009 0,008 0,008
3,70 3,71 3,72 3,73 3,74 3,75 3,76 3,77 3,78 3,79	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000	0,001 0,001	0,002 0,002 0,002 0,002 0,002 0,002 0,002	0,004 0,004 0,004 0,004 0,003 0,003	0,006 0,006 0,006 0,005 0,005 0,005 0,005 0,004 0,003	0,007 0,007 0,007 0,007 0,006 0,006 0,006 0,005 0,005	0,008 0,007 0,007 0,007 0,006 0,006 0,006 0,005 0,005
3,80 3,81 3,82 3,83 3,84 3,85 3,86 3,87 3,88 3,88	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000	0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,002 0,002 0,001 0,001 0,001 0,001 0,001	0,003 0,003 0,003 0,002 0,001 0,001 0,001	0,003 0,003 0,003 0,003 0,002 0,002 0,002 0,002 0,002	0,005 0,005 0,004 0,004 0,004 0,004 0,004	0,005 0,005 0,005 0,004 0,004 0,004 0,004 0,004 0,003
3,90	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,001	0,001	0,002	0,003	0,003

о-план

			Кон	трольный но	рматив	<i>k</i> σ (норм	иальный	контр о л	ъ) ийн	AQL, %				
Код объема выборки	n	k ₅	n	k ₃	n	k _g	n	k _g	n	k _g	n	h _g	n	k _g
		V 0,04	0,065		0	0,10		0,15		,25	0	,4 0	0	,65
B C D E F G H I J K L M P	3 4 5 7 10 14 19 27 37	2,58 2,65 2,69 2,77 2,83 2,88 2,92 2,96 2,97	3 4 6 7 11 15 20 30 40	2,49 2,55 2,59 2,63 2,72 2,77 2,80 2,84 2,85	4 5 6 8 11 16 22 31 42	2,39 2,46 2,49 2,54 2,59 2,65 2,69 2,72 2,73	3 4 5 6 9 12 17 23 34 45	2,19 2,30 2,34 2,37 2,45 2,49 2,54 2,57 2,62 2,62	2 3 4 6 7 9 13 19 25 37 49	1,94 2,07 2,14 2,23 2,25 2,29 2,35 2,41 2,43 2,47 2,48	2 3 5 6 8 10 14 21 27 40 54	1,81 1,91 2,05 2,08 2,13 2,16 2,21 2,27 2,29 2,33 2,34	2 3 4 5 7 8 11 16 23 30 44 59	1,58 1,69 1,88 1,95 1,96 2,01 2,07 2,12 2,14 2,17 2,18
Код Объема	0,	065	0	, 10	0,	15	0,	25	0,	40	0,	65	1	,00
выборки	n	k_{σ}	n	$k_{_{\mathfrak{J}}}$	n	k _g	n	k _o	n	k _o	n	k_{σ}	n	k_{σ}
	Контрольный но		льный норм	<u>і і ј</u> оматив <i>k_o</i> (усил		пенный	контр	оль) п	ри <i>AQL</i>	., %	•	·	<u> </u>	

	Контрольный норматив kg (нормальный контроль) при AQL, %													
Код объема выборки	n	k _g	п	k ₅	n	k _s	n	k _s	n	k _g	n	k _g	n	k _g
	1,	,00	1,50		2,50		4,00		6,50		10	0,00	15,00	
BCDEFGHIJKLMNP	2 2 3 4 6 7 9 12 17 25 33 49 65	1,36 1,42 1,56 1,69 1,78 1,80 1,83 1,88 1,93 1,97 2,00 2,03 2,04	2 2 3 4 6 8 10 14 19 28 36 54 71	1,25 1,33 1,44 1,53 1,62 1,68 1,70 1,75 1,79 1,86 1,89 1,89	2 3 4 5 7 9 11 15 22 32 42 61 81	1,09 1,17 1,28 1,39 1,45 1,49 1,51 1,56 1,61 1,67 1,69 1,70	2 3 4 5 8 10 13 18 25 36 48 70 93	0,936 1,01 1,11 1,20 1,28 1,31 1,34 1,38 1,42 1,46 1,48 1,51 1,51	3 3 5 6 9 12 15 20 29 42 55 82 109	0,755 0,825 0,919 0,991 1,07 1,11 1,13 1,17 1,21 1,24 1,26 1,29 1,29	4	0,573 0,641 0,728 0,797 0,877 0,906 0,924 0,964 0,995 1,03 1,05 1,07	4 6 8 12 16 20 27	0,344 0,429 0,515 0,584 0,649 0,685 0,706 0,737 0,770 0,803 0,819 0,845
Код объема	1,5	50	2,	50	4,	00	6,	50	10,	00	15,	00		
выборки	n	$k_{_{\mathfrak{I}}}$	n	$k_{_{\mathtt{J}}}$	n	k_{σ}	n	k_{σ}	п	k _o	п	k_{σ}	n	k_{σ}
	Контрольный норм			ьный норм	атив	k ₅ (уси	ленный	і контр	оль) п	ри <i>AQI</i>	., %	<u> </u>		

<u> </u>	Контрольный норматив k_{σ} (ослабленный контроль) при AQL , %													
Код объема выбо рки	n	k _g	n	k _g	n	k_{σ}	n	k _g	n	k _g	n	k _g	n	k_{σ}
	0,0)4		0,065	0,10		0,	0,15		,25	0,	,40	0,	,65
В														
С														
D													,	1
E											1	 -	2	1,36
F							1	 - -	ļ	 	2	1,58	2	1,42
G	}			i	1	 	2	1,94	2	1,81	3	1,69	3	1,56
Н					3	2,19	3	2,07	3	1,91	4	1,80	4	1,69
I	1	 	1	,	3	2,19	3	2,07	3	1,91	4	1,80	4	1,69
J	3	2,49	4	2,39	4	2,30	4	2,14	5	2,05	5	1,88	6	1,78
K	4	2,55	5	2,46	5	2,34	6	2,23	6	2,08	7	1, 9 5	7	1,80
L	6	2,59	6	2,49	6	2,37	7	2,25	8	2,13	8	1,96	9	1,83
M	8	2,64	9	2,55	9	2,46	9	2,29	10	2,16	11	2,01	12	1,88
N	11	2,72	11	2,59	12	2,49	13	2, 35	14	2,21	16	2,07	17	1,93
P	15	2,77	16	2,65	17	2,54	19	2,41	21	2,27	23	2,12	25	1,97

ı	_	
ı		
ı	000	
ľ	Ä	
ł		
ı	-	
ı	_	
ı		
ı	N .	ı
ŀ	- 5	
F	9	
ŀ	~	
ı	20736	
ı	- 22	
ŀ	Ţ	
ı	- 1	
ı	- 1	
ł	-	
ı		
ŀ	v	
ı		
ŀ	റ	
	٠,٠	
ŀ	_	
	CTP	
ļ		
	\mathbf{a}	

			Кон	грольный но	р м атив <i>k</i> _σ (ослабл е нный	контроль)	при AQL. 9	6			
Код объема выборки	n	k_{σ}	n	k ₃	п	k ₃	n	k _g	п	k _g	n	, k _g
	1,0	0	1,5	0	2,5	0	4,0	00	6,	50	1	0,00
BCDEFGHIJKLMNP	2 2 3 4 6 8 10 14 19 28	1,25 1,33 1,44 1,53 1,62 1,68 1,70 1,75 1,79 1,84	2 3 4 5 7 9 11 15 22 32	1,09 1,17 1,28 1,39 1,45 1,49 1,51 1,56 1,61	2 3 4 5 8 10 13 18 25 36	0,936 1,01 1,11 1,20 1,28 1,31 1,34 1,38 1,42 1,46	3 3 5 6 9 12 15 20 29 42	0,755 0,825 0,919 0,991 1,07 1,11 1,13 1,17 1,21 1,24	3 4 5 7 11 14 17 24 33 49	0,573 0,641 0,728 0,797 0,877 0,906 0,924 0,964 0,995 1,03	4	0,344 0,429 0,515 0,584 0,649 0,685 0,706 0,737 0,770 0,803

σ-план

						Дог	ійскаєй	иый	уровен	ь дефе	ктно	сти <i>М</i>	, (норм	алы	ный кон	троль)	при	AQL,	Po			
Код о б ъема вы б орки		0,0)4		0,065			0, 1	0		0,1	5		0,25	5		0,40)		0,6	55	
виочрин	n	M _σ	U	,	n	M _σ	υ	n	M _s	υ	n	M _g	U ,	n	M _g	U	n	M _σ	v	n	M _G	υ
BCDEFGHIJKLMNP	14 15 7 10 14 19 27	0,07 0,11 0,13 0,14 0,13 0,13 0,13 0,13	1 1, 1 0 1, 1 1 1, 0 1 1, 0 8 1, 0 4 1, 0	115 118 080 054 038 027 2	4 6 7 11 15 20 30	0,114 0,161 0,230 0,226 0,217 0,211 0,207 0,193 0,196	1,155 1,095 1,080 1,049 1,035 1,026 1,017	5 8 11 16 22 31	0,290 0,296 0,321 0,330 0,326 0,308 0,296 0,283 0,285	1,118 1,095 1,069 1,049 1,033 1,024	4 5 6 9 12 17 23 34	0,369 0,399 0,445 0,469 0,461 0,438 0,423 0,397 0,402	1,155 1,118 1,095 1,061 1,045 1,023 1,023	3 4 6 7 9 13 19 25 37	0,310 0,568 0,681 0,721 0,756 0,721 0,673 0,655 0,615 0,620	1,225 1,155 1,095 1,080 1,061 1,041 1,027 1,021	3 5 6 8 10 14 21 27 40	1,14 1,14 1,14 1,08	1,225 1,118 1,095 1,069 1,054 1,038 1,025 1,019	4 5 7 8 11 16 23 30 44	1,94 1,88 1,76 1,75 1,80 1,73 1,62	1,414 1,225 1,155 1,118 1,080 1,069 1,049 1,003 1,017 1,012 1,009
Кед объема выборки		0,0	65			0,1	.0		0,1	.5		0,2	5		0,4	0		0,6	3 5		1,0)O
	n	M_{σ}	0	,	n	M_{σ}	ט	n	M_{σ}	v	n	M _σ	υ	n	M_{σ}	v	n	M_{σ}	ט	n	M_{σ}	υ
		•		Д	опу	скаем	ый ур	ове	нь де	фектн	юст	и М _σ	(усиле	еннь	ий кон	троль) п	ри <i>AQ</i>	L, %			

					Допус	скаемы	йур	овень д	ефект	юсті	и М _σ (нормал	ьный	контр	оль) пј	ри А	QL, %				
Код о бъема выборки		1,00)		1,50)		2,50)		4,00	0		6,50)		10,	00		15,	00
	n	Mg	υ	n	M _σ	υ	n	M _σ	ซ	n	M _g	v	n	M _g	ย	n	M _g	ū	n	M _g	ס
B C D E F G H I J K L M N P	2 2 3 4 6 7 9 12 17 25 33 49 65	2,23 2,76 2,58 2,57 2,62 2,59 2,49 2,35 2,19 2,12 2,00	1,414 1,414 1,225 1,155 1,095 1,061 1,045 1,031 1,021 1,016 1,010 1,008	2 3 4 6 8 10 14 19 28 36 54	3,00 3,85 3,87 3,77 3,68 3,63 3,28 3,05 2,99 2,82	1,414 1,414 1,225 1,155 1,095 1,054 1,038 1,027 1,018 1,014 1,009	3 4 5 7 9 11 15 22 32 42 61	7,56 6,99 6,05 5,83 5,68 5,60 5,34 4,98 4,68 4,55 4,35	1,414 1,225 1,155 1,118 1,080 1,061 1,035 1,024 1,016 1,012 1,008 1,006	3 4 5 8 10 13 18 25 36 48 70	10,79 9,97 8,92 8,62 8,43 8,13 7,72 7,34 6,95 6,75 6,48	1,414 1,225 1,155 1,118 1,069 1,054 1,021 1,021 1,014 1,011 1,007 1,005	3 5 6 9 12 15 20 39 42 55 82	10,40 10,17 9,76	1,225 1,118 1,095 1,061 1,035 1,026 1,018 1,012 1,009	11 14 17 24 33 49 64 95	22,97 20,80 19,46 17,88 17,36 17,05 16,23 15,61 14,87 14,58	1,225 1,155 1,118 1,080 1,049 1,038 1,031 1,022 1,016 1,010 1,008 1,005	4 6 8 12 16 20 27 38 56 75	31,01 28,64 26,64 24,88 23,96 23,43 22,63 21,77 20,90 20,48 19,90	1,155 1,155 1,095 1,069 1,045 1,033 1,026 1,013 1,009 1,007 1,005 1,003
Код объема выборки		1,5	0		2,50	0		4,00	o		6,5	0	:	10,0	0		.15,0	0			
	n	M_{σ}	υ	n	M_{σ}	ט	n	M_{σ}	v	n	M_{σ}	υ	n	M _g	ט	n	M_{σ}	ซ	n	M _o	v
			До	пус	каемы	й уро	вен	ь дефо	ектнос	ти.	M_{σ} (y	силен	ный	конт	роль)	прі	n AQL	., %			

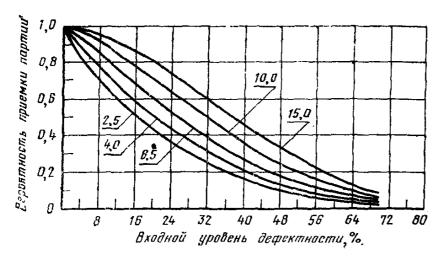
о-план

63		,			Доп	ускаемы	ій ур	овень д	ефектно	сти.	М _о при .	AQL (o	слаб.	ленньй і	контро.	ль),	%				
уъем с и		0,04		ļ	0,065			0,10			0,15			0,25			0,4	0		0,6	5
Код объема выборки	n	<i>M</i> _σ	v	n	M_{σ}	v	n	M _σ	ช	n	M _g	v	n	М	v	n	м σ	v	n	M or	υ
В С														:							
E F																			2	2,73	1,414
G H I	-						3 (0,369	1,225	3	0,310	1,414 1,225		0,510 0,959		3	1,28 1,94 1,88		3	2, 2 3 2, 7 6 2,58	1,225
J K	3	0,114 0,161	1,225 1,15 5		0,290 0,296	, 1,155 1,118		0,399 0,445	1,15 5 1,118		0,681 0,721	1,1 5 5 1,095			1,118 1, 09 5		1,76 1,75	1,118 1,080		2,57 2,62	
L	6	0,230	1,095	6	0,321	1,095	6	0,478	1,095	7	0,756	1,080	8	1,14	1,069	8	1,80	1,069	9	2,59	1,061
M N P	8 11 15	0,231 0,217 0,211	1,049	11	0,331 0,326 0,308		12	0,468 0,461 0,438	1,045	13	0,757 0,721 0,673	1,041	14	1,08	1,057 1,038 1,025	16	1,62	1,049 1,033 1,023	17	2,48 2,35 2,19	1,031

OCT	
20736	
—75	
Стр.	
65	

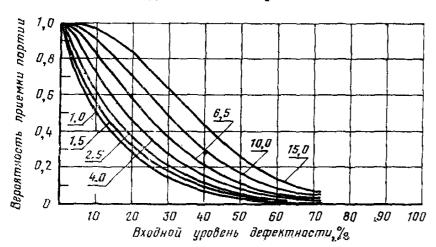
								Ø :4-11										
æ				До	пускаемі	яй урове	нь деф	ектности	М при	AQ.	L (ослаб	ленный з	конт	гроль),	76			
ъем: :и		1,00			1,50			2,50		4,00			6,50			10,00		
Кол объема выборки	n	M _g	บ	n	_М σ	υ	n	_М σ	ย	n	м́ _σ	υ	n	M _g	บ	n	Mσ	υ
B C																		
E F	2	3,90	1,414	2	6,11	1,414	2	9,27	1,414	3	↓ 17,74	1,225	3	↓ 24,22	1,225	4	33,67	1,225
G H I	2 3 4	3,00 3,85 3,87	1,414 1,225 1,155	4	7,56 6,99 6,05	1,225 1,155 1,118	4	10,79 9,97 8,92	1,225 1,155 1,118	5	15,60 15,21 13,89		5	22,97 20,80 19,46	1,118	6	31,01 28,64 26,64	
К	6 8 10	3, 7 7 3,68 3,63	1,095 1,069 1,054	9	5,83 5,68 5,60	1,080 1,061 1,049	10	8,62 8,43 8,13	1,069 1,054 1,041	12	12,35	1,061 1,045 1,035	14	17,36	1,049 1,038 1,031	16	24,88 23,96 23,43	1,033
M P	14 19 28	3,47 3,28 3,05	1,038 1,027 1,018	22	5,32 4,98 4,68	1,035 1,024 1,016	25	7,78 7,34 6, 9 5	1,029 1,021 1,014	29	10,96	1,026 1,018 1,012	33	16,24 15,61 14,87	1,016	38	22,63 21,77 20,90	

Примечания к табл. 16—19: 1. — выбирают первый план под стрелкой. 2. Если объем выборки п превосходит объем партии N, следует перейти к сплошному контролю,


Стр. 66 ГОСТ 20736—75

ប៉-ពភ	an	Оценочные значения входного уровня дефектности, %															
å	^ P	&	^ P	Ď	^ p	ð	^ <i>p</i>	å	^ p	Ĉ.	^ p	Č	^ p	ą	^ p	ő	^ p
0,00 0,01 0,02 0.03 0,04 0,05	50,000 49,601 49,202 48,803 48,405 48,006	0,26 0,27 0,28 0,29	39,743 39,358 38,974 38,501 38,209	0,52 0,53 0,54	30,503 30,153 29,806 29,460 29,116	0,77 0,78 0,79	22,363 22,065 21,770 21,476 21,186	1,02 1,03 1,04	15,625 15,386 15,150 14,917 14,686	1,27 1,28 1,29	10,383 10,204 10,027 9,853 9,680	1,52 1,53 1,54	6,552 6,426 6,301 6,178 6,057	1,77 1,78 1,79	3,920 3,836 3,754 3,673 3,593	2,02 2,03 2,04	2,222 2,169 2,118 2,068 2,018
0,06 0,07 0,08 0,09 0,10	17,608 17,210 46,812 46,414 46,017	0,32 0,33 0,34	37,828 37,448 37,070 36,693 36,317	0,57 0,58 0,59	28,774 28,434 28,096 27,760 27,425	0,82 0,83 0,84	20,897 20,611 20,327 20,045 19,766	1,07 1,08 1,09	14,457 14,231 14,007 13,786 13,567		9,510 9,342 9,176 9,012 8,851	1,57 1,58 1,59	5,938 5,821 5,705 5,592 5,480	1,82 1,83 1,84	3,515 3,438 3,362 3,288 3,216	2,07 2,08 2,09	1,970 1,923 1,876 1,831 1,786
0,11 0,12 0,13 0,14 0,15	45,620 45,224 44,828 44,433 44,038	0,37 0,38 0,39	35,942 35,569 35,197 34,827 34,458	0,62 0,63 0,64	27,093 26,763 26,435 26,109 25,785	0,87 0,88 0,89	19,489 19,215 18,943 18,673 18,406	1,12 1,13 1,14	13,350 13,136 12,924 12,714 12,507	1,37 1,38	8,691 8,534 8,379 8,226 8,070	1,62 1,63 1,64	5,370 5,262 5,155 5,050 4,947	1,87 1,88 1,89	3,144 3,074 3,005 2,938 2,872	2,12 2,13	1,743 1,700 1,659 1,618 1,578
	43,644 43,251 42,858	0,42	34,090 33,724 33,360	0,67	25,143	0,92	18,141 17,879 17,619	1,17	12,302 12,100 11,900	1,42	7,927 7,780 7,636	1,67	4,846 4,746 4,648	1,92	2,807 2,743 2,680	2,17	1,539 1.500 1,463
0,19 0,20 0,21 0,22	42,465 42,074 41,683 41,294	0,45 0,46	32,997 32,636 32,276 31,918	0,70	24,196 23,885	0,95	17,361 17,106 16,853 16,602	1,20 1,21	11,702 11,507 11,314 211,123	1,45 1,46	7,493 7,353 7,214 7,078	1,70 1,71	4,551 4,457 4,363 4,272	1,95 1 ,9 6	2,619 2,559 2,500 2,442	$\frac{2}{2}, \frac{20}{21}$	1,426 1,390 1,355 1,321
0,23 0,24 0,25	40,905 40,517 40,129	0,49	31,561 31,207 30,854	0,74	23.270 22,965 22,663	0,99	16,354 16,109 15,866	1,24	10,935 10,749 10,565	1,49	6,944 6,811 6,681	1,74	4,182 4,093 4,006	1,99	2,385 2,330 2,275	2,24	1,287 1,255 1,222

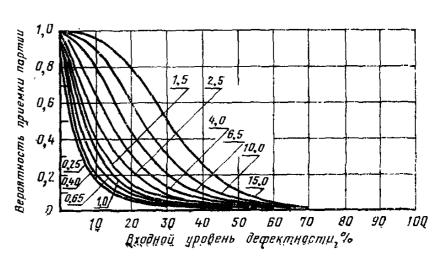
å	^ p	Q	۸ <i>p</i>	*Q	^ P	t Q	∧ p	*Q	^ p	*	^ p	ζ̈́	A P
2,26 2,27 2,28 2,29 2,30	1,191 1,160 1,130 1,101 1,072	2,52 2,53 2,54	0,604 0,587 0,570 0,554 0,539	2,77 2,78 2,79	0,289 0 280 0,272 0,261 0,256	3,01 3,02 3,03 3,04 3,05	0,131 0,126 0,122 0,118 0,114	3,26 3,27 3,28 3,29 3,30	0,056 0,054 0,052 0,050 0,048	3,51 3,52 3,53 3,54 3,55	0,022 0,022 0,021 0,020 0,019	3,76 3,77 3,78 3,79 3,80	0,008 0,008 0,008 0,008 0,007
2.31 2,32 2,33 2,34 2,35	1,044 1,017 0,990 0,964 0,939	2,57 2,58 2,59	0,523 0,508 0,491 0,480 0,466	2,82 2,83 2,84	0,248 0,240 0,233 0,226 0,219	3,06 3,07 3,08 3,09 3,10	0,111 0,107 0,103 0,100 0,097	3,31 3,32 3,33 3,34 3,35	0,047 0,045 0,043 0,042 0,040	3,56 3,57 3,58 3,59 3,60	0.019 0,018 0,017 0,017 0,016	3,81 3,82 3,83 3,84 3,85	0,007 0,007 0,006 0,006 0,006
2,36 2,37 2,38 2,39 2,40	0,914 0,889 0,866 0,842 0,820	2,62 2,63 2,64	0,453 0,440 0,427 0,415 0,402	2,87 2,88 2,89	0,212 0,205 0,199 0,193 0,187	3, 11 3, 12 3, 13 3, 14 3, 15	0,094 0,090 0,087 0,084 0,082	3,36 3,37 3,38 3,39 3,40	0,039 0,038 0,036 0,035 0,034	3,61 3,62 3,63 3,64 3,65	0,015 0,015 0,014 0,014 0,013	3,86 3,87 3,88 3,89 3,90	0,006 0,005 0,005 0,005 0,005
2,41 2,42 2,43 2,44 2,45	0,798 0,776 0,755 0,734 0,714	2,67 2,68 2,69	0,391 0,379 0,368 0,357 0,347	2,92 2,93 2,94	0,181 0,175 0,169 0,164 0,159	3,16 3,17 3,18 3,19 3,20	0,079 0,076 0,074 0,071 0,069	3,41 3,42 3,43 3,44 3,45	0,032 0,031 0,030 0,029 0,028	3,66 3,67 3,68 3,69 3,70	0,013 0,012 0,012 0,011 0,011	3,91 3,92 3,93 3,94 3,95	0,005 0,004 0,004 0,004 0,004
2,46 2,47 2,48 2,49 2,50	0,695 0,676 0,657 0,639 0,621	2,72 2,73 2,74	0,336 0,326 0,317 0,307 0,298	2,97 2,98 2,99	0,154 0,149 0,144 0,139 0,135	3,21 3,22 3,23 3,24 3,25	0,066 0,064 0,062 0,060 0,058	3,46 3,47 3,48 3,49 3,50	0,027 0,026 0,025 0,024 0,023	3,71 3,72, 3,73 3,74 3,75	0,010 0,010 0,010 0,009 0,009	3,96 3,97 3,98 3,99 4,00	0,004 0,004 0,003 0,003 0,003


Примечание. В левой колонке приведены входные величины, в правой — оцененные значения входного уровня дефектности.

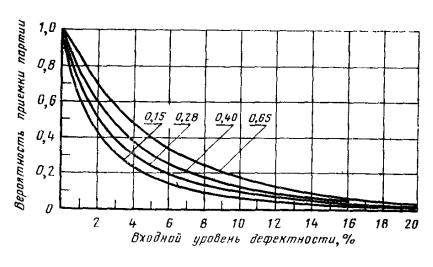
Код объема выборки B

Черт. 1

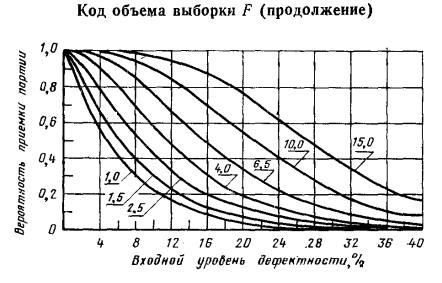
Код объема выборки С

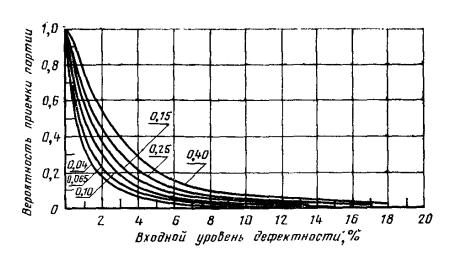

Черт. 2

Код объема выборки D

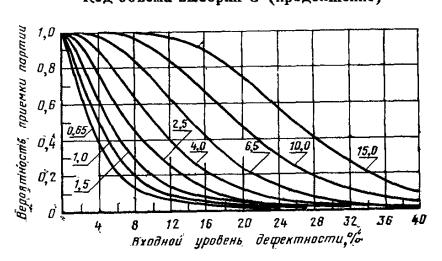

Черт. 3

Код объема выборки Е

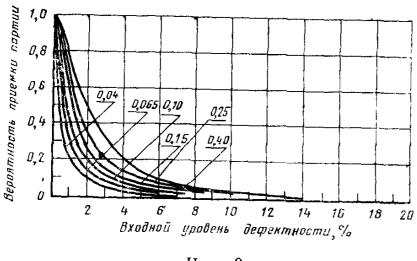

Черт. 4



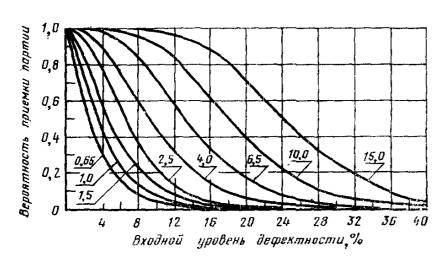
Черт. 5


Код объема выборки *G* (продолжение)

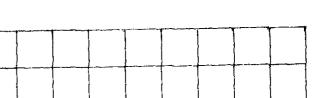
Черт. 6

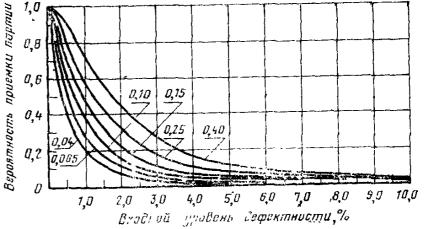


Черт. 7


Черт. 8

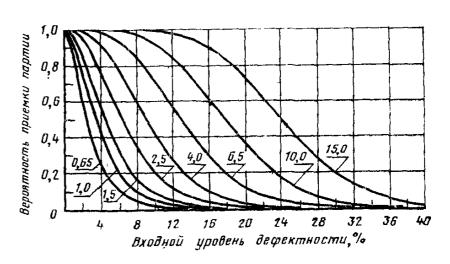
Код объема выборки Н




Черт. 9

Код объема выборки H (продолжение)

Черт. 10



Код объема выборки І

Черт. 11

Код объема выборки І (продолжение)

Черт. 12.

0,15

0,25 0,40

6,0

уровень дефектности,%

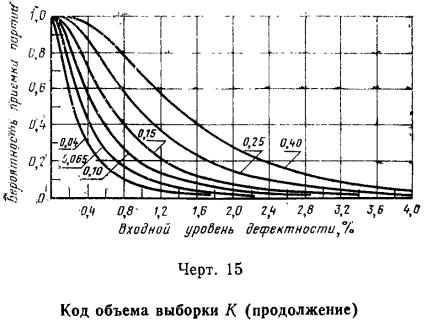
0,65

7,0

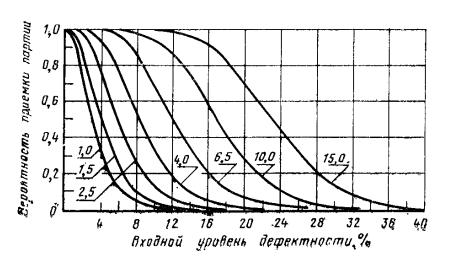
8,0

9,0 10,0

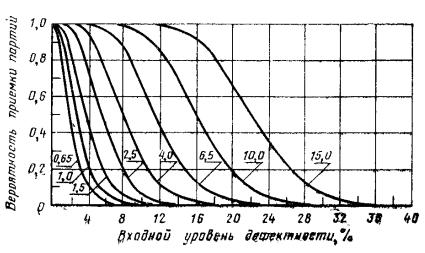
0,10


2,0

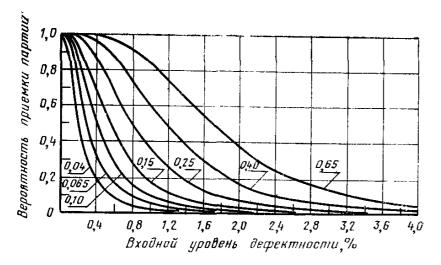
Входн<u>о</u>й


nnudoù nxwandu

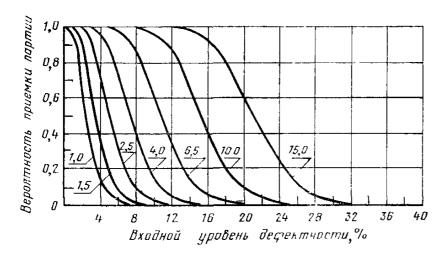
Вероятность


0,2

Черт. 13 ${
m Kog}$ объема выборки J (продолжение)

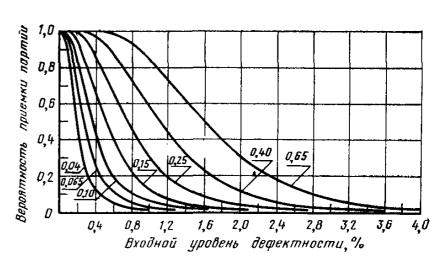


Черт. 14



Черт. 16

Код объема выборки L



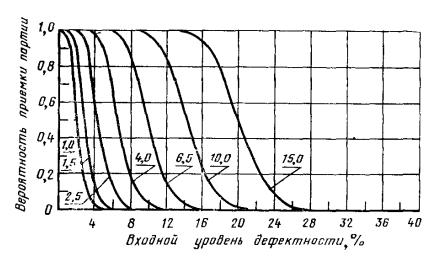
Черт. 17 $\mbox{Код объема выборки L (продолжение)}$


Черт. 18

Код объема выборки M

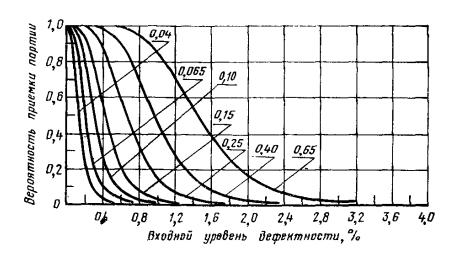
Черт. 19

Код объема выборки M (продолжение)

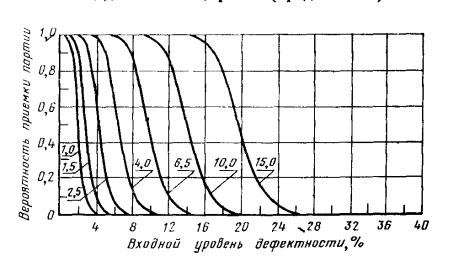


Черт. 20

Код объема выборки N

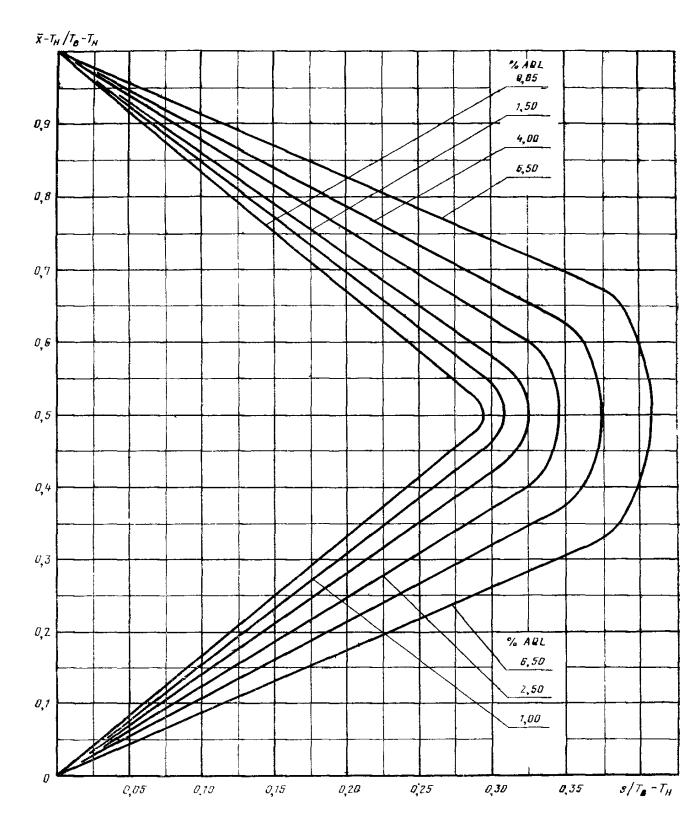


Черт. 21 Код объема выборки N (продолжение)

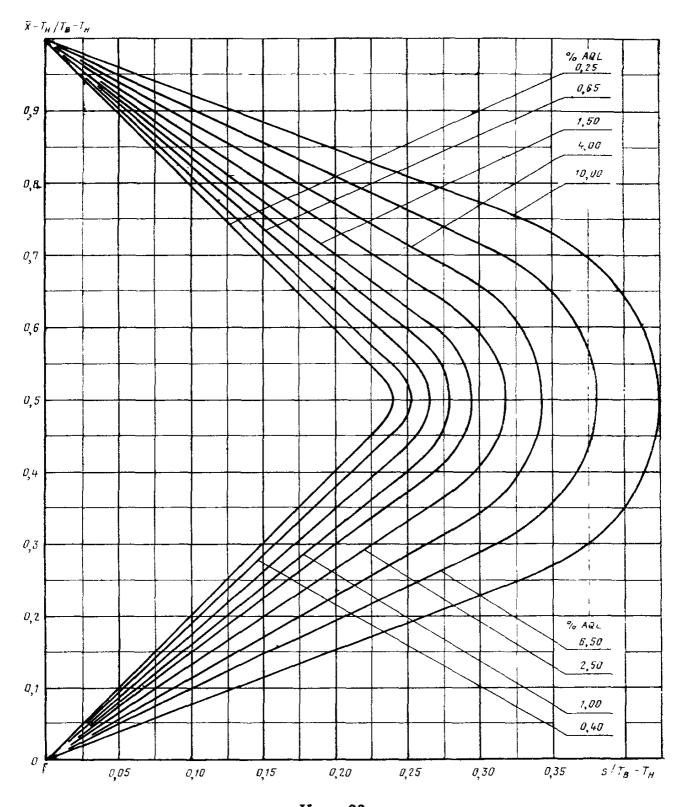


Черт. 22

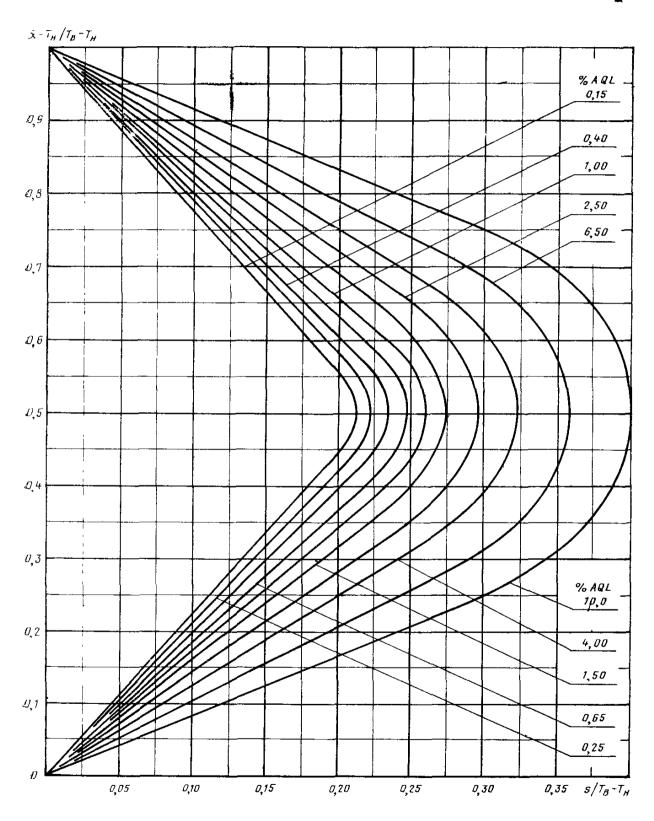
Код объема выборки Р


Черт. 23 Код объема выборки P (продолжение)

Черт 24

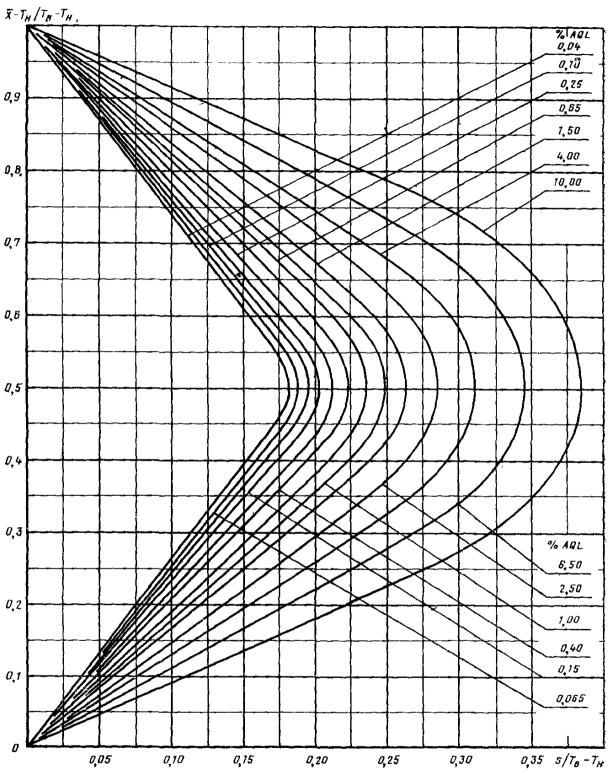

s-пла**и**

D



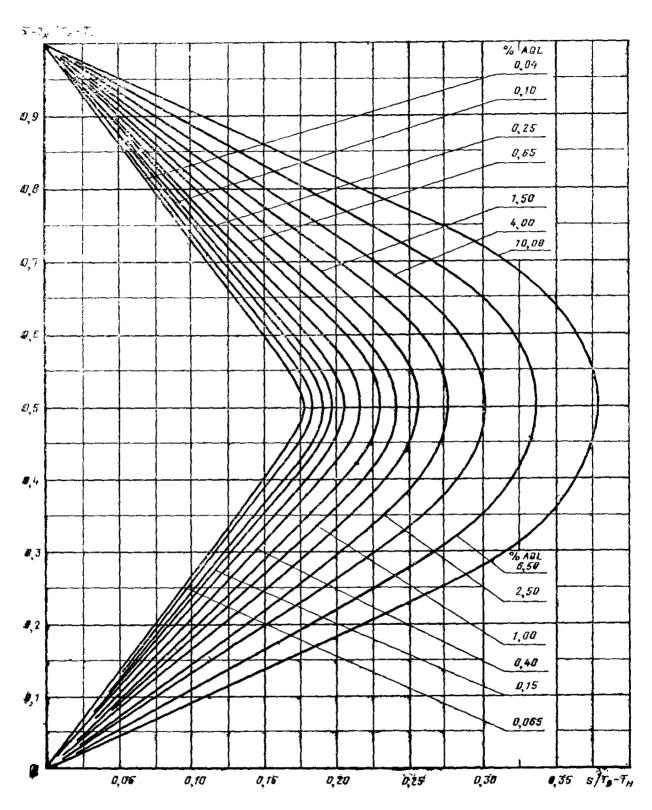
Черт. 25

E

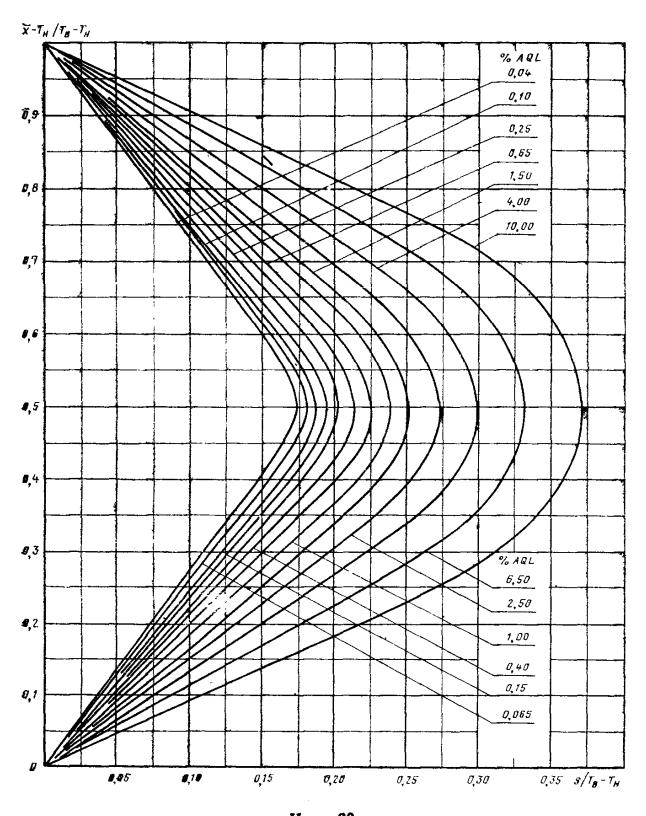


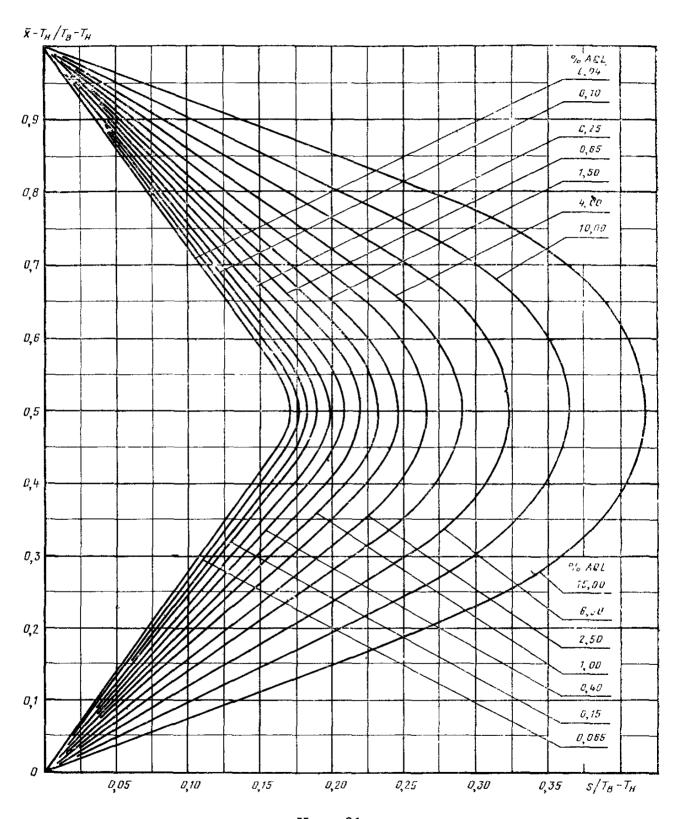
Черт. 26

Черт. 27



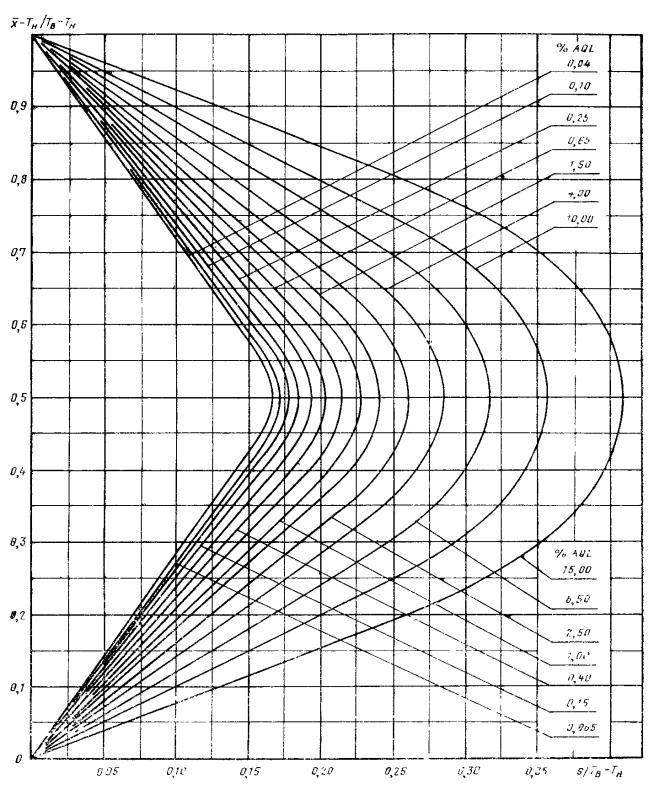
Черт. 28

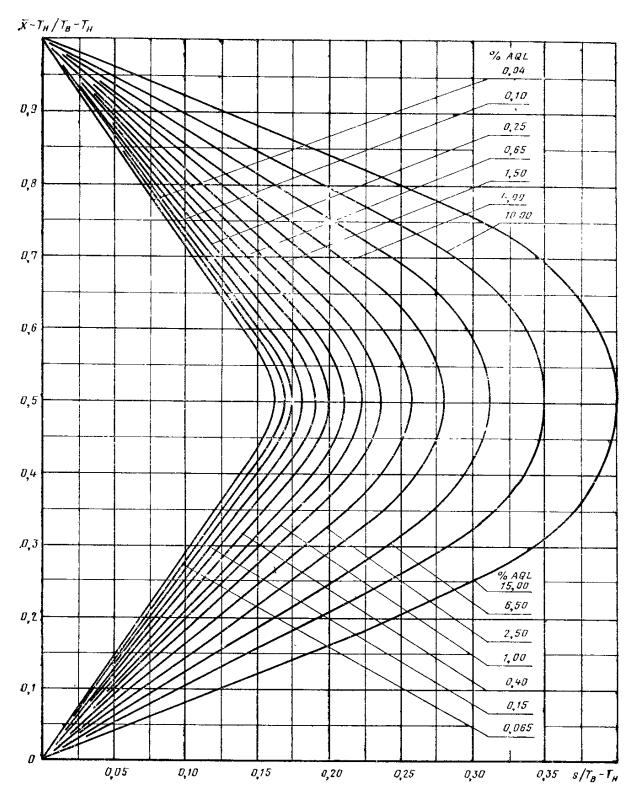

S-Har



Черт. 29

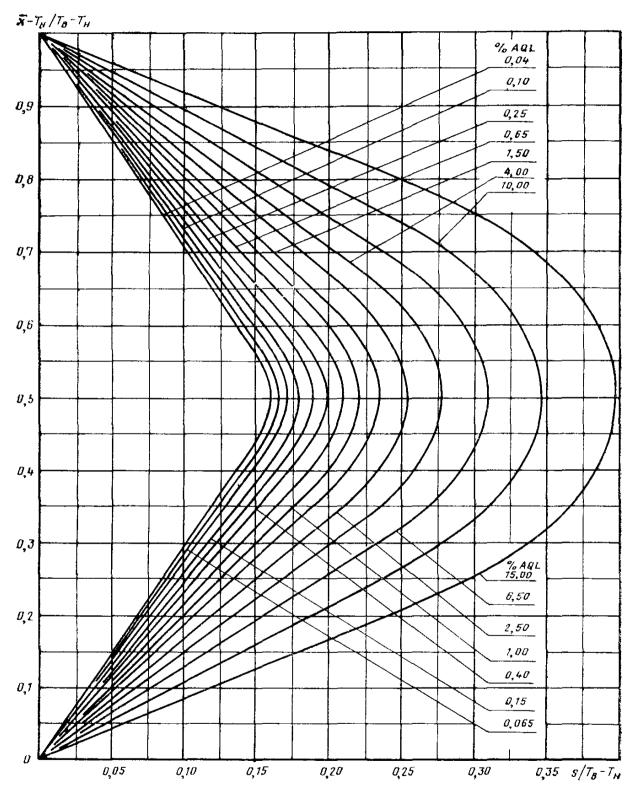
з-план


Черт. 30

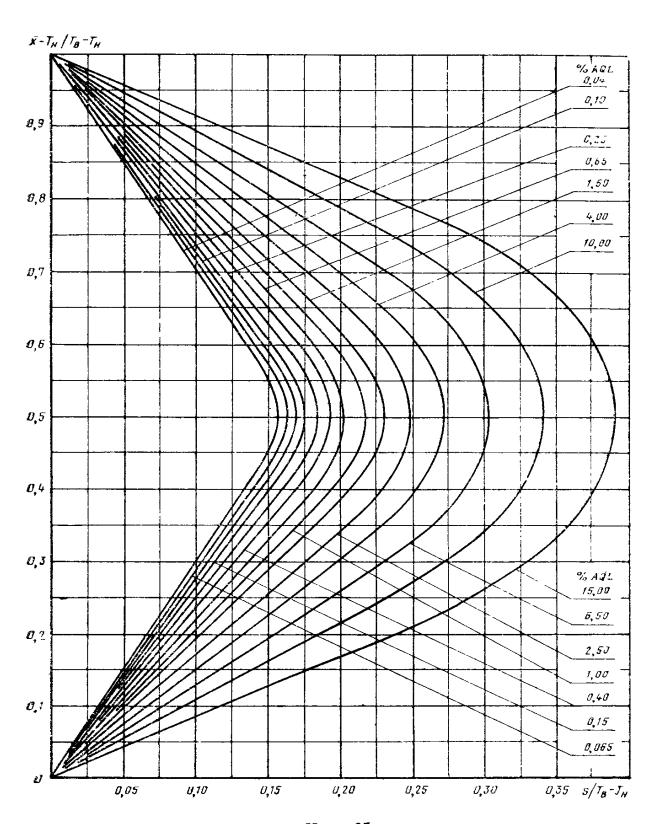

Черт. 31

S-ПЛАН

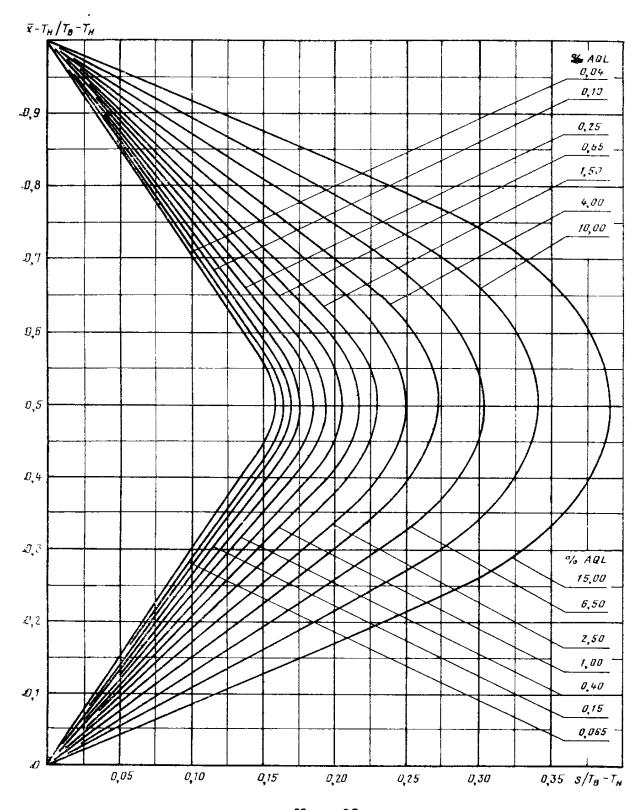
K



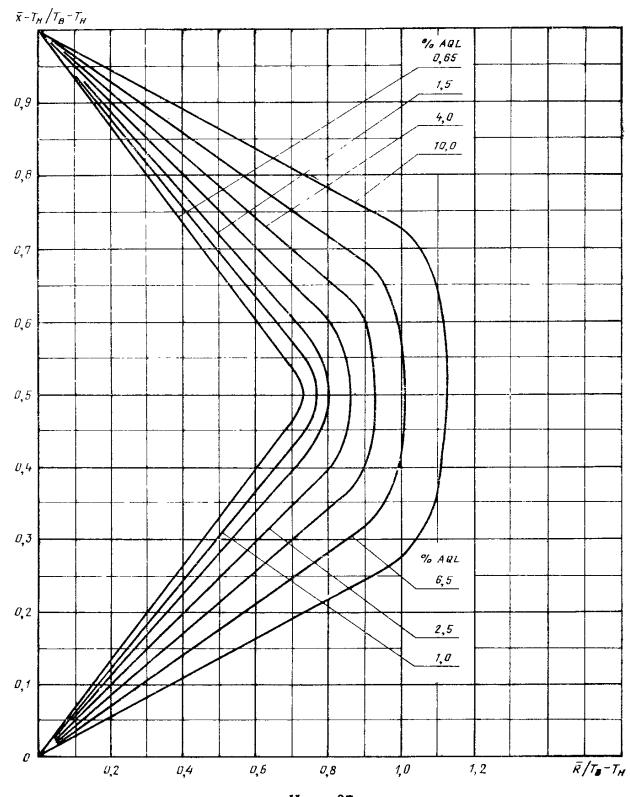
Черт. 32



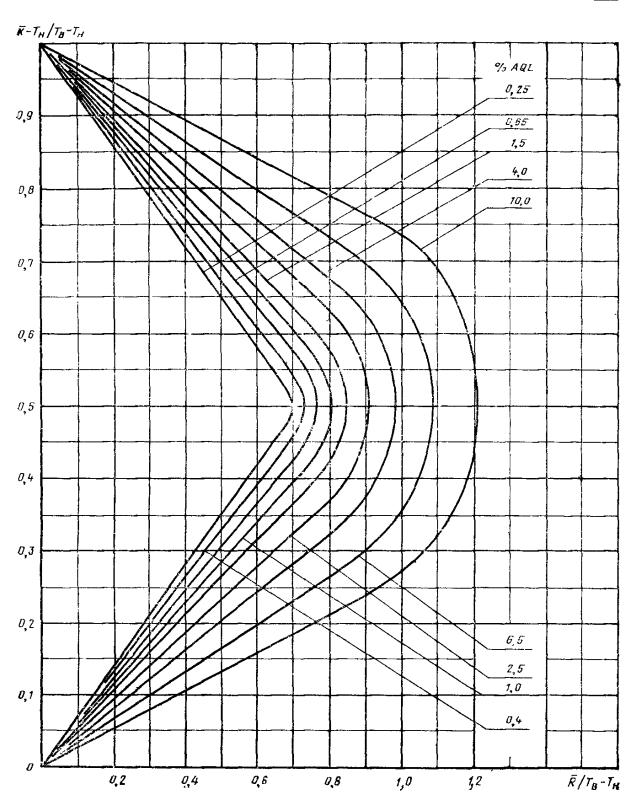
Черт. 33



Черт. 34

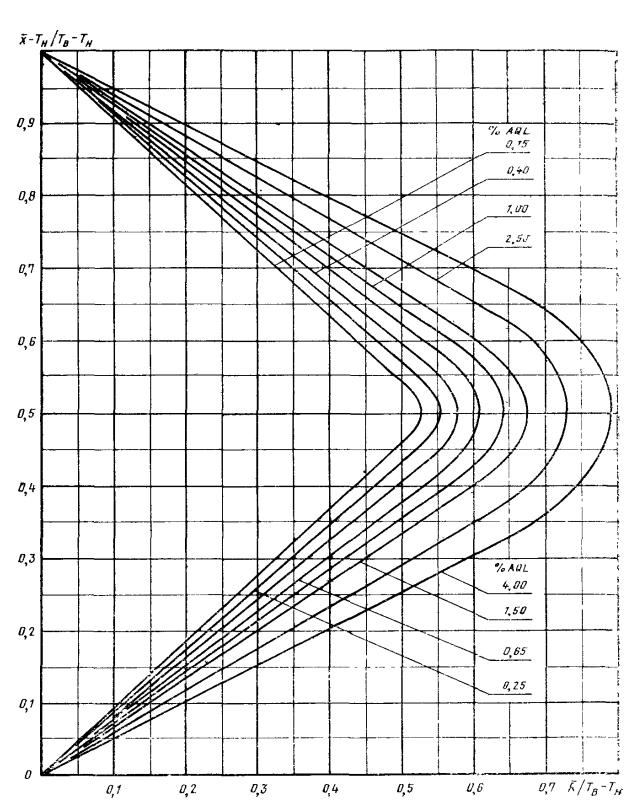

Черт. 35

D

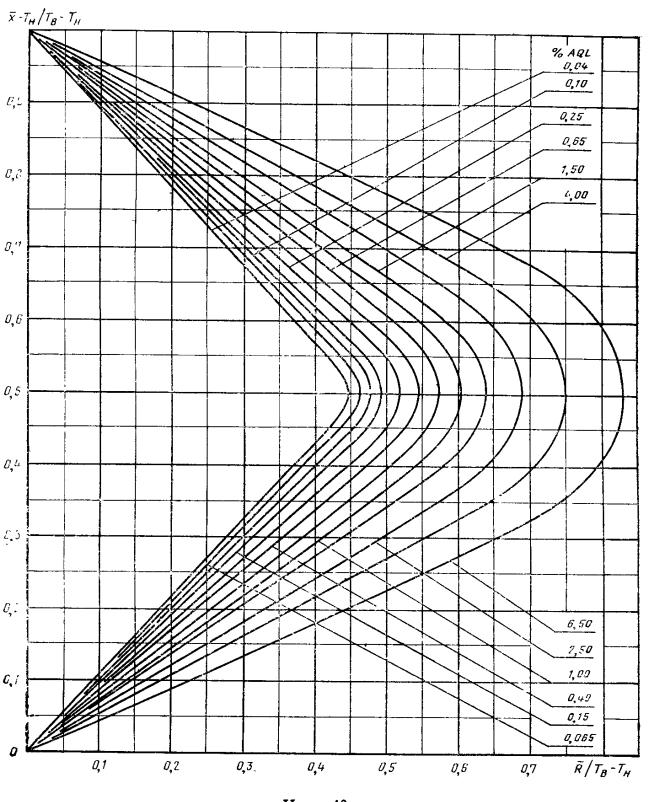


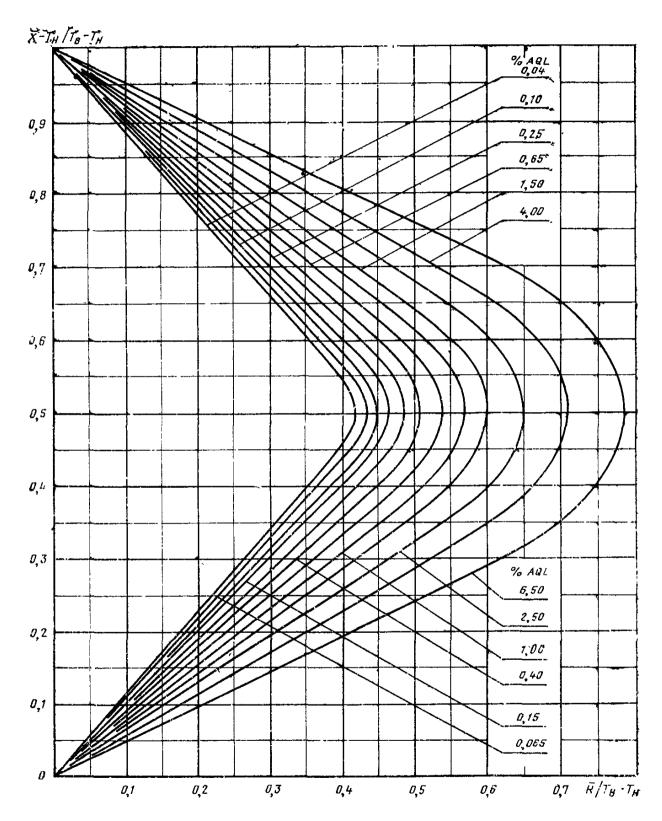
Черт. 36

P

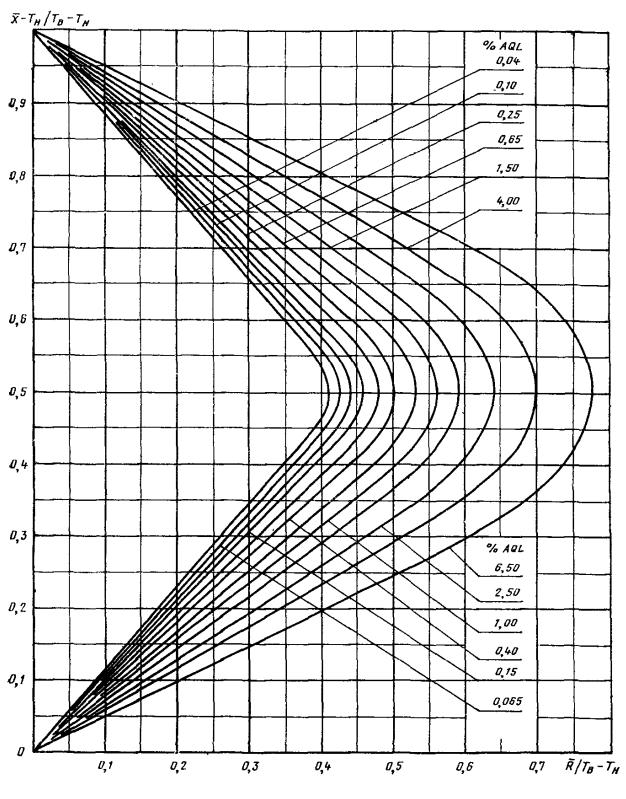


Черт. 37

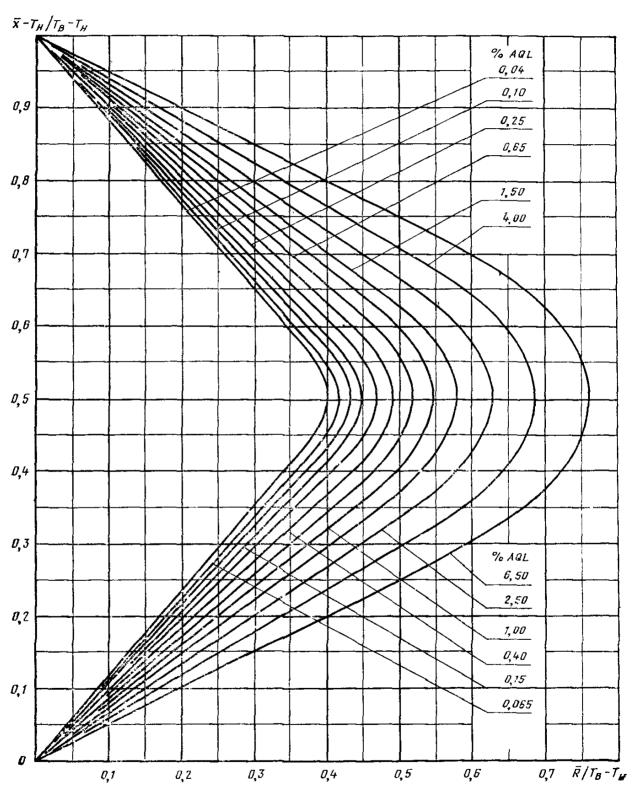

Черт. 38


Черт. 39

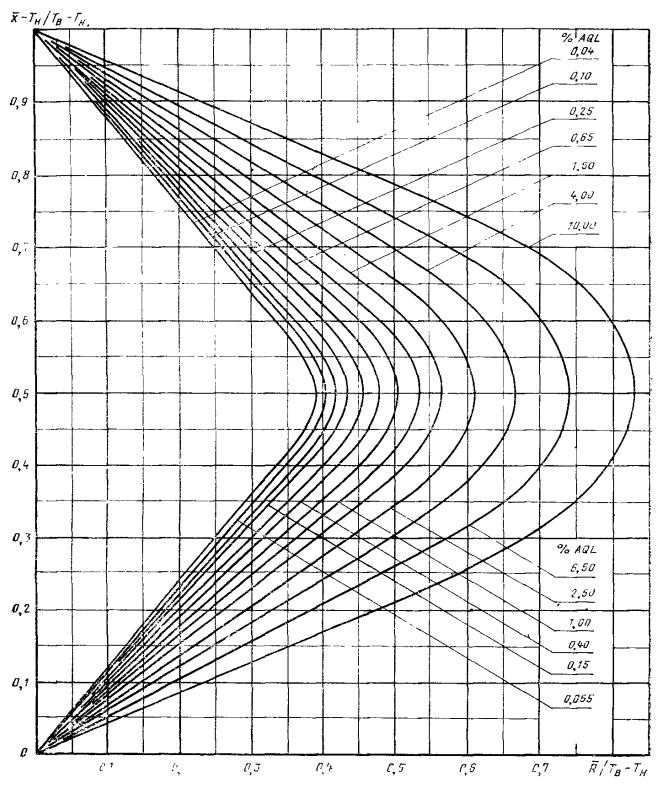
G



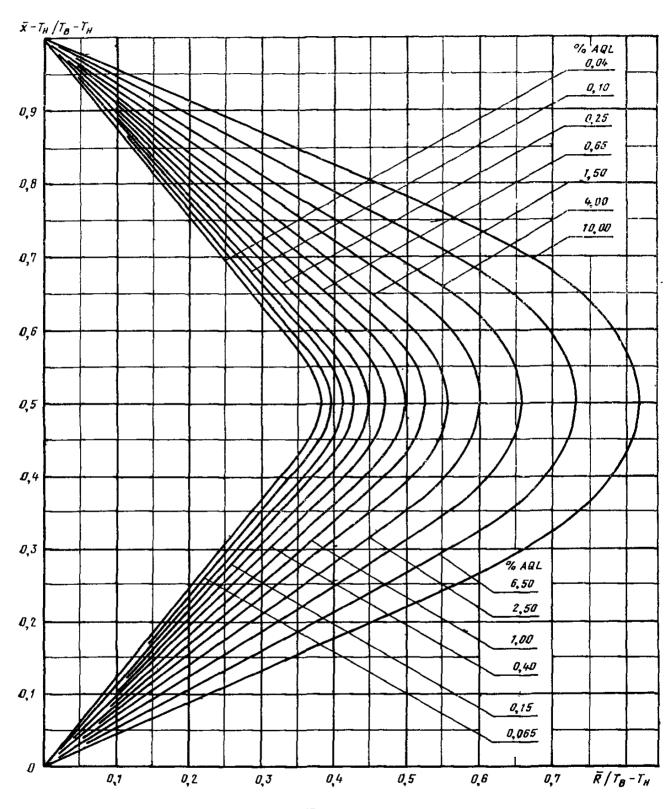
Черт. 40



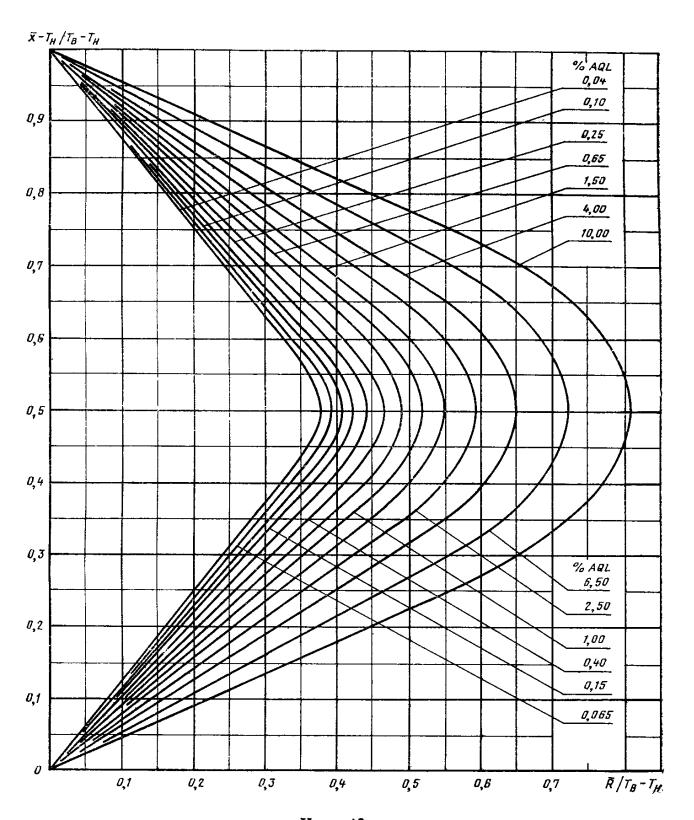
Черт. 41



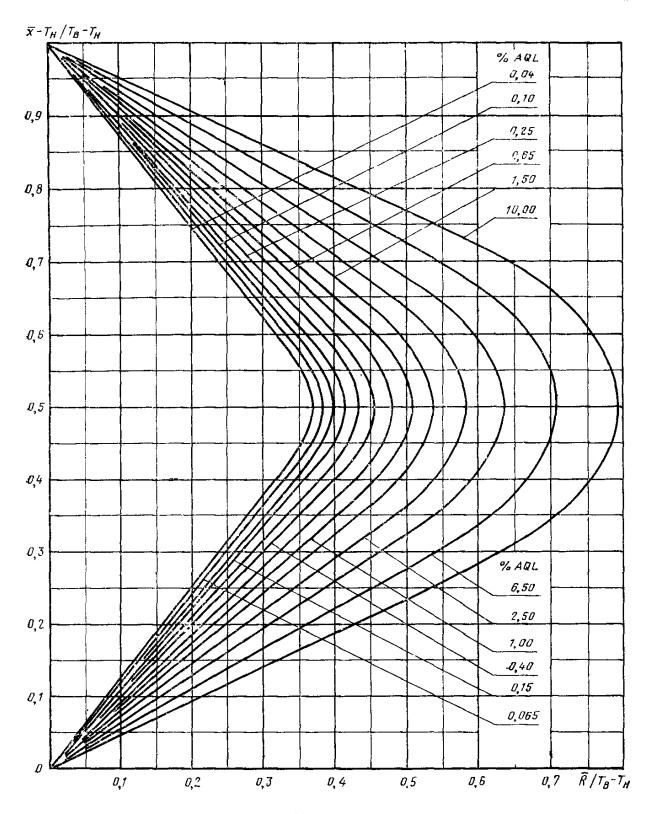
Черт. 42

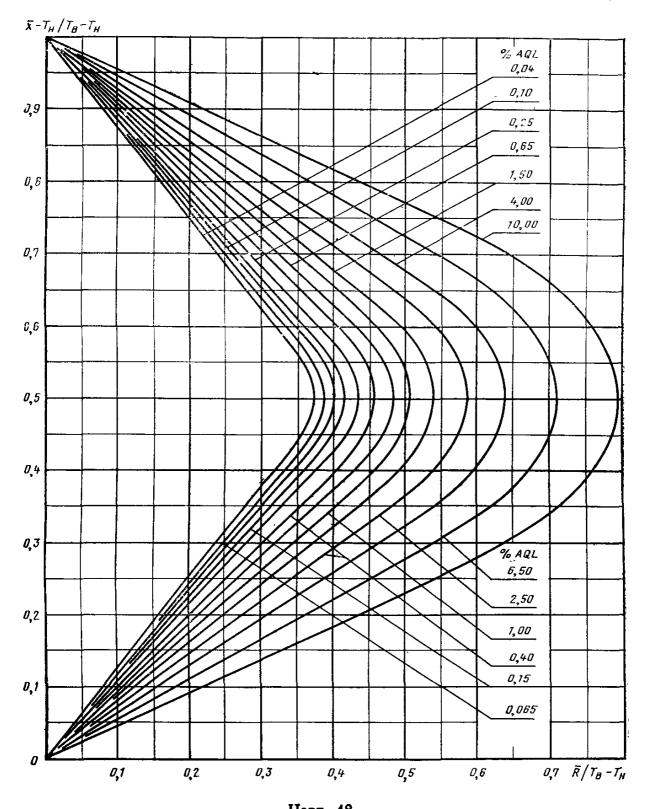


Черт. 43

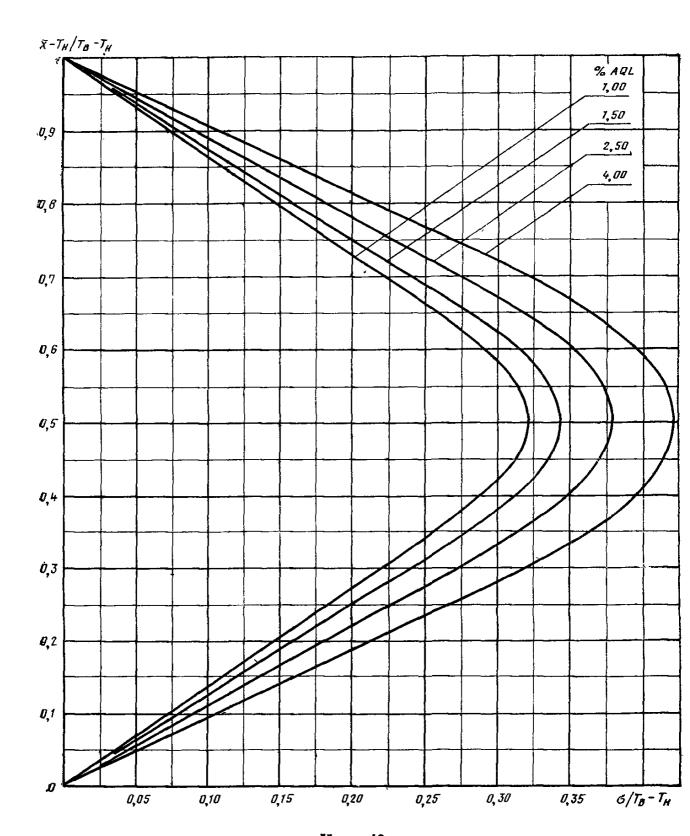


Черт. 44.


Черт. 45


Черт. 46

N

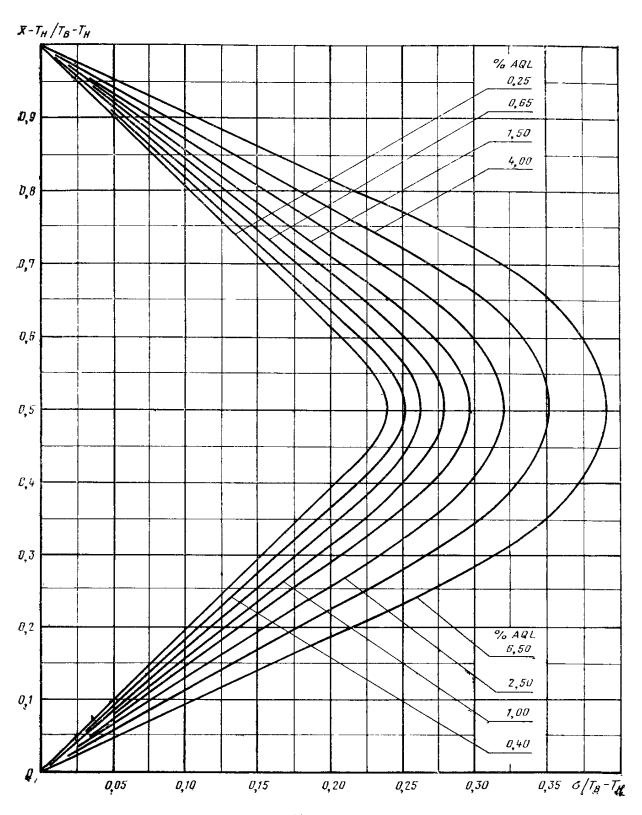

Черт. 47

P

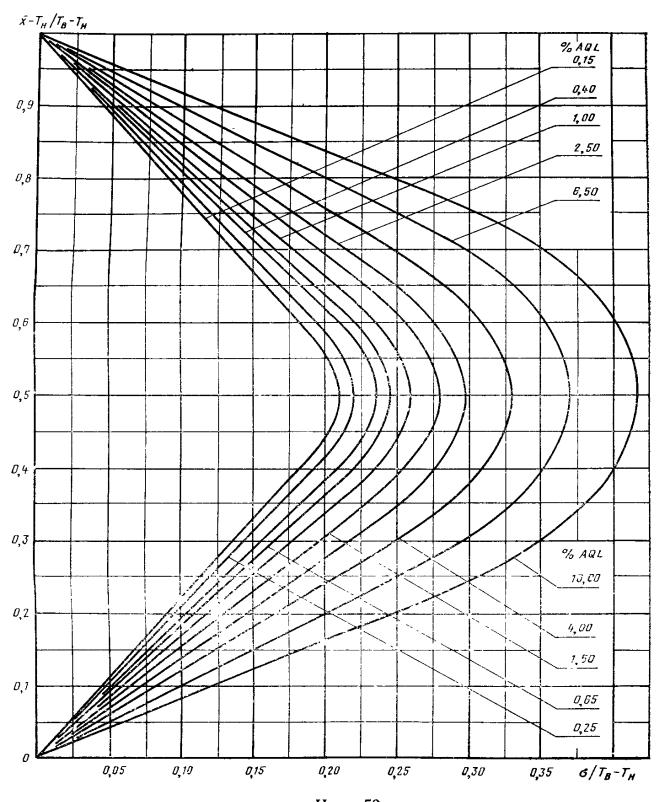
Черт, 48

C

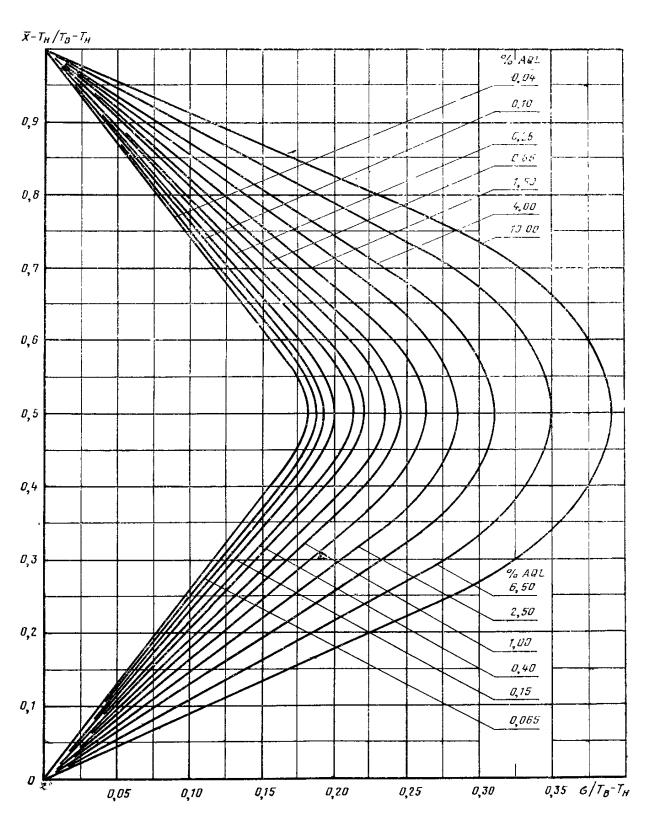
Черт. 49


о-план

D

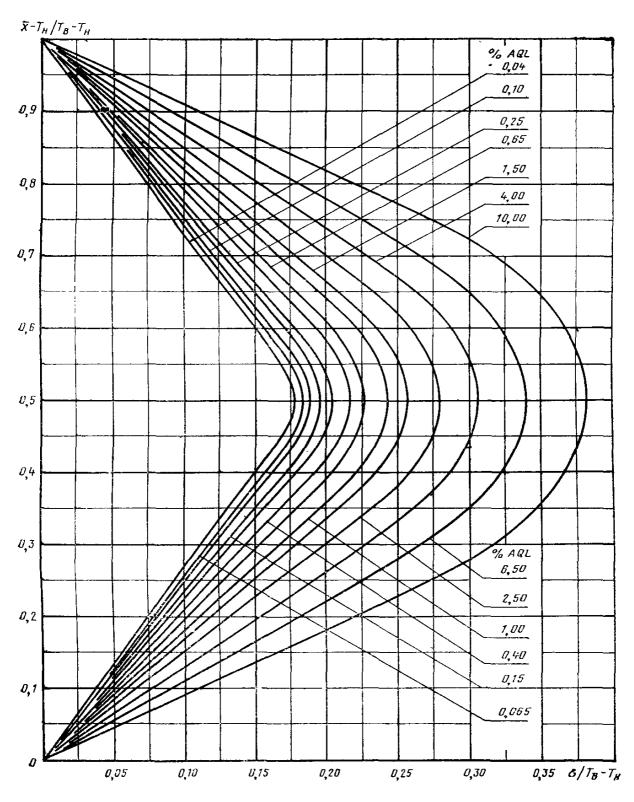

Черт. 50

о-план

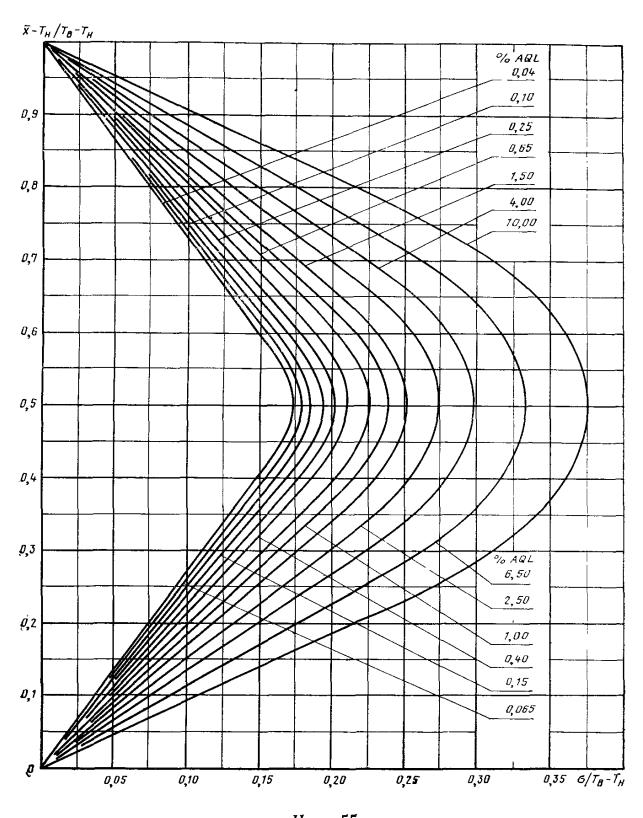


Черт. 51

F

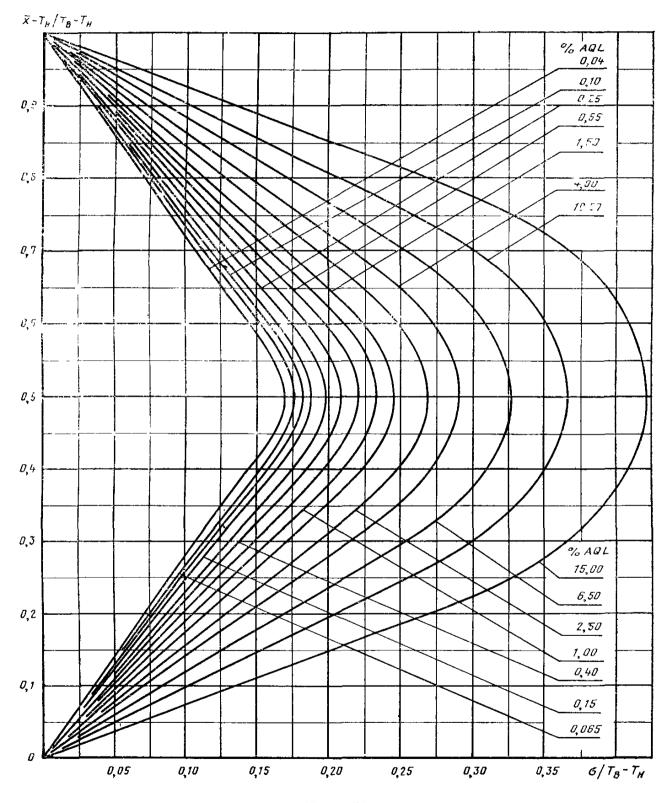


Черт. 52

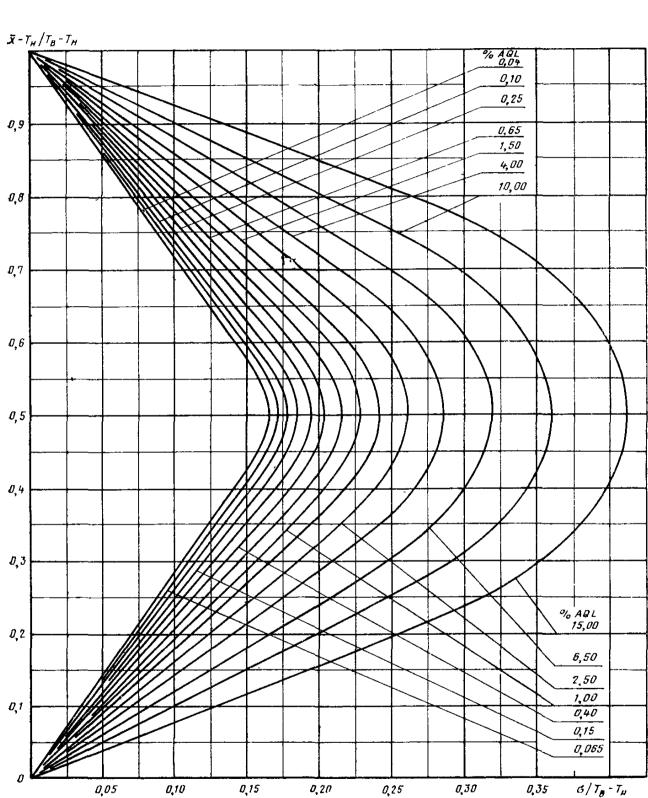


Черт. 53

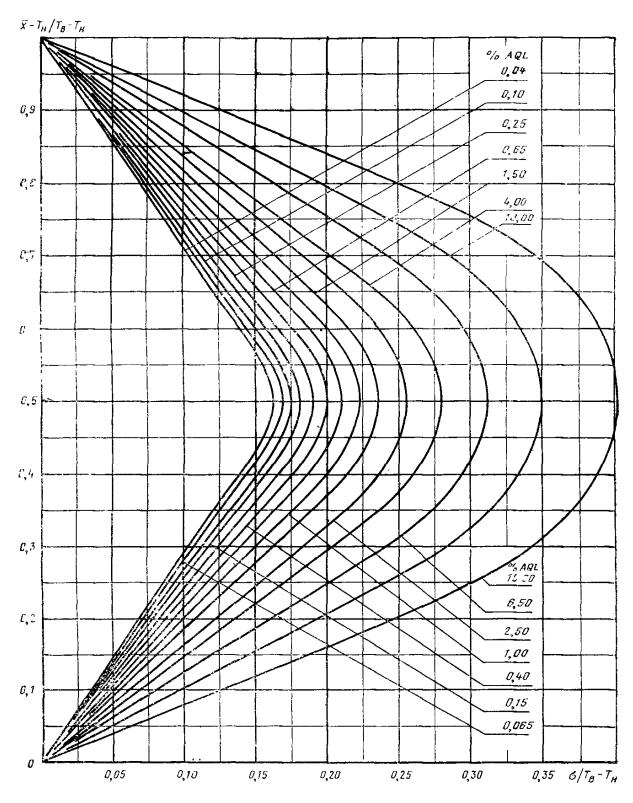
H

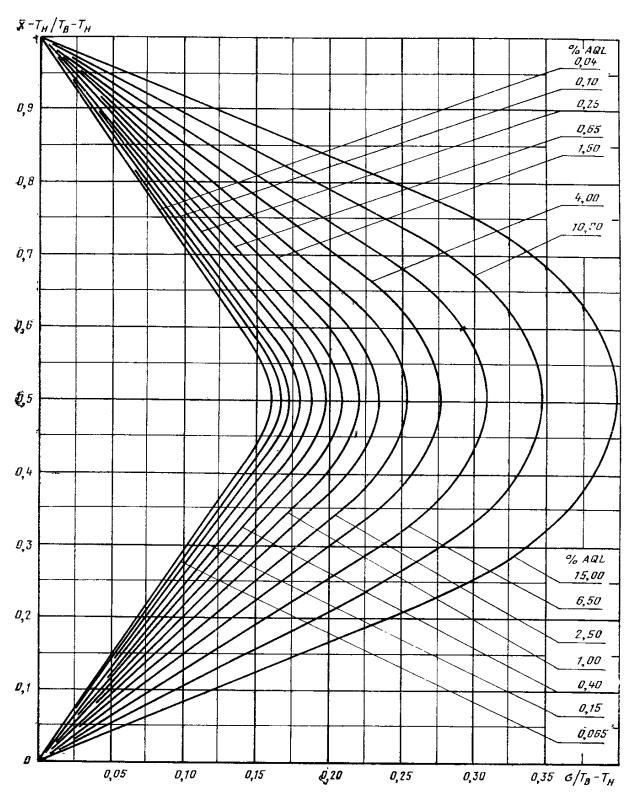


Черт. 54

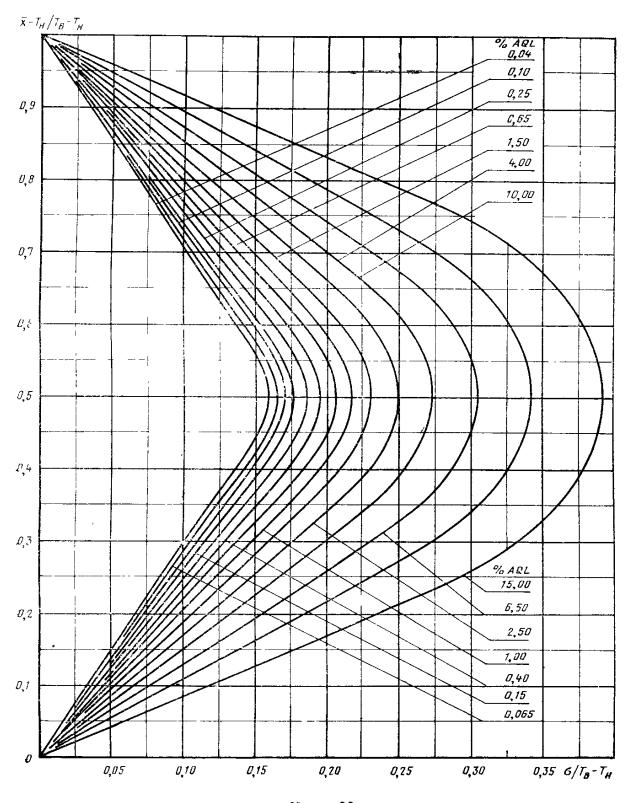


Черт. 55


J

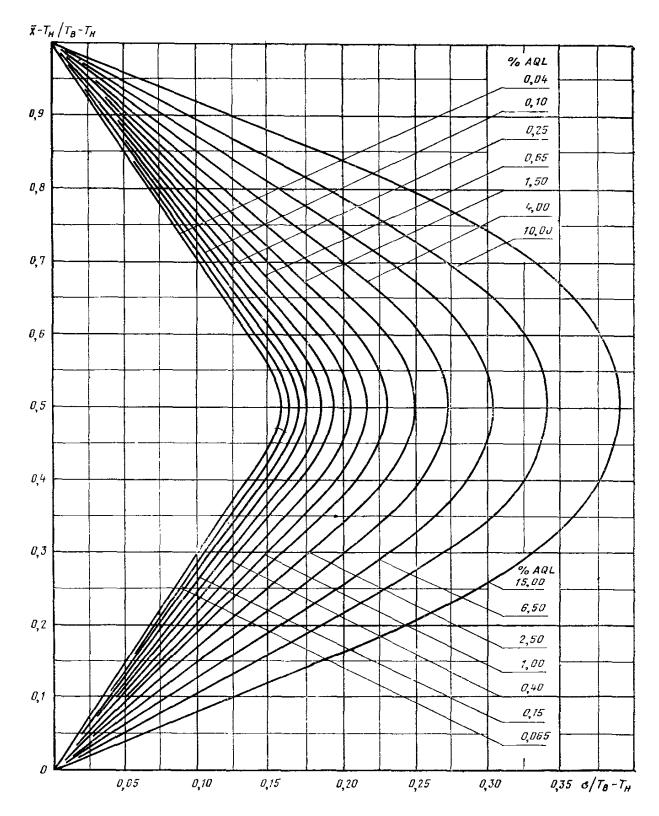

Черт. 56

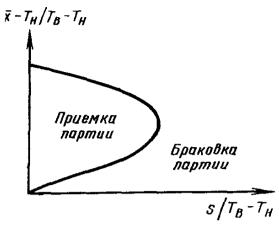
Черт. 57


Черт. 58

Черт. 59

σ-план


N


Черт. 60

σ-план

P

Черт. 61

Черт. 62

ТЕРМИНЫ И СПРАВОЧНЫЕ ОБОЗНАЧЕНИЯ

Обозначение	Термин
x_1, x_2, \ldots, x_n	Значение выборки (объема), измеренные значения признака качества
N	Объем партии (число изделий в партии)
n	Объем выборки (число изделий в выборке)
\overline{x}	Среднее значение выборки (среднее арифметиче- ское значение)
σ	Среднее квадратическое отклонение партии
S	Среднее квадратическое отклонение выборки (оценка для)
R 1	Средний размах (среднее арифметическое значение размахов R_1, R_2, \ldots, R_m подгрупп)
$T_{_{\mathbf{B}}}$	Верхняя граница контролируемого параметра
$T_{ m H}$	Нижняя граница контролируемого параметра
k_s , k_R , k_{σ}	Контрольный норматив
M_s , M_R , M_{σ}	Допускаемый уровень дефектности
MSD	Максимальное среднеквадратическое отклонение
MSR	Максимальный средний размах
$\left. egin{array}{c} \widehat{p}_{\mathtt{B}} \\ \widehat{p}_{\mathtt{R}} \end{array} \right\}$	
$\hat{p} = \hat{p}_{B} + \hat{p}_{H}$	Оценочное значение входного уровня дефектности
a, v	Коэффициенты (корректировочные факторы для определения величин $Q_{\mathtt{B}}^*$ и $Q_{\mathtt{H}}^*$)
AQL	Приемочный уровень дефектности
LQ	Браковочный уровень дефектности
P	Вероятность приемки для партии с уровнем дефектности p, оперативная характеристика
1P	Вероятность браковки для партии с уровнем дефектности р
a	Риск поставщика (вероятность браковки для партии с уровнем дефектности AQL)
β	Риск потребителя (вероятность приемки для партии с уровнем дефектности LQ)

ПРИЛОЖЕНИЕ 2 Справочное

ПРИМЕРЫ ПРИМЕНЕНИЯ ПРАВИЛ И ТАБЛИЦ НАСТОЯЩЕГО СТАНДАРТА

Пример 1

Постановка задачи. Для контроля качества термостата проверяется температура. Термостат соответствует требованиям документации, если поддерживаемая температура не превышает 300°C. На контроль представлена партия объемом 25 термостатов. Требуется определить план контроля. Указаны: нормальный контроль, приемочный уровень дефсктности AQL, равный 1 %, и уровень контроля II.

Решение. Дано: $T_B = 300 \, ^{\circ}\text{C}$, N = 25, $AQL = 1 \, \%$ (при неизвестном σ). Выбираегся з-план, способ 1.

По табл. 1 находят код объема выборки С и по табл. 6 находят объем выборки n=4 и контрольный норматив $k_s=1,45$.

Выборка содержит следующие значения температуры: $x_1 = 280$ °C; $x_2 = 295$ °C; $x_3 = 290$ °C; $x_4 = 283$ °C.

Вычисляют по формулам (1), (2) и (3) x=287 °C, s=6.8 °C и

$$Q_{\rm a} = \frac{300^{\circ} \text{C} - 287^{\circ} \text{C}}{6.8^{\circ} \text{C}} = 1.91.$$

Так как $Q_{\rm B} > k_{\rm S}$, партию принимают.

Пример 2

Постановка задачи такая же, как в примере 1.

Решение. Выбирают s-план, способ 2.

По табл 1 находят код объема выборки С и по табл. 8 объем выборки n=4 и допускаемый уровень дефектности $M_s=1,53$. При $\overline{x}=287\,^{\circ}\mathrm{C}$ и s=6,8 С вычисляют по формуле (3).

$$Q_{\rm B} = \frac{300^{\circ} \text{C} - 287^{\circ} \text{C}}{6.8^{\circ} \text{C}} = 1.91.$$

По табл. 10 находят оценочное значение входного уровня дефектности $p_{\rm B} = 0$. Так как $p_{\rm B} < M_{\rm S}$, партию принимают.

Пример 3

Постановка такая же, как в примере 1. Дополнительно оговорено, что температура должна быть не ниже 277 °C, т. е. $T_{\rm H}$ =277 °C. Для $T_{\rm H}$ =277 °C задается значение $AQL_{\rm H}$ =2,5 % и для $T_{\rm B}$ =300 °C значение $AQL_{\rm B}$ =1 %.

Выбирают ѕ-план, способ 1.

Решение. По коду C получают из табл. 6 объем выборки n=4, а также $k_{SB}=1,45$ (по $AQL_{B}=1$ %) и $k_{SH}=1,17$ (по $AQL_{B}=2,5$ %).

При x = 287 °C и s = 6.8 °C вычисляют по формулам (3) и (4)

$$Q_{\rm B} = \frac{300^{\circ}\text{C} - 287^{\circ}\text{C}}{6.8^{\circ}\text{C}} = 1,91$$
 и $Q_{\rm H} = \frac{287^{\circ}\text{C} - 277^{\circ}\text{C}}{6.8^{\circ}\text{C}} = 1,47$.

Так как $Q_{\rm B}\!>\!k_{\rm SB}$ и $Q_{\rm H}\!>\!k_{\rm SH}$, партию принимают.

Пример 4

Постановка задачи такая же, как в примере 3.

Решение. Выбирают s-план, способ 2. С помощью кода C получают изтабл. 8 n=4, а также $M_{SB}=1,53~\%$ (при $AQL_B=1~\%$) и $M_{SH}=10,92~\%$ (при $AQL_{\rm H}=2.5\%$).

Аналогично примеру 3 получаем $Q_{\rm B}\!=\!1,\!91,\ Q_{\rm H}\!=\!1,\!47.\ {\rm C}$ их помощью находят из табл. 10 оба оценочных значения входного уровня дефектности $p_B = 0$ и $p_{\rm H} = 1.\%$.

Так как $\hat{p}_{B} < M_{SB}$ и $\hat{p}_{H} < M_{SH}$, партию принимают.

Пример 5

Постановка такая же, как в примере 1. Дополнительно оговорено, что температура не должна быть ниже 277 °C, т. е. $T_{\rm H} = 277$ °C. Дано лишь одно значение AQL=1%.

Решение. Выбирают *s*-план, способ 2. Значения n и M_s получают табл. 8: n=4 и $M_s=1,53$.

При x=287 °C и s=6.8 °C вычисляют по формулам (3) и (4):

$$Q_{\rm B} = \frac{300^{\circ}\text{C} - 287^{\circ}\text{C}}{6.8^{\circ}\text{C}} = 1.91 \text{ и } Q_{\rm H} = \frac{287^{\circ}\text{C} - 277^{\circ}\text{C}}{6.8^{\circ}\text{C}} = 1.47.$$

По табл. 10 находят оценочные значения входного уровня дефектности $\hat{p}_{B} = 0$ и $\hat{p}_{H} = 1$ и вычисляют $\hat{p} = \hat{p}_{B} + \hat{p}_{H} = 1$.

Так как $p < M_s$, партию принимают.

Пример 6

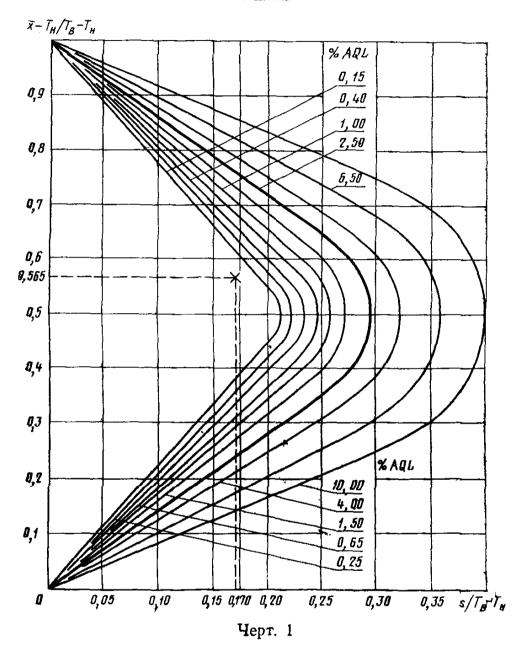
Как и в примере 1, следует проверить качество термостатов. Термостат соответствует требованиям документации, если его температура лежит между $T_{\rm H} = 277$ °С и $T_{\rm B} = 300$ °С.

На контроль представлена партия объемом N=100 термостатов. Задано лишь значение AQL=2.5 %, действительное для всех термостатов, температура которых лежит вне границ контролируемого параметра $T_{\rm H}$ и $T_{\rm B}$. Согласованы нормальный контроль и уровень контроля Π .

Решение. Выбирают s-план, графический способ. По табл. 1 находят код объема выборки F. \hat{C} помощью кода получают объем выборки n=10. По десяти измеренным значениям температуры находят по формулам (1) и (2) \overline{x} =290°C

Для предварительного решения о возможной браковке партии получают при n=10 и AQL=2.5 % по табл. 3 коэффициент f=0.298. Вычисляют по формуле (5) MSD=0.298 (300 °C — 277 °C) = 6,854 °C. Так как s < MSD, нельзя принимать предварительного решения. Поэтому вычисляют

$$\frac{s}{T_{\rm B}-T_{\rm H}} = \frac{3.9^{\circ}\text{C}}{300^{\circ}\text{C}-277^{\circ}\text{C}} = 0.170 \text{ H} \frac{\overline{x}-T_{\rm H}}{T_{\rm B}-T_{\rm H}} = \frac{290^{\circ}\text{C}-277^{\circ}\text{C}}{300^{\circ}\text{C}-277^{\circ}\text{C}} = 0.565.$$


На номограмме s-планов для кода F (черт. 1 данного приложения) точка (0,170; 0,565) расположена в области приемки. Поэтому партию принимают.

Пример 7

Постановка задачи. Следует провести контроль партии из 100 стабилизаторов относительно их напряжения. Предусмотрена нижняя граница стабилизируемого напряжения 200 В. Предписаны значения AQL = 0.4 % и уровень контроля

П, нормальный контроль. Требуется определить план контроля. Решение. Дано: $T_{\rm H}{=}200$ В, $N{=}100$, $AQL{=}0.4$ % (при неизвестном σ). Выбирают R-план, способ 1. По табл. 1 находят код объема выборки F. По коду F из табл. 11 объем выборки $n{=}10$ и контрольный норматив $k_R {=}0.811$.

Выборка содержит 10 значений напряжения: $x_1 = 205$ В; $x_2 = 210$ В; $x_3 = 220$ В; $x_4 = 215$ В, $x_5 = 207$ В; $x_6 = 203$ В; $x_7 = 210$ В; $x_8 = 212$ В; $x_9 = 208$ В; $x_{10} = 213$ В.

По ним вычисляют по формуле (1) x=210,3 B, а также для двух подгрупп, в каждую из которых входят пять последовательных значений, вычисляют размахи R_1 =220 B — 205 B=15 B и R_2 =213 B — 203 B=10 B и таким образом получаем по формуле (6) значение $\overline{R_1} = 1/2$ (15 B+10 B) = 12,5 В. По формуле (8) получаем

 $Q_{\rm H} = \frac{210,3 \, {\rm B} - 200 \, {\rm B}}{12.5 \, {\rm B}} = 0,824.$

Так как $Q_{\rm H} > k_R$, партию принимают.

Пример 8.

Постановка задачи такая же, как в примере 7.

Решение. Выбирают R-план, способ 2. По коду F получают из табл. 13 объем ваборки n=10, допускаемый уровень дефектности $M_R=1,14$ и коэффициент a=2,405. При x=210,3 В, R=12,5 В и a=2,405 получают по формуле (10) величину

$$Q_{\rm H}^* = a \cdot Q_{\rm H} = 2,405 \cdot \frac{210,3 \,\mathrm{B} - 200 \,\mathrm{B}}{12.5 \,\mathrm{B}} = 1,98.$$

С помощью этого значения определяют по табл. 15 оценочное значение входного уровня дефектности $p_{\rm H} = 0.99$.

Так как $\widehat{p_{\mathbf{H}}} < M_R$, партию принимают.

Пример 9

Постановка задачи такая же, как в примере 7. Дополнительно указано, что напружение $T_{\rm B}{=}220~{\rm B}$ не должно быть превышено. Верхней границе $T_{\rm B}{=}220~{\rm B}$ соответствует $AQL_{\rm B}=1.5~\%$ и нижней границе $T_{\rm H}{=}200~{\rm B}$ соответствует $AQL_{\rm H}{=}0.65~\%$.

 $AQL_{\rm H}\!=\!0,65\,\%$. Решение. Выбирается R-план, способ 1. По коду F получают из табл. 11 объем выборки $n\!=\!10$, а также $k_{R\rm B}\!=\!0,650$ (при $AQL_{\rm B}\!=\!1,5\,\%$) и $k_{R\rm H}\!=\!0,755$ (при $AQL_{\rm H}\!=\!0,65.\%$).

При \overline{x} = 210,3 В и \overline{R} = 12,5 В вычисляют по формуле (7) и (8) всличины

$$Q_{\rm B} = \frac{220\,{\rm B}\,-\,210,3\,{\rm B}}{12,5\,{\rm B}} = 0,776\,$$
 и $Q_{\rm H} = \frac{210,3\,{\rm B}\,-\,200,{\rm B}}{12,5\,{\rm B}} = 0,824$.

Так как $Q_{\mathtt{B}}\!\!>\!\!k_{R\mathtt{B}}$ и $Q_{\mathtt{H}}\!\!\geq\!\!k_{R\mathtt{H}}$, партию принимают.

Пример 10

Постановка задачи такая же, как в примере 9.

Решение. Выбирается R-план, сгособ 2. По коду F из табл. 13 находят объем выборки $n\!=\!10$, а также $M_{R\rm B}\!=\!4,\!77$ (при $AQL_{\rm B}\!=\!1,\!5$ %), $M_{R\rm H}\!=\!2,\!05$ (при $AQL_{\rm H}\!=\!0,\!65$ %) и $a\!=\!2,\!405$.

При \bar{x} =210,3 В и \bar{R} =12,5 В вычисляют по формулам (9) и (10)

$$Q_{\rm B}^* = a \cdot Q_{\rm B} = 2,405 \cdot \frac{220 \,\mathrm{B} - 210,3 \,\mathrm{B}}{12,5 \,\mathrm{B}} = 1.87$$
 и $Q_{\rm H}^* = a \cdot Q_{\rm H} = 2,405 \cdot \frac{210,3 \,\mathrm{B} - 200 \,\mathrm{B}}{12,5 \,\mathrm{B}} = 1,98$.

По этим величинам определяют из табл. 15 оценочные значения входного уровня дефектности $\stackrel{\frown}{p_{\rm B}}=1,65$ и $\stackrel{\frown}{p_{\rm H}}=0,99$.

Так как $\widehat{p}_{\rm B} < M_{R\rm B}$ и $\widehat{p}_{\rm H} < M_{R\rm H}$, партию принимают.

Пример 11

Постановка задачи такая же, как в примере 7. Дополнительно указано, что напряжение $T_{\rm B} = 220~{\rm B}$ не должно быть превышено.

Задано одно значение AQL=0,4%.

Решение. Выбирают R-план, способ 2. Значения для n, M_R и a получают из табл. 13: n=10, M_R =1,14, a=2,405.

При \bar{x} =210,3 В, \bar{R} =12,5 В вычисляют по формулам (9) и (10)

$$Q_{\rm B}^* = a \cdot Q_{\rm B} = \frac{(220 \text{ B} - 210,3 \text{ B}) \cdot 2,405}{12,5 \text{ B}} = 1,87$$

И

$$Q_{\rm H}^* = a \cdot Q_{\rm H} = \frac{(210,3 \,\mathrm{B} - 200 \,\mathrm{B}) \cdot 2,405}{12,5 \,\mathrm{B}} = 1,98.$$

По этим значениям из табл. 15 выбирают оба оценочных значения входного уровня дефектности $p_B = 1,65$ и $p_H = 0,99$, и вычисляют $p = p_B + p_H = 2,64$

Так как $p > M_R$, партию бракуют.

Пример 12

Постановка задачи такая же, как в примере 11.

Решение. Выбирают R-план, графический способ. По табл. 1 находят код объема выборки F. По коду F по табл. 13 объем выборки n=10. По десяти значениям напряжения вычисляют по формулам (1) и (6) x=210,3 В и R=12,5 В. Для предварительного решения о возможности браковки партии по табл. 4 находят при n=10 и AQL=0,4% коэффициент f=0,579 и вычисляют по формуле (11) MSR=0,579 (220 В — 200 В) = 11,58 В.

Tак как R > MSR, партию бракуют.

Пример 13

Постановка задачи. Контролируется партия из 500 конденсаторов. Конденсатор соответствует требованиям документации, если его емкость не ниже 59420 пФ. Из предыдущего опыта известно $\sigma = 3000$ пФ. Указаны значения AQL = 1.5~%, уровень контроля Π и нормальный контроль. Требуется определить план контроля.

Решение. Дано: $T_{\rm H} = 59420$ пФ, N = 500, AQL = 1,5 %, $\sigma = 3000$ пФ. Выбирают σ -план, способ 1.

По табл. 1 находят код объема выборки I. По коду I из табл. 16 объем выборки n=10 и контрольный норматив $k_{\sigma}=1,70$.

Выборка содержит следующие значения:

 $x_1 = 63600 \text{ n}\Phi$, $x_2 = 66600 \text{ n}\Phi$, $x_3 = 69000 \text{ n}\Phi$, $x_4 = 61000 \text{ n}\Phi$, $x_5 = 65600 \text{ n}\Phi$, $x_6 = 63000 \text{ n}\Phi$, $x_7 = 62000 \text{ n}\Phi$, $x_8 = 69000 \text{ n}\Phi$, $x_9 = 59000 \text{ n}\Phi$, $x_{10} = 65400 \text{ n}\Phi$.

По этим величинам вычисляют по формуле (1) \vec{x} =64420 пФ и по формуле (13)

$$Q_{\rm H} = \frac{64420 \, \text{n} \, \Phi \, - \, 59420 \, \text{n} \, \Phi}{3000 \, \text{n} \, \Phi} \, = 1,67.$$

Так как $Q_{\rm H} \! < \! k_{\rm G}$, партию бракуют.

Пример 14

Постановка задачи такая же, как в примере 13.

Решение. Выбирается о-план, способ 2.

По коду *I* получают из табл. 18 объем выборки n=10, допускаемый уровень дефектности $M_{\sigma}=3,63$ и коэффициент v=1,054. При x=64420 пФ, $\sigma=3000$ пФ и v=1,054 получают по формуле (15) величину $Q_{\rm H}^*$

$$Q_{\rm H}^* = a \cdot Q_{\rm H} = 1,054 \cdot \frac{64420 \, \text{n}\Phi - 59420 \, \text{n}\Phi}{3000 \, \text{n}\Phi} = 1,76.$$

По этой величине определяют из табл. 20 оценочное значение входного уровня дефектности $\stackrel{\frown}{p_{\rm H}}=3{,}92.$

Так как $p_{\rm H} > M_{\rm G}$, партию бракуют.

Пример 15

Постановка задачи такая же, как в примере 13. Дополнительно оговорено,

что емкость конденсаторов не должна превышать T_B =68420 пФ. Верхней границе T_B =68420 пФ соответствует значение AQL_B =4,0%, а нижней границе T_H =59420 пФ соответствует значение AQL_H =1,5%. Решение. Выбирается σ -план, способ 1. По коду I получают из табл. 16 для AQL_H объем выборки n_H =10 и для AQL_H объем выборки n_B =13. Для дальнейших расчетов используют n=10. По табл. 16 определяют оба контрольных норматива $k_{\sigma H} = 1,70$ и $k_{\sigma B} = 1,34$. При x = 64420 пФ и $\sigma = 3000$ пФ получают по формулам (12) и (13).

$$Q_{\rm B} = rac{68420~{
m n}\Phi~-~64420~{
m n}\Phi}{3000~{
m n}\Phi} = 1,33$$
 и $Q_{
m H} = rac{64420~{
m n}\Phi~-~59420~{
m n}\Phi}{3000~{
m n}\Phi} = 1,67$.

Так как $Q_{\rm H} < k_{\rm oh}$, то партию бракуют.

Пример 16

Постановка задачи такая же, как в примере 15.

Решение. Выбирается σ -план, способ 2. По коду I получают из табл. 18 для $AQL_H=1.5$ $n_H=10$ и для AQL=4.0 % $n_B=13$.

Для дальнейших расчетов используют n=10. Для этой величины определяют из табл. 18 v=1,054 и для двух значений AQL:

 $M_{\sigma B} = 8,13 \text{ и } M_{\sigma H} = 3,63.$

При x=64420 пФ и $\sigma=3000$ пФ вычисляют по формулам (14) и (15).

$$Q_{\rm B}^* = v \cdot Q_{\rm B} = 1.054 \frac{68420 \,\mathrm{n}\,\Phi - 64420 \,\mathrm{n}\,\Phi}{3000 \,\mathrm{n}\,\Phi} = 1.41 \,\mathrm{H}$$
 $Q_{\rm H}^* = v \cdot Q_{\rm H} = 1.054 \frac{64420 \,\mathrm{n}\,\Phi - 59420 \,\mathrm{n}\,\Phi}{3000 \,\mathrm{n}\,\Phi} = 1.76.$

По этим величинам определяют из табл. 20 оценочные значения входного уровня дефектности $p_B = 7.93$ и $p_H = 3.92$.

Так как $p_{\rm H} > M_{\rm gh}$, то партию бракуют.

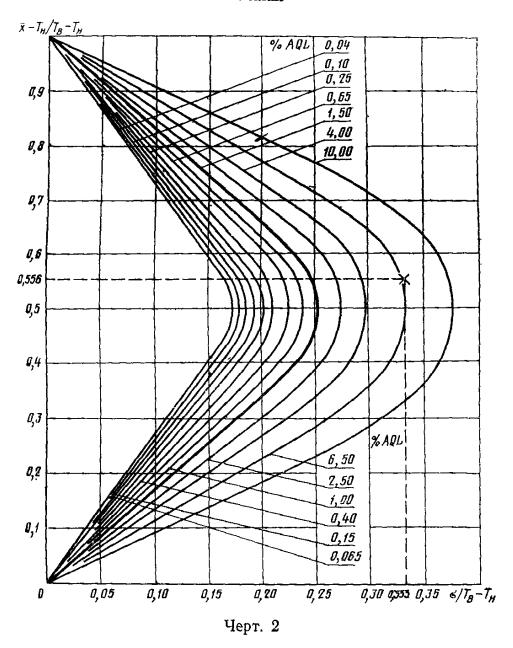
Пример 17

Постановка задачи такая же, как в примере 15, задано лишь одно значение AQL=1.5%.

Решение. Выбирают σ -план, способ 2. Значения n, M_{σ} и v получают из табл. 18: n=10, $M_{\sigma}=3,63$, v=1,054. Как в примере 16, вычисляют

$$Q_{\rm B}^* = 1,41 \text{ M } Q_{\rm H}^* = 1,76$$

и определяют по табл. 20 $\stackrel{\frown}{p_{\rm B}}$ = 7,93 и $\stackrel{\frown}{p_{\rm H}}$ = 3,92 и вычисляют


$$\hat{p} = \hat{p}_{B} + \hat{p}_{H} = 11.85$$
.

Так как $p>M_{\sigma}$, то партию бракуют.

Пример 18

Постановка задачи такая же, как в примере 17.

S-ПЛАН

Решение. Выбирают о-план, графический способ. По табл. 1 находят код объема выборки I. По коду I из табл. 18 для AQL=1,5 % объем выборки n=10. При $\overline{x}=64420$ пФ и $\sigma=3000$ пФ вычисляют

$$\frac{\sigma}{T_{\rm B}-T_{\rm H}} = \frac{3000 \text{ n}\Phi}{68420 \text{ n}\Phi - 59420 \text{ n}\Phi} = 0,333 \text{ n}$$

$$\frac{\overline{x}-T_{\rm H}}{T_{\rm B}-T_{\rm H}} = \frac{64420 \text{ n}\Phi - 59420 \text{ n}\Phi}{68420 \text{ n}\Phi - 59420 \text{ n}\Phi} = 0,556.$$

На номограмме о-планов для кода *I* (черт. 2) данного приложения точка (0,333; 0,556) расположена в области браковки. Поэтому партию бракуют.

Редактор Р. С. Федорова Технический редактор В. Н. Прусакова Корректор Н. Б. Жуховцева

Сдано в набор 27.07.82 Подп. к печ. 14.10.82 7,5 печ. л. 8,55 уч.-изд. л. Тир. 16000 Цена 45 коп.

Ордена «Знак Почета» Издательство стандартов, 123557, Москва, Новопресненский пер., 3. Калужская типография стандартов, ул. Московская, 256. Зак. 1969