НИКЕЛЬ

МЕТОД ОПРЕДЕЛЕНИЯ ФОСФОРА

Издание официальное

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

НИКЕЛЬ

Метод определения фосфора

ΓΟCT 13047.5—81*

Nickel. Method for the determination of phosphorus

Взамен ГОСТ 13047.5—74

OKCTY 1709

Постановлением Государственного комитета СССР по стандартам от 21 декабря 1981 г. № 5514 срок введения установлен

c 01.01.82

Ограничение срока действия снято по протоколу № 3—93 Межгосударственного Совета по стандартизации, метрологии и сертификации (ИУС 5-6—93)

Настоящий стандарт устанавливает фотометрический метод определения фосфора при массовой доле его в никеле от 0,0002 до 0,003 %.

Метод основан на растворении никеля в азотной кислоте, окислении фосфора марганцовокислым калием, образовании фосфоро-молибденовой гетерополикислоты, экстракции комплекса смесью *н*-бутилового спирта и хлороформа и после восстановления измерении оптической плотности синего комплекса при длине волны 720 или 625 нм.

Стандарт полностью соответствует СТ СЭВ 2278—80.

1. ОБЩИЕ ТРЕБОВАНИЯ

1.1. Общие требования к методу анализа по ГОСТ 13047.1—81. Контроль точности результатов анализа осуществляют по ГСО или методом добавок.

(Измененная редакция, Изм. № 1).

2. АППАРАТУРА, РЕАКТИВЫ И РАСТВОРЫ

Спектрофотометр или фотоэлектроколориметр со всеми принадлежностями.

Вода бидистиллированная.

Кислота азотная особой чистоты по ГОСТ 11125-84, раствор 1:1.

Кислота соляная особой чистоты по ГОСТ 14261-77.

Кислота хлорная, плотностью 1,50 г/см³, растворы 1:1 и 1:9.

Калий марганцовокислый по ГОСТ 20490—75, 0,02 М раствор.

Спирт этиловый ректификованный технический по ГОСТ 18300-87.

Аммоний молибденовокислый по ГОСТ 3765—78, перекристаллизованный следующим образом: 70 г молибденовокислого аммония растворяют в 400 см³ горячей воды и раствор фильтруют через плотный фильтр. К раствору добавляют 250 см³ этилового спирта, охлаждают и дают отстояться в течение 2 ч. Выпавшие кристаллы отфильтровывают на воронку Бюхнера. Полученный молибденовокислый аммоний растворяют и кристаллизацию повторяют. Кристаллы отсасывают, промывают 2—3 раза бутиловым спиртом порциями по 20—30 см³ и высушивают на воздухе.

Аммоний молибденовокислый раствор 100 г/дм³; хранят в полиэтиленовой посуде. Спирт бутиловый нормальный (*н*-бутиловый) по ГОСТ 6006—78, перегнанный.

Издание официальное

Перепечатка воспрещена

* Переиздание (июнь 1999 г.) с Изменением № 1, утвержденным в июле 1986 г. (ИУС 10-86).

© Издательство стандартов, 1981 © ИПК Издательство стандартов, 1999 Хлороформ по ГОСТ 20015—88, перегнанный.

Экстракционная смесь: хлороформ и н-бутиловый спирт в соотношении 3:1.

Олово металлическое по ГОСТ 860-75.

Олово двухлористое по ТУ 6—09—53—93—88, раствор 40 г/дм³, свежеприготовленный: 4 г двухлористого олова растворяют при нагревании в 20 см³ соляной кислоты в присутствии 0,2-0,4 г металлического олова, охлаждают, доливают водой до 100 см³ и перемешивают.

Калий фосфорнокислый однозамещенный по ГОСТ 4198-75.

Стандартные растворы фосфора.

Раствор А: 0,4394 г однозамещенного фосфорнокислого калия растворяют в воде, переносят в мерную колбу вместимостью 1000 см³, доливают до метки водой и перемешивают.

1 см³ раствора А содержит 0,1 мг фосфора.

Раствор Б: 10 см³ раствора А отбирают в мерную колбу вместимостью 500 см³, доливают до метки раствором хлорной кислоты 1:9 и перемешивают. Раствор используют свежеприготовленным.

1 см³ раствора Б содержит 0,002 мг фосфора.

Растворы хранят в полиэтиленовой посуде.

(Измененная редакция, Изм. № 1).

3. ПРОВЕДЕНИЕ АНАЛИЗА

3.1. Навеску никеля массой 1 г при массовой доле фосфора до 0,001 % или 0,5 г при массовой доле фосфора свыше 0,001 % помещают в кварцевый или тефлоновый стакан и растворяют в 20 см³ раствора азотной кислоты при слабом нагревании, добавляя несколько капель раствора марганцовокислого калия. Раствор охлаждают, добавляют 10 см³ раствора хлорной кислоты 1:1 и нагревают до начала выделения белых паров хлорной кислоты. Затем охлаждают, прибавляют 30 см³ воды и переносят в делительную воронку вместимостью 100 см³, доливая водой до 50 см³. К раствору приливают по каплям 3 см³ раствора молибденовокислого аммония при перемешивании. Раствор выдерживают в течение 10 мин для образования фосфоромолибденовой гетерополикислоты. Затем приливают 5 см³ н-бутилового спирта и энергично встряхивают в течение 1 мин до насыщения водного раствора μ -бутиловым спиртом. Приливают 15 см³ экстракционной смеси и осторожно перемешивают в течение 2 мин. После расслоения фаз органический слой сливают в мерную колбу вместимостью 50 см³ через ватный тампон, а к водному раствору приливают 15 см³ экстракционной смеси и экстракцию повторяют. Органические фазы объединяют в мерной колбе, приливают 3—4 см³ бутилового спирта, добавляют 4 капли раствора двухлористого олова. Затем доливают бутиловым спиртом до метки и перемешивают. Через 30 мин измеряют оптическую плотность раствора при длине волны 725 или 625 нм.

Раствором сравнения служит раствор экстракционной смеси.

Массу фосфора находят по градуировочному графику.

3.2. Построение градуировочного графика

В пять из пести делительных воронок вместимостью по 100 см³ помещают 1,0; 2,0; 4,0; 6,0 и 8,0 см³ стандартного раствора Б, что соответствует 0,002; 0,004; 0,008; 0,012 и 0,016 мг фосфора. Во все воронки наливают раствор хлористой кислоты 1:9 до 50 см³, приливают 3 см³ раствора молибденовокислого аммония и далее анализ проводят, как указано в п. 3.1.

Раствором сравнения служит раствор экстракционной смеси.

Из значений оптических плотностей растворов вычитают значения оптической плотности раствора, не содержащего фосфора, и по полученным значениям оптических плотностей растворов и соответствующим им массовым концентрациям фосфора строят градуировочный график.

(Измененная редакция, Изм. № 1).

4. ОБРАБОТКА РЕЗУЛЬТАТОВ

4.1. Массовую долю фосфора (Х) в процентах вычисляют по формуле

$$X = \frac{(m_1 - m_2) \cdot 100}{m} \; ,$$

где m_1 — масса фосфора в растворе анализируемой пробы, найденная по градуировочному графику, г;

 m_2 — масса фосфора в растворе контрольного опыта, найденная по градуировочному графику, г;

т — масса навески никеля, соответствующая аликвотной части раствора, г.

С. 3 ГОСТ 13047.5-81

4.2. Абсолютные допускаемые расхождения результатов параллельных определений не должны превышать значений, указанных в таблице.

Массовая доля фосфора, %	Абсолютное допускаемое расхождение, %
От 0,0002 до 0,0004	0,0001
Св. 0,0004 » 0,0006	0,0002
» 0,0006 » 0,0012	0,0003
» 0,0012 » 0,003	0,0004

Редактор М.И. Максимова Технический редактор О.Н. Власова Корректор В.И. Варенцова Компьютерная верстка В.И. Грищенко

Изд. лиц. № 021007 от 10.08.95.

Уч.-изд. л. 0,33.

Сдано в набор 19.07.99. 0,33. Тираж 132 экз.

Подписано в печать 02.08.99. C3423.

Усл. печ. л. 0,47.