

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

СТАЛИ ЛЕГИРОВАННЫЕ И ВЫСОКОЛЕГИРОВАННЫЕ

методы определения углерода

ΓΟCT 12344-88

Издание официальное

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

СТАЛИ ЛЕГИРОВАННЫЕ И ВЫСОКОЛЕГИРОВАННЫЕ

Методы определения углерода

Alloyed and high-alloyed steels. Methods of carbon determination

ΓΟCT 12344—88

ОКСТУ 0809

Срок действия с 01.01.90 до 01.07.95

Несоблюдение стандарта преследуется по закону

Настоящий стандарт устанавливает кулонометрический метод определения углерода (при массовой доле углерода от 0,002 до 2,0%) и метод инфракрасной-спектроскопии (при массовой доле углерода от 0,001 до 2,0%).

1. ОБЩИЕ ТРЕБОВАНИЯ

1.1. Общие требования к методам анализа — по ГОСТ 20560—81.

2. КУЛОНОМЕТРИЧЕСКИЙ МЕТОД ОПРЕДЕЛЕНИЯ УГЛЕРОДА

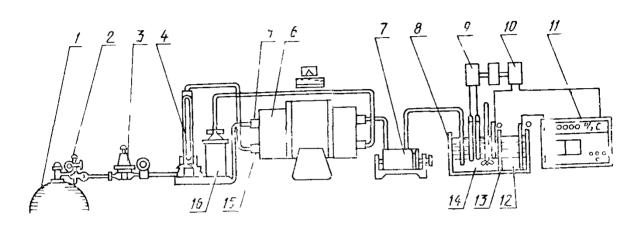
2.1. Сущность метода

Метод основан на сжигании навески стали в токе кислорода в присутствии плавня при температуре 1300—1400°С, поглощении образовавшейся двуокиси углерода поглотительным раствором с определенным начальным значением рН и последующем измерении (на установке для кулонометрического титрования) количества электричества, затраченного для восстановления исходного значения рН, которое пропорционально массовой доле углерода в навеске пробы.

2.2. Аппаратура

Кулонометрическая установка (чертеж). Допускается использование установок любого типа в том числе в комплекте с автоматическими весами (корректором массы), обеспечивающих точ-

Издание официальное


 \star

Перепечатка воспрещена

С Издательство стандартов, 1988

ность результатов анализа, предусмотренную настоящим стандартом.

При использовании автоматических весов погрешность измерения массы навески не должна превышать $\pm 0,001$ г.

1—баллон с кислородом (чистотой не менее 95°0) по ГОСТ 5583—78 (допускается использование кислорода из кислородопровода), 2, 3—редукторы, понижающ те давление кислорода, 4—ротаметр с пневматическим регулированием подачи кисл рода (от 0,2 до 2,0 дм³/мын), 5—трубка огнеупорная муллитокремнеземистая предн наченная для сжигания навески, 6—трубчатая петь обеспечивающая температуру до 1400°С, 7—фильтр поглотитель, заполненный ватой для очистки продуктов сгораны от твердых частиц окислов, 8—датчик экспресс анализатора, 9—электродная пара рН метра; 10—авторегулирующее устройство кулонометрического титрования, 11— инфровое табло, 12—анодный отсек датчика, 13—целлофановая перегородка между датчиками, 14—катодный отсек датчика, 15—трубка огнеупорная муллитокремнеземистая предназначенная для горячей счистки кислорода (при определении углерода с массовой долей более 0,03% горячую очистку кислорода можно не применять), 16—колонка, заполненная аскаритом для очистки кислорода от углекислого газа.

Лодочки фарфоровые по ГОСТ 9147—80 или по другой нормативно-технической документации, предварительно прокаленные в токе кислорода при рабочей температуре.

При определении углерода менее 0.05% лодочки прокаливают непосредственно перед проведением анализа, охлаждают до комнатной температуры и хранят в эксикаторе.

Трубчатая печь сопротивления, обеспечивающая температуру до 1400°С. Допускается применение индукционных печей.

Крючок из жаропрочной низкоуглеродистой стали длиной 300—600 мм, диаметром 3—5 мм.

23. Реактивы и растворы

Поглотительный и вспомогательный растворы в соответствии с типом применяемой кулонометрической установки.

Плавни: железо карбонильное радиотехническое по ГОСТ 13610—79 ос. ч. или по другой нормативно-технической документации, олово по ГОСТ 860—75 или по другой нормативно-технической документации, окись меди по ГОСТ 16539—79 или по

другой нормативно-технической документации, медь металлическая по ГОСТ 546—79 или по другой нормативно-технической документации.

Допускается применение других плавней.

Массовая доля углерода в плавне не должна превышать соответствующей величины допускаемых расхождений между результатами параллельных определений.

Эфиры: сернокислый (медицинский) или диэтиловый эфир. Допускается применение других летучих органических растворителей: ацетон по ГОСТ 2603—79, хлороформ и др.

Марганец диоксид по ГОСТ 4470—79.

Гидроперит.

2.4. Подготовка к анализу

Перед проведением анализа установку приводят в рабочее состояние в соответствии с инструкцией, прилагаемой к прибору.

Перед началом работы, а также после замены муллитокремнеземистых трубок, сжигают две-три произвольные навески стали с массовой долей углерода 1%.

При определении углерода в материалах с высокой массовой долей серы (автоматная сталь), для устранения влияния двуокиси серы применяют двуокись марганца или гидроперит, которые помещают в фильтр-поглотитель (7).

Градуировку прибора проводят по стандартным образцам углеродистых сталей.

Контроль правильности результатов анализа устанавливают по стандартным образцам сталей, соответствующих по химическому составу и определяемым концентрациям анализируемым материалам.

С целью контроля правильности результатов анализа с каждой партией проб анализируют стандартные образцы сталей не реже двух раз в смену.

Среднее арифметическое значение результатов анализа стандартного образца не должно отличаться от его аттестованного значения более чем на $0.6\ d_2$ или на $0.5\ d_3$ абсолютного допускаемого расхождения, установленного для соответствующего интервала концентраций при выполнении анализа из двух (трех) параллельных навесок.

2.5. Проведение анализа

При анализе легированных сталей навеску стали массой 0,25—0,5 г (в зависимости от массовой доли углерода в стали и ее химического состава) помещают в прокаленную фарфоровую лодочку и прибавляют 0,5—1 г меди или железа, или другого плавня.

C. 4 FOCT 12344-88

При анализе высоколегированных сталей применяют 1,5 г смеси плавней, состоящих из олова и железа или окиси меди и железа, взятых в обоих случаях в соотношении 1:2.

При массовой доле углерода в стали менее 0,20%, навеску рекомендуется предварительно промыть эфиром или другим летучим органическим растворителем и высущить на воздухе.

Лодочку с навеской металла и плавня помещают в наиболее нагретую часть фарфоровой трубки, которую быстро закрывают металлическим затвором: нажимают на клавишу «сброс», при этом показания индикаторного цифрового табло устанавливаются на «нуль».

В процессе сжигания навески металла на цифровом табло идет непрерывный отсчет.

Анализ считают законченным, если показание табло не изменяется в течение одной минуты или изменяется на величину холостого счета прибора.

Параллельно, через все стадии анализа, проводят анализ контрольного опыта. Для этого в прокаленную фарфоровую лодочку помещают соответствующий плавень и сжигают его при рабочей температуре в течение времени, затрачиваемого на сжигание навески анализируемого материала. Продолжительность измерения (сжигания навески металла) 1,5—3 мин в зависимости от химического состава анализируемого материала.

- 2.6. Обработка результатов
- 2.6.1. Массовую долю углерода (C) в процентах вычисляют по формуле

$$C=\frac{m_1(a-a_1)}{m},$$

где m_1 — масса навески, при которой отградуирован прибор, г

- a показание цифрового табло прибора, полученное в результате сжигания навески анализируемого материала, %;
- a_1 среднее арифметическое значение показаний прибора, полученное в результате сжигания плавня, % (контрольного опыта);
- т масса анализируемой навески, г.

При использовании приборов с автоматическими весами (корректором массы) массовую долю углерода в процентах вычисляют по формуле 2.6.2. Абсолютные расхождения крайних результатов трех (d_3) или двух (d_2) параллельных определений (при доверительной вероятности P=0.95) не должны превышать величины допускаемых расхождений для соответствующего интервала концентраций, приведенных в таблице.

		Масс овая доля углерода, %			Абсолютные , расхожде	е допускаемые кдения, %
		Macc	лод квао	я углерода, %	d ₃	d_2
от	0,001	до	0,002	включ.	0,0008	0,0007
Св	0,002	»	0,005	*	0,0010	0,0008
>	0,005	*	0,01	>	0,0020	0,0017
>>	0,01	*	0,02	>	0,004	0,003
*	0,02	>>	0,05	>	0,006	0,005
*	0,05	>>	0,10	>	0,010	0,008
>	0,10	>>	0,2	>	0,015	0,012
*	0,2	*	0,5	>	0,020	0,017
*	0,5	*	1,0	>	0,030	0,025
*	1,0	*	2,0	>	0,050	0,04

- 2.6.3. За результат анализа принимают среднее арифметическое двух (трех) параллельных определений за вычетом среднего арифметического двух (трех) параллельных результатов контрольного опыта.
- 2.6.4. За окончательный результат принимают результат, удовлетворяющий требованиям п. 2.6.2.

3. ИНФРАКРАСНО-АБСОРБЦИОННЫЙ МЕТОД

3.1. Сущность метода

Метод основан на сжигании навески стали в токе кислорода в присутствии плавня при температуре 1700°С и определении количества образовавшейся двуокиси углерода путем измерения поглощенной ею инфракрасной радиации.

3.2. Аппаратура и реактивы

Любой тип автоматического анализатора, основанный на принципе абсорбции инфракрасной радиации и обеспечивающий точность результатов анализа, предусмотренную настоящим стандартом.

Эфир сернокислый (медицинский). Допускается применение других летучих органических растворителей: ацетон, хлороформ и др.

Плавень, используемый в зависимости от типа применяемого анализатора.

3.3. Подготовка к анализу

Перед проведением анализа установку приводят в рабочее состояние в соответствии с инструкцией, прилагаемой к прибору.

Градуировку прибора проводят по стандартным образцам

углеродистых сталей.

Контроль правильности результатов анализа устанавливают по стандартным образцам сталей, соответствующих по химическому составу и определяемым концентрациям анализируемым материалам.

С целью контроля правильности результатов анализа с каждой партией проб анализируют стандартные образцы сталей не реже

двух раз в смену.

Среднее арифметическое значение результатов анализа стандартного образца не должно отличаться от его аттестованного значения более чем на $0,6\ d_2$ или на $0,5\ d_3$ абсолютного допускаемого расхождения, установленного для соответствующего интервала концентраций при выполнении анализа из двух (трех) параллельных навесок.

3.4. Проведение анализа

Анализ проводят в соответствии с инструкцией, прилагаемой к прибору.

При массовой доле углерода в стали менее 0,20%, навеску рекомендуется предварительно промыть эфиром или другим летучим органическим растворителем и высушить на воздухе.

Параллельно через все стадии анализа проводят анализ конт-

рольного опыта.

Продолжительность измерения (сжигание навески металла) — 45 с.

3.5. Обработка результатов

3.5.1. Массовую долю углерода (C) в процентах вычисляют по формуле

$$C=a-a_1$$

- где a показание цифрового табло прибора, полученное в результате сжигания навески анализируемого материала, %;
 - a_1 показания цифрового табло прибора, полученное в результате сжигания плавня, % (контрольного опыта).
- $3\,5.2$. Абсолютные расхождения крайних результатов трех (d_3) или двух (d_2) параллельных определений (при доверительной вероятности $P\!=\!0.95$) не должны превышать величины допускаемых расхождений для соответствующего интервала концентраций, приведенных в таблице.

- 3.5.3. За результат анализа принимают среднее арифметическое двух (трех) параллельных определений за вычетом среднего арифметического двух (трех) параллельных результатов контрольного опыта.
- 3.5.4. За окончательный результат принимают результат, удовлетворяющий требованиям п. 2.6.2.

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. РАЗРАБОТАН И ВНЕСЕН Министерством черной металлургин СССР

исполнители

- С. М. Новокщенова, В. П. Замараев, А. И. Оржеховская
- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 21.09.88 № 324
- 3. B3AMEH FOCT 12344-78
- 4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер пункта	
ΓΟCT 546—79 ΓΟCT 860—75 ΓΟCT 2603—79 ΓΟCT 4470—79 ΓΟCT 5583—78 ΓΟCT 9147—80 ΓΟCT 13610—79 ΓΟCT 16539—79 ΓΟCT 20560—81	2.3 2.3 2.3 2.3 2.2 2.2 2.2 2.3 2.3 1.1	

Редактор В. М. Лысенкина Технический редактор Г. А. Теребинкина Корректор Е. И. Морозова

Сдано в наб. 06.10.88 Подп. в печ. 19.12.88 0,75 усл. п. л. 0,75 усл. кр.-отт. 0,47 уч.-изд. л. Тир. 16 000

Ордена «Знак Почета» Издательство стандартов, 123840, Москва, ГСП, Новопресненский пер., 3 Тип. «Московский печатник». Москва, Лялин пер., 6. Зак. 3211