МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

НИКЕЛЬ. КОБАЛЬТ Методы определения железа

Издание официальное

МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ М и и с к

Предисловие

1 РАЗРАБОТАН Межгосударственными техническими комитетами по стандартизации МТК 501 «Никель» и МТК 502 «Кобальт», АО «Институт Гипроникель»

ВНЕСЕН Госстандартом России

2 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол № 21 от 30 мая 2002 г.)

За принятие проголосовали:

Наименование государства	Наименование национального органа по стандартизации		
Азербайджанская Республика	Азгосстандарт		
Республика Армения	Армгосстандарт		
Республика Беларусь	Госстандарт Республики Беларусь		
Грузия	Грузстандарт		
Кыргызская Республика	Кыргызстандарт		
Республика Молдова	Молдовастандарт		
Российская Федерация	Госстандарт России		
Республика Таджикистан	Талжикстандарт		
Туркменистан	Главгосслужба «Туркменстандартлары»		
Республика Узбекистан	Узгосстандарт		
Украина	Госстандарт Украины		

- 3 Постановлением Государственного комитета Российской Федерации по стандартизации и метрологии от 17 сентября 2002 г. № 334-ст межгосударственный стандарт ГОСТ 13047.17—2002 введен в действие в качестве государственного стандарта Российской Федерации с 1 июля 2003 г.
 - 4 B3AMEH FOCT 13047.14-81, FOCT 741.6-91
 - 5 ПЕРЕИЗДАНИЕ. Март 2006 г.

© ИПК Издательство стандартов, 2002 © Стандартинформ, 2006

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания на территории Российской Федерации без разрешения Федерального агентства по техническому регулированию и метрологии

Содержание

1	Область применения	. 1
2	2 Нормативные ссылки	. 1
3	3 Общие требования и требования безопасности	. 1
4	4 Спектрофотометрический метод	. I
	4.1 Метод анализа	. I
	4.2 Средства измерений, вспомогательные устройства, материалы, реактивы, растворы	. 1
	4.3 Подготовка к анализу	. 2
	4.4 Проведение анализа	. 2
	4.5 Обработка результатов анализа	. 3
	4.6 Контроль точности анализа	. 3
5	5 Атомно-абсорбционный метод	. 3
	5.1 Метод анализа	. 3
	5.2 Средства измерений, вспомогательные устройства, материалы, реактивы, растворы	. 4
	5.3 Подготовка к анализу	. 4
	5.4 Проведение анализа	. 5
	5.5 Обработка результатов анализа	. 5
	5.6 Контроль точности анализа	. 5
П	Приложение А Библиография	. 6

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

НИКЕЛЬ. КОБАЛЬТ

Методы определения железа

Nickel. Cobalt. Methods for determination of iron

Дата введения 2003-07-01

1 Область применения

Настоящий стандарт устанавливает спектрофотометрический и атомно-абсорбционный методы определения железа при массовой доле от 0,001 % до 1,0 % в первичном никеле по ГОСТ 849, никелевом порошке по ГОСТ 9722, кобальте по ГОСТ 123 и кобальтовом порошке по ГОСТ 9721.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 123-98 Кобальт. Технические условия

ГОСТ 849-97 Никель первичный. Технические условия

ГОСТ 3118-77 Кислота соляная. Технические условия

ГОСТ 3760-79 Аммиак водный. Технические условия

ГОСТ 4204-77 Кислота серная. Технические условия

ГОСТ 4204—77 Кислота серная. Технические условия

ГОСТ 4478-78 Кислота сульфосалициловая 2-водная. Технические условия

ГОСТ 5457—75 Ацетилен растворенный и газообразный технический. Технические условия

ГОСТ 9721-79 Порошок кобальтовый. Технические условия

ГОСТ 9722-97 Порошок никелевый. Технические условия

ГОСТ 11125-84 Кислота азотная особой чистоты. Технические условия

ГОСТ 13047.1-2002 Никель. Кобальт. Общие требования к методам анализа

ГОСТ 14261-77 Кислота соляная особой чистоты. Технические условия

ГОСТ 24147-80 Аммиак водный особой чистоты. Технические условия

3 Общие требования и требования безопасности

Общие требования к методам анализа и требования безопасности при выполнении работ — по ГОСТ 13047.1.

4 Спектрофотометрический метод

4.1 Метод анализа

Метод основан на измерении светопоглощения при длине волны 415 нм комплексного соединения железа с сульфосалициловой кислотой в аммиачной среде после предварительного выделения железа экстракцией изоамилацетатом из среды соляной кислоты.

4.2 Средства измерений, вспомогательные устройства, материалы, реактивы, растворы

Спектрофотометр или фотоэлектроколориметр, обеспечивающий проведение измерений в области длин волн 400—430 нм.

Кислота азотная по ГОСТ 4461, при необходимости очищенная перегонкой, или по ГОСТ 11125, разбавленная 1:1.

Издание официальное

ГОСТ 13047.17-2002

Кислота соляная по ГОСТ 3118, при необходимости по ГОСТ 14261, разбавленная 3:1, 1:1, 1:10. Кислота серная по ГОСТ 4204, разбавленная 1:1, 1:9.

Кислота сульфосалициловая по ГОСТ 4478, раствор массовой концентрации 0,1 г/см3.

Аммиак водный по ГОСТ 3760, при необходимости по ГОСТ 24147, разбавленный 1:1.

Изоамиловый эфир уксусной кислоты (изоамилацетат) по [1].

Железо карбонильное по [2] или другое, содержащее не менее 99,9 % основного вещества.

Растворы железа известной концентрации.

Раствор А массовой концентрации железа 0,001 г/см³: в стакан или колбу вместимостью 250 см³ помещают навеску железа массой 1,0000 г, приливают 20—30 см³ соляной кислоты, разбавленной 1:1, растворяют при нагревании, приливают 2—3 см³ азотной кислоты, разбавленной 1:1, и выпаривают до влажных солей, стенки стакана обмывают водой, приливают 30 см³ серной кислоты, разбавленной 1:1, выпаривают до появления паров серной кислоты, охлаждают, приливают 100 см³ воды, растворяют соли при нагревании, охлаждают, переводят раствор в мерную колбу вместимостью 1000 см³ и доливают до метки водой.

Раствор Б массовой концентрации железа 0,0001 г/см³: в мерную колбу вместимостью 100 см³ отбирают 10 см³ раствора А, приливают 10 см³ серной кислоты, разбавленной 1:9, и доливают до метки водой.

Раствор В массовой концентрации железа 0,00001 г/см³: в мерную колбу вместимостью 100 см³ отбирают 10 см³ раствора Б, приливают 10 см³ серной кислоты, разбавленной 1:9, и доливают до метки водой.

4.3 Подготовка к анализу

4.3.1 Перед проведением анализа посуду, предназначенную для анализа, промывают горячей соляной кислотой, разбавленной 1:1, затем водой.

При анализе никеля марок H-0, H-1y, H-1 и кобальта марки K-0 для удаления случайных загрязнений пробы железом рекомендуется предварительно ее обработать. Часть пробы массой 7—10 г помещают в стакан вместимостью 400 или 600 см³, приливают 30—50 см³ соляной кислоты, разбавленной 1:10. Раствор с пробой перемешивают 2—3 мин, раствор сливают декантацией и пробу промывают 2—3 раза водой порциями по 50 см³, сливая промывной раствор декантацией. Пробу высушивают фильтровальной бумагой и выдерживают в сушильном шкафу 10 мин при температуре 100—110 °C.

4.3.2 Для градуировочного графика в мерные колбы вместимостью 100 см³ отбирают 1,0; 2,0; 4,0; 6,0; 8,0; 10,0 см³ раствора В, приливают воду до 15 см³, 10 см³ раствора сульфосалициловой кислоты и далее поступают, как указано в 4.4.2.

Масса железа в растворах для градуировочного графика составляет 0,00001; 0,00002; 0,00004; 0,00006; 0,00008; 0,00010 г.

По значениям светопоглощения растворов и соответствующим им массам железа строят градуировочный график с учетом значения светопоглощения раствора, подготовленного без введения раствора железа.

4.4 Проведение анализа

4.4.1 В стакан или колбу вместимостью 250 см³ помещают навеску пробы массой в соответствии с таблицей 1.

T	аб	лиц	a 1	- 1	словия/	подготовки	раствора	пробы
---	----	-----	-----	-----	---------	------------	----------	-------

Массовая доля железа, %	Масса навески пробы, г	Объем аликвотной части раствора, см ³
От 0,001 до 0,010 включ.	1,000	Весь раствор
CB. 0,01 » 0,10 »	1,000	25
» 0,10 » 0,50 »	0,500	10
* 0.50 * 1.00 *	0,250	10

Пробу растворяют при нагревании в 15—20 см³ азотной кислоты, разбавленной 1:1, выпаривают до влажных солей, обмывают стенки стакана или колбы водой, повторяют выпаривание, приливают 15 см³ соляной кислоты, разбавленной 3:1, нагревают до растворения солей и охлаждают.

При массовой доле железа свыше 0.010~% раствор переводят в мерную колбу вместимостью $250~{\rm cm}^3$ и доливают до метки соляной кислотой, разбавленной 3:1.

Раствор или аликвотную часть его объемом в соответствии с таблицей 1 переводят в делительную воронку вместимостью 100 см³, доливают до 40 см³ соляной кислотой, разбавленной 3:1, приливают 20 см³ изоамилацетата, встряхивают 1 мин. Водную фазу отбрасывают, а органические фазы объединяют. К органической фазе приливают 15 см³ соляной кислоты, разбавленной 3:1, встряхивают воронку 30 с, водную фазу отбрасывают, а органическую фазу вновь промывают 15 см³ соляной кислоты, разбавленной 3:1.

К органической фазе приливают 20 см³ воды и встряхивают воронку 30 с, водную фазу сливают в стакан вместимостью 100 см³, а к органической фазе приливают 20 см³ воды и повторяют экстракцию. Водную фазу сливают в тот же стакан, а органическую отбрасывают.

Объединенный водный раствор выпаривают до объема 5—7 см³, приливают 5 см³ серной кислоты, разбавленной 1:1, выпаривают до появления паров серной кислоты, охлаждают, приливают 10—15 см³ воды и переводят раствор в мерную колбу вместимостью 100 см³.

4.4.2 В мерную колбу приливают 10 см³ раствора сульфосалициловой кислоты, аммиак до появления желтой окраски раствора и еще избыток 5 см³ и доливают до метки водой. Через 15 мин измеряют светопоглощение раствора пробы и контрольного опыта на спектрофотометре при длине волны 415 нм или на фотоэлектроколориметре в диапазоне длин волн 400—430 нм, используя в качестве раствора сравнения воду.

Массу железа в растворах находят по градуировочному графику.

4.5 Обработка результатов анализа

Массовую долю железа в пробе X, %, вычисляют по формуле

$$X = \frac{(M_x - M_g)}{M} K 100,$$
 (1)

где M_x — масса железа в растворе пробы, г;

масса железа в растворе контрольного опыта, г;

 \dot{M} — масса навески пробы, г;

К — коэффициент разбавления раствора пробы.

4.6 Контроль точности анализа

Контроль метрологических характеристик результатов анализа проводят по ГОСТ 13047.1. Нормативы контроля и погрешность метода анализа приведены в таблице 2.

Таблица 2 — Нормативы контроля и погрешность метода анализа

Впроцентах

Массовая доля железа	Допускаемые расхождения результатов двух парадлельных определений d_2	Допускаемые расхождения результатов трех параплельных определений d ₃	Допускаемые расхождения двух результатов анализа <i>D</i>	Погрешность метода анализа D
0,0010	0,0002	0,0003	0,0004	0,0003
0,0030	0,0005	0,0006	0,0010	0,0007
0,0050	0,0006	0,0007	0,0012	0,0008
0,0100	0,0010	0,0012	0,0020	0,0014
0,030	0,003	0,004	0,006	0,004
0,050	0,005	0.006	0,010	0,007
0,100	0,007	0.008	0.014	0,010
0,300	0,015	0.018	0.030	0.021
0,50	0,03	0.04	0.06	0.04
1,00	0.06	0.07	0.12	0.08

5 Атомно-абсорбционный метод

5.1 Метод анализа

Метод основан на измерении поглощения при длине волны 248,3 нм резонансного излучения атомами железа, образующимися в результате атомизации при введении раствора пробы в пламя ацетилен-воздух.

5.2 Средства измерений, вспомогательные устройства, материалы, реактивы, растворы

Атомно-абсорбционный спектрофотометр, обеспечивающий проведение измерений в пламени ацетилен-воздух.

Лампа с полым катодом для возбуждения спектральной линии железа.

Ацетилен газообразный по ГОСТ 5457.

Фильтры обеззоленные по [3] или другие средней плотности.

Кислота азотная по ГОСТ 4461, при необходимости очищенная перегонкой, или по ГОСТ 11125, разбавленная 1:1, 1:9, 1:19.

Кислота соляная по ГОСТ 3118, при необходимости по ГОСТ 14261, разбавленная 1:1, 1:2.

Порошок никелевый по ГОСТ 9722 или стандартный образец состава никеля с установленной массовой долей железа не более 0,002 %.

Кобальт по ГОСТ 123 или стандартный образец состава кобальта с установленной массовой долей железа не более 0.002 %.

Железо карбонильное по [2] или другое, содержащее не менее 99,9 % основного вещества.

Растворы железа известной концентрации.

Раствор А массовой концентрации железа 0,001 г/см³: навеску железа массой 1,0000 г помещают в стакан вместимостью 250 см³, приливают 25—30 см³ азотной кислоты, разбавленной 1:1, растворяют при нагревании, приливают 1—2 см³ соляной кислоты, разбавленной 1:1, и выпаривают раствор до объема 5—7 см³, стенки стакана обмывают водой, вновь выпаривают, приливают 50—60 см³ воды, охлаждают, переводят раствор в мерную колбу вместимостью 1000 см³, приливают 20 см³ азотной кислоты, разбавленной 1:1, и доливают до метки водой.

Раствор Б массовой концентрации железа 0,0001 г/см³: в мерную колбу вместимостью 100 см³ отбирают 10 см³ раствора А, приливают 10 см³ азотной кислоты, разбавленной 1:1, доливают до метки водой.

5.3 Подготовка к анализу

5.3.1 Перед проведением анализа посуду, предназначенную для анализа, промывают горячей соляной кислотой, разбавленной 1:1, затем водой.

Для удаления случайных загрязнений пробы железом рекомендуется провести обработку пробы, как указано в 4.3.1.

5.3.2 Для градуировочного графика 1 при определении массовых долей железа не более 0,010 % в стаканы или колбы вместимостью 250 см³ помещают навески массой 5,000 г проб никелевого порошка или кобальта или стандартного образца состава никеля или кобальта с установленной массовой долей железа. Число навесок должно соответствовать числу точек градуировочного графика, включая контрольный опыт.

Навески растворяют при нагревании в 50—60 см³ азотной кислоты, разбавленной 1:1. При использовании никелевого порошка растворы фильтруют через фильтры (красная или белая лента), предварительно промытые 2—3 раза азотной кислотой, разбавленной 1:9, фильтры промывают 2—3 раза горячей водой. Растворы выпаривают до объема 10—15 см³, приливают 40—50 см³ воды, нагревают до кипения, охлаждают, переводят в мерные колбы вместимостью 100 см³.

В колбы отбирают 0,5; 1,0; 2,0; 3,0; 4,0; 5,0; 6,0 см³ раствора Б, в колбу с раствором контрольного опыта раствор железа не вволят, доливают до метки водой и измеряют абсорбцию, как указано в 5.4.

Масса железа в растворах для градуировки составляет 0,00005; 0,00010; 0,00020; 0,00030; 0,00040; 0,00050; 0,00060 г.

5.3.3 Для градуировочного графика 2 при определении массовых долей железа свыше 0,010 % в стаканы или колбы вместимостью 250 см³ помещают навески массой 1,000 г проб никелевого порошка или кобальта или стандартного образца состава никеля или кобальта с установленной массовой долей железа. Число навесок должно соответствовать числу точек градуировочного графика, включая контрольный опыт.

Навески проб растворяют при нагревании в 15—20 см³ азотной кислоты, разбавленной 1:1, и поступают, как указано в 5.3.2.

В мерные колбы отбирают 0,5; 1,0; 2,0; 3,0; 4,0; 5,0; 6,0 см³ раствора Б, в колбу с раствором контрольного опыта раствор железа не вводят, доливают до метки водой и измеряют абсорбцию, как указано в 5.4.

Масса железа в растворах для градуировки указана в 5.3.2.

5.3.4 Для градуировочного графика 3 при определении массовых долей железа свыше 0,050 % в мерные колбы вместимостью 100 см³ отбирают по 20 см³ раствора контрольного опыта, подготовленного, как указано в 5.3.3, вводят 0,5; 1,0; 2,0; 3,0; 4,0; 5,0; 6,0 см³ раствора Б, в одну из колб с

раствором контрольного опыта раствор железа не вводят, доливают до метки азотной кислотой, разбавленной 1:19, и измеряют абсорбцию, как указано в 5.4.

Масса железа в растворах для градуировки указана в 5.3.2.

5.3.5 Для градуировочного графика 4 при определении массовых долей железа свыше 0,25 % в мерные колбы вместимостью 100 см³ отбирают 1,0; 2,0; 3,0; 4,0; 5,0 см³ раствора Б, в одну из колб с раствором контрольного опыта раствор железа не вводят, доливают до метки азотной кислотой, разбавленной 1:19, и измеряют абсорбцию, как указано в 5.4.

Масса железа в растворах для градуировки составляет 0,0001; 0,0002; 0,0003; 0,0004; 0,0005 г.

5.4 Проведение анализа

В стакан или колбу вместимостью 250 см³ помещают навеску пробы массой в соответствии с таблиней 3.

Таблица 3 — Условия подготовки раствора пробы

Массовая доля железа, %	Масса навески пробы, г	Объем аликвотной части раствора, см ³	Номер градуировочного графика	
От 0,001 до 0,010 включ.	5,000	Весь раствор	1	
Св. 0,010 » 0,050 »	1,000	То же	2	
» 0,05 » 0,25 »	1,000	20	3	
» 0,25 » 1,00 »	1,000	20/100/20	4	

В стакан или колбу вместимостью 250 см³ помещают навеску пробы массой в соответствии с таблицей 3. Навеску пробы массой 5,000 г растворяют при нагревании в 50—60 см³, а массой 1,000 г — в 15—20 см³ азотной кислоты, разбавленной 1:1, выпаривают раствор соответственно до объема 15—20 см³ или 5—7 см³, переводят в мерную колбу вместимостью 100 см³, охлаждают, доливают до метки волой.

При массовой доле железа свыше 0,050 % в соответствии с таблицей 3 проводят разбавление раствора пробы азотной кислотой, разбавленной 1:19, в мерной колбе вместимостью 100 см³.

Измеряют абсорбцию раствора пробы и соответствующего градуировочного графика при длине волны 248,3 или 248,8 нм, ширине щели 0,15—0,30 нм не менее двух раз, последовательно вводя их в пламя, промывают систему водой, проверяют нулевую точку и стабильность градуировочного графика. Для проверки нулевой точки используют раствор соответствующего контрольного опыта, подготовленного, как указано в 5.3.

По значениям абсорбции растворов для градуировки и соответствующим им массам железа строят градуировочные графики.

По значению абсорбции раствора пробы находят массу железа по соответствующему градуировочному графику.

5.5 Обработка результатов анализа

Массовую долю железа Х, %, вычисляют по формуле

$$X = \frac{M_x K}{M} 100, \qquad (2)$$

где M_v — масса железа в растворе пробы, г;

К — коэффициент разбавления раствора пробы;

М — масса навески пробы.г.

5.6 Контроль точности анализа

Контроль метрологических характеристик результатов анализа проводят по ГОСТ 13047.1. Нормативы контроля и погрешность метода анализа приведены в таблице 2.

ПРИЛОЖЕНИЕ A (справочное)

Библиография

- ТУ 6-09-06-1229—85 Изоамиловый эфир уксусной кислоты (изоамилацетат), х. ч.
- [2] ТУ 6-09-05808009-262-92* Железо карбонильное ос. ч. 13-2, ос. ч. 6-2
- [3] ТУ 6-09-1678-95* Фильтры обеззоленные (белая, красная, синяя ленты)

УДК 669.24/.25:543.06:006.354

MKC 77.120.40

B59

ОКСТУ 1732

Ключевые слова: никель, кобальт, железо, химический анализ, массовая доля, средства измерений, раствор, реактив, проба, градуировочный график, погрешность, нормативы контроля

> Редактор Л.И. Нахимова Технический редактор О.Н. Власова Корректор Т.И. Копоненко Компьютерная верстка А.Н. Залотаревой

Подписано в печать 13.03.2006. Формат 60х84¹/ь. Бумага офсетная. Гарнитура Таймс. Печать офсетная. Усл.печ.л. 0,93. Уч.-изд.л. 0,75. Тираж 29 экз. Зак. 96. С 2588.

^{*} Действует на территории Российской Федерации.